Results and a conjecture

We start by giving several results regarding the Manin constant for quotients of arbitrary dimension. The proofs of most of the theorems are given in Section 4.

Let $ \Gamma$ be a subgroup of $ \Gamma_0(N)$ that contains $ \Gamma_1(N)$ . We have the following generalization of Edixhoven's Theorem 2.2.

Theorem 3.4   The Manin constant $ {c_{\scriptscriptstyle{A}}}$ is an integer. (In the notation of Section 3.1 we even have that % latex2html id marker 7929
$ \psi(H^0(A_{{\bf {Z}}},\Omega^1_{A/{\bf {Z}}})) \subseteq S_2({\bf {Z}})[I]$ .)

Proof. Let $ J={\mathrm{Jac}}(X_\Gamma)$ and $ J'=J_1(N)$ . Suppose $ A$ is an optimal quotient of $ J$ . We have natural maps % latex2html id marker 7942
$ \H ^0(J'_{{\bf {Z}}}, \Omega^1_{J'/{\bf {Z}}})
\h...
...ga^1_{J'/{\bf {Q}}}) \stackrel{\cong }{\rightarrow }
S_2(\Gamma_1(N);{\bf {Q}})$ ; from the proof of Lemma 6.1.6 of [CES03], the image of the composite is contained in  $ S_2(\Gamma_1(N);{\bf {Z}})$ . The maps $ J' \to J \to A$ induce a chain of inclusions

% latex2html id marker 7948
$\displaystyle \H ^0(A_{{\bf {Z}}},\Omega^1_{A/{\bf...
...}}) \hookrightarrow S_2(\Gamma_1(N);{\bf {Z}}) \hookrightarrow {\bf {Z}}[[q]].
$

Combining this chain of inclusions with commutativity of the diagram

$\displaystyle \xymatrix{
& {S_2(\Gamma_1(N))}\ar[dr]^{\text{$F$-exp}}\\
{S_2(\Gamma)} \ar[ur]^{f(q)\mapsto f(q)}\ar[rr]^{\text{$F$-exp}}
& & {{\bf{C}}[[q]]},
}
$

where $ F$ -exp is the Fourier expansion map, we see that the image of % latex2html id marker 7954
$ \H ^0(A_{{\bf {Z}}},\Omega^1_{A/{\bf {Z}}})$ lies in $ S_2({\bf {Z}})[I]$ , as claimed. $ \qedsymbol$

For the rest of the paper, we take $ \Gamma = \Gamma_0(N)$ . For each prime $ \ell \mid N$ with $ {\mathrm{ord}}_{\ell}(N)=1$ , let $ W_\ell$ be the $ \ell$ th Atkin-Lehner operator. Let $ J=J_0(N)$ and $ A = A_I = J/IJ$ be an optimal quotient of $ J$ attached to a saturated ideal $ I$ . If $ \ell$ is a prime, then as usual, $ {{\bf {Z}}_{(\ell)}}$ will denote the localization of $ {\bf {Z}}$ at $ \ell$ .

Theorem 3.5   Suppose that $ \ell$ is an odd prime such that $ \ell^2 \nmid N$ , and that if $ \ell \mid N$ , then $ A^{\vee}\subset J$ is stable under $ W_{\ell}$ . Then $ \ell \mid {c_{\scriptscriptstyle{A}}}$ if and only if $ \ell \mid N$ and $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is not stable under the action of $ W_\ell$ .

We will prove this theorem in Section 4.2.

Remark 3.6   The condition that $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is stable under $ W_{\ell}$ can be verified using standard algorithms. Thus in light of Theorem 3.5, if $ A$ is stable under all Atkin-Lehner operators and $ N$ is square free, then one can compute the set of odd primes that divide $ c_A$ . It would be interesting to refine the arguments of this paper to find an algorithm to compute $ c_A$ exactly.

Let $ J_{\rm old}$ denote the abelian subvariety of $ J$ generated by the images of the degeneracy maps from levels that properly divide $ N$ (see, e.g., [Maz78, §2(b)]) and let $ J^{\rm new}$ denote the quotient of $ J$ by  $ J_{\rm old}$ . A new quotient is a quotient $ J \to A$ that factors through the map $ J \to J^{{\mathrm{new}}}$ . The following corollary generalizes Mazur's Theorem 2.3:

Corollary 3.7   If $ A=A_f$ is an optimal newform quotient of $ J_0(N)$ and $ \ell \mid {c_{\scriptscriptstyle{A}}}$ is a prime, then $ \ell = 2$ or $ \ell^2 \mid N$ .

Proof. Since $ f$ is a newform, $ W_{\ell}$ acts as either $ 1$ or $ -1$ on $ A$ hence on $ S_2({{\bf {Z}}_{(\ell)}})[I]$ . Thus $ S_2({{\bf {Z}}_{(\ell)}})[I]$ is $ W_{\ell}$ -stable. $ \qedsymbol$

Corollary 3.8   If $ A=J_0(N)_{{\mathrm{new}}}$ is the new subvariety of $ J_0(N)$ and $ \ell \mid {c_{\scriptscriptstyle{A}}}$ is a prime, then $ \ell = 2$ or $ \ell^2 \mid N$ . (In particular, if $ N$ is prime then the Manin constant of $ J_0(N)$ is a power of $ 2$ , since $ A=J_0(N)[I]$ for $ I=0$ .)

