Bibliography

AU96
A. Abbes and E. Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), no. 3, 269-286.

Aga99
A. Agashe, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369-374.

Aga00
A. Agashe, The Birch and Swinnerton-Dyer formula for modular abelian varieties of analytic rank zero, Ph.D. thesis, University of California, Berkeley (2000),
http://www.math.missouri.edu/~ agashe/math.html/.

AL70
A.O.L. Atkin and J. Lehner, Hecke operators on $ \Gamma \sb{0}(m)$ , Math. Ann. 185 (1970), 134-160.

ARS
A. Agashe, K. Ribet, and W.A. Stein, The modular degree, congruence primes, and multiplicity one (2005).

AS05
A. Agashe and W.A. Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455-484, with an appendix by J. Cremona and B. Mazur.

BLR90
S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-Verlag, Berlin, 1990.

BCDT01
C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over $ {\bf {Q}}$ : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic).

BF01
D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic).

CE05
F. Calegari and M. Emerton, Elliptic curves of odd modular degree, Preprint (2005).

CES03
B. Conrad, S. Edixhoven, and W.A. Stein, $ {J}_1(p)$ Has Connected Fibers, Documenta Mathematica 8 (2003), 331-408.

Cre97
J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997,
http://www.maths.nott.ac.uk/personal/jec/book/.

Cre
J.E. Cremona, Tables of Elliptic Curves,
http://www.maths.nott.ac.uk/personal/jec/ftp/data/
.

DI95
F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994), Amer. Math. Soc., Providence, RI, 1995, pp. 39-133.

DR73
P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Berlin), Springer, 1973, pp. 143-316. Lecture Notes in Math., Vol. 349.

Edi89
B. Edixhoven, Stable models of modular curves and applications, Thèse de doctorat à l'université d'Utrecht (1989),
http://www.maths.univ-rennes1.fr/~ edix/publications/
prschr.html/
.

Edi91
B. Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989), Birkhäuser Boston, Boston, MA, 1991, pp. 25-39.

FpS+01
E.V. Flynn, F. Leprévost, E.F. Schaefer, W.A. Stein, M. Stoll, and J.L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675-1697 (electronic).

GL01
Josep González and Joan-C. Lario, $ {\bf {Q}}$ -curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475-503.

Gro82
B.H. Gross, On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication, Number theory related to Fermat's last theorem (Cambridge, Mass., 1981), Birkhäuser Boston, Mass., 1982, pp. 219-236.

GZ86
B. Gross and D. Zagier, Heegner points and derivatives of $ {L}$ -series, Invent. Math. 84 (1986), no. 2, 225-320.

Joy05
A. Joyce, The Manin constant of an optimal quotient of $ J\sb
0(431)$ , J. Number Theory 110 (2005), no. 2, 325-330.

Kil02
L.J.P. Kilford, Some non-Gorenstein Hecke algebras attached to spaces of modular forms, J. Number Theory 97 (2002), no. 1, 157-164.

KM85
N.M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Princeton University Press, Princeton, N.J., 1985.

Lan91
S. Lang, Number theory. III, Springer-Verlag, Berlin, 1991, Diophantine geometry.

Man72
J.I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-66.

Maz77
B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 33-186 (1978).

Maz78
B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162.

MR91
B. Mazur and K.A. Ribet, Two-dimensional representations in the arithmetic of modular curves, Astérisque (1991), no. 196-197, 6, 215-255 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).

Mc91
W.G. McCallum, Kolyvagin's work on Shafarevich-Tate groups, $ L$ -functions and arithmetic (Durham, 1989), Cambridge Univ. Press, Cambridge, 1991, pp. 295-316.

Shi73
G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), no. 3, 523-544.

Shi94
G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.

Sil92
J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original.

Sil94
J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994.

SW04
W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. (2004), no. 27, 1395-1405.

Ste89
G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75-106.

Vat05
V. Vatsal, Multiplicative subgroups of $ J\sb 0(N)$ and applications to elliptic curves, J. Inst. Math. Jussieu 4 (2005), no. 2, 281-316.



William Stein 2006-06-25