Proof. We have $ W_{\ell} = -T_{\ell}$ on $ A$ (e.g., see the end of [DI95, §6.3]). Also the new subspace $ S_2({\bf {Z}})_{{\mathrm{new}}}$ of $ S_2(\Gamma_0(N))$ is $ T_{\ell}$ -stable. $ \qedsymbol$

Remark 3.9   If $ A=J_0(33)$ , then

% latex2html id marker 8119
$\displaystyle W_{3} = \left(\begin{array}{rrr}
1&0...
...1}{3}&-\frac{4}{3}\\
\frac{1}{3}&-\frac{2}{3}&-\frac{1}{3}
\end{array}\right) $

with respect to the basis

$\displaystyle f_1$ $\displaystyle = q - q^{5} - 2q^{6} + 2q^{7} + \cdots,$    
$\displaystyle f_2$ $\displaystyle = q^{2} - q^{4} - q^{5} - q^{6} + 2q^{7} + \cdots,$    
$\displaystyle f_3$ $\displaystyle = q^{3} - 2q^{6} + \cdots$    

for $ S_2({\bf {Z}})$ . Thus $ W_3$ does not preserve $ S_2({\bf {Z}}_{(3)})$ . In fact, the Manin constant of $ J_0(33)$ is not $ 1$ in this case (see Section 3.4). Note that Theorem 3.5 implies that the only primes that can divide the Manin constant of any optimal quotient of tex2html_wrap_inline$J_0(33)$are tex2html_wrap_inline$2$ and tex2html_wrap_inline$3$.

The hypothesis of Theorem 3.5 sometimes holds for non-new $ A$ . For example, take $ J = J_0(33)$ and $ \ell=3$ . Then $ W_3$ acts as an endomorphism of $ J$ , and a computation shows that the characteristic polynomial of $ W_3$ on $ S_2(33)_{{\mathrm{new}}}$ is $ x-1$ and on $ S_2(33)_{{\mathrm{old}}}$ is $ (x-1)(x+1)$ , where $ S_2(33)_{{\mathrm{old}}}$ is the old subspace of $ S_2(33)$ . Consider the optimal elliptic curve quotient $ A
= J/(W_3+1)J$ , which is isogenous to $ J_0(11)$ . Then $ A$ is an optimal old quotient of $ J$ , and $ W_3$ acts as $ -1$ on $ A$ , so $ W_3$ preserves the corresponding spaces of modular forms. Thus Theorem 3.5 implies that $ 3\nmid {c_{\scriptscriptstyle{A}}}$ .

The following theorem generalizes Raynaud's Theorem 2.4 (see also [GL01] for generalizations to $ {\bf {Q}}$ -curves).

Theorem 3.10   If $ f \in S_2(\Gamma_0(N))$ is a newform and $ \ell$ is a prime such that $ \ell^2 \nmid N$ , then $ {\mathrm{ord}}_\ell({c_{\scriptscriptstyle{A_f}}}) \leq \dim A_f$ .

Note that in light of Theorem 3.5, this theorem gives new information only at $ \ell = 2$ , when $ 2 \parallel N$ . We prove the theorem in Section 4.4

Let tex2html_wrap_inline$S_2(Z)[I]^&perp#perp;$ be the orthogonal complement of tex2html_wrap_inline$S_2(Z)[I]$ in tex2html_wrap_inline$S_2(Z)$ with respect to the Petersson inner product. theorem_type[defi][lem][][definition][][] [Congruence exponent and number] The congruence number tex2html_wrap_inline$r_A$ of tex2html_wrap_inline$A$is the order of the quotient group equation S_2(Z)/ (S_2(Z)[I] + S_2(Z)[I]^&perp#perp;). This definition of tex2html_wrap_inline$r_A$ agrees with Definition [*] when tex2html_wrap_inline$A$ is an elliptic curve (see [AU96, p. 276]).

Let $ \pi$ denote the natural quotient map $ J \rightarrow A$ . When we compose $ \pi$ with its dual $ A^{\vee}\rightarrow J^{\vee}$ (identifying $ J^{\vee}$ with $ J$ using the inverse of the principal polarization of $ J$ ), we get an isogeny $ \phi: A^{\vee}\rightarrow A$ . The modular exponent  $ {m_{\scriptscriptstyle{A}}}$ of $ A$ is the exponent of the group $ \ker(\phi)$ . When $ A$ is an elliptic curve, the modular exponent is just the modular degree of $ A$ (see, e.g., [AU96, p. 278]).

Theorem 3.11   If $ f \in S_2(\Gamma_0(N))$ is a newform and $ \ell \mid {c_{\scriptscriptstyle{A_f}}}$ is a prime, then $ \ell^2 \mid N$ or $ \ell \mid {m_{\scriptscriptstyle{A}}}$ .

Again, in view of Corollary 3.7, this theorem gives new information only at $ \ell = 2$ , when $ {\mathrm{ord}}_2(N) \le 1$ . We prove the theorem in Section 4.3.

The theorems above suggest that the Manin constant is $ 1$ for quotients associated to newforms of square-free level. In the case when the level is not square free, computations of [FpS+01] involving Jacobians of genus $ 2$ curves that are quotients of  $ J_0(N)^{\rm new}$ show that $ {c_{\scriptscriptstyle{A}}}=1$ for $ 28$ two-dimensional newform quotients. These include quotients having the following non-square-free levels:

$\displaystyle 3^2\cdot 7,\quad 3^2\cdot 13,
\quad 5^3,\quad 3^3\cdot 5,\quad 3\cdot 7^2,
\quad 5^2\cdot 7, \quad 2^2\cdot 47, \quad 3^3\cdot 7.$

The above observations suggest the following conjecture, which generalizes Conjecture 2.1:

Conjecture 3.12   If $ f$ is a newform on $ \Gamma_0(N)$ then $ {c_{\scriptscriptstyle{A_f}}}=1$ .

It is plausible that $ {c_{\scriptscriptstyle{A_f}}}=1$ for any newform on any congruence subgroup between $ \Gamma_0(N)$ and $ \Gamma_1(N)$ . However, we do not have enough data to justify making a conjecture in this context.

William Stein 2006-06-25