Proof of Theorem 3.10

Theorem 3.10 asserts that if $ A=A_f$ is a quotient of $ J=J_0(N)$ attached to a newform $ f$ , and $ \ell$ is a prime such that $ \ell^2 \nmid N$ , then $ {\mathrm{ord}}_{\ell}({c_{\scriptscriptstyle{A}}})
\leq \dim(A)$ . Our proof follows [AU96], except at the end we argue using lattice indices instead of multiples.

Let $ B$ denote the kernel of the quotient map $ J \rightarrow A$ . Consider the exact sequence $ 0\to B\to J\to A\to 0$ , and the corresponding complex $ B_{{{\bf {Z}}_{(\ell)}}}\to J_{{{\bf {Z}}_{(\ell)}}}
\to A_{J_{{{\bf {Z}}_{(\ell)}}}}$ of Néron models. Because $ J_{{{\bf {Z}}_{(\ell)}}}$ has semiabelian reduction (since $ \ell^2 \nmid N$ ), Theorem A.1 of the appendix of [AU96, pg. 279-280], due to Raynaud, implies that there is an integer $ r$ and an exact sequence

$\displaystyle 0 \to {\mathrm{Tan}}(B_{{{\bf {Z}}_{(\ell)}}}) \to {\mathrm{Tan}}...
...thrm{Tan}}(A_{{{\bf {Z}}_{(\ell)}}})
\to ({\bf {Z}}/{\ell}{\bf {Z}})^r \to 0.
$

Here $ {\mathrm{Tan}}$ is the tangent space at the 0 section; it is a finite free $ {{\bf {Z}}_{(\ell)}}$ -module of rank equal to the dimension. In particular, we have $ r\leq d=\dim(A)$ . Note that $ {\mathrm{Tan}}$ is $ {{\bf {Z}}_{(\ell)}}$ -dual to the cotangent space, and the cotangent space is isomorphic to the space of global differential $ 1$ -forms. The theorem of Raynaud mentioned above is the generalization to $ e=\ell -1$ of [Maz78, Cor. 1.1], which we used above in the proof of Theorem 3.5.

Let $ C$ be the cokernel of $ {\mathrm{Tan}}(B_{{{\bf {Z}}_{(\ell)}}})\to {\mathrm{Tan}}(J_{{{\bf {Z}}_{(\ell)}}})$ . We have a diagram

$\displaystyle \xymatrix @=0.15in{ 0 \ar[r] & {{\mathrm{Tan}}(B_{{{\bf {Z}}_{(\e...
...)}\ar[r]& {({\bf {Z}}/{\ell}{\bf {Z}})^r}\ar[r]& 0. & & & C\ar@{^(->}[ru] }$ (3)

Since $ C\subset {\mathrm{Tan}}(A_{{{\bf {Z}}_{(\ell)}}})$ , so $ C$ is torsion free, we see that $ C$ is a free $ {{\bf {Z}}_{(\ell)}}$ -module of rank $ d$ . Let $ C^* =
{\rm Hom}_{{{\bf {Z}}_{(\ell)}}}(C,{{\bf {Z}}_{(\ell)}})$ be the $ {{\bf {Z}}_{(\ell)}}$ -linear dual of $ C$ . Applying the $ {\rm Hom}_{{{\bf {Z}}_{(\ell)}}}(-,{{\bf {Z}}_{(\ell)}})$ functor to the two short exact sequences in (3), we obtain exact sequences

% latex2html id marker 8921
$\displaystyle 0 \to C^* \to \H ^0(J_{{{\bf {Z}}_{(...
... \to
\H ^0(B_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{B/{{\bf {Z}}_{(\ell)}}}) \to
0,
$

and

% latex2html id marker 8923
$\displaystyle 0 \to \H ^0(A_{{{\bf {Z}}_{(\ell)}}}...
...ega^1_{A/{{\bf {Z}}_{(\ell)}}}) \to C^* \to ({\bf {Z}}/{\ell}{\bf {Z}})^r\to 0.$ (4)

The $ ({\bf {Z}}/{\ell}{\bf {Z}})^r$ on the right in (4) occurs as $ {\mathrm{Ext}}^1_{{{\bf {Z}}_{(\ell)}}}(({\bf {Z}}/{\ell}{\bf {Z}})^r,{{\bf {Z}}_{(\ell)}})$ .

Since % latex2html id marker 8929
$ \H ^0(B_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{B/{{\bf {Z}}_{(\ell)}}})$ is torsion free, by Lemma 4.1, the induced map

% latex2html id marker 8931
$\displaystyle C^* \otimes {\bf {F}}_\ell \to \H ^0...
...\bf {Z}}_{(\ell)}}},\Omega^1_{J/{{\bf {Z}}_{(\ell)}}})
\otimes {\bf {F}}_\ell
$

is injective. Since $ A$ is a newform quotient, if $ \ell \mid N$ then $ W_\ell$ acts as a scalar on $ C^*$ and on  $ S_2(\Gamma_0(N);{{{\bf {Z}}_{(\ell)}}})[I]$ . Using Lemma 4.2, with $ G = C^*$ , we see that the image of $ C^*$ in $ {{\bf {Z}}_{(\ell)}}[[q]]$ under the composite of the maps in (1) is saturated. The Manin constant for $ A$ at $ {\ell}$ is the index of the image via $ q$ -expansion of % latex2html id marker 8955
$ \H ^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{\bf {Z}}_{(\ell)}}})$ in $ {{\bf {Z}}_{(\ell)}}[[q]]$ in its saturation. Since the image of $ C^*$ in  $ {{\bf {Z}}_{(\ell)}}[[q]]$ is saturated, the image of $ C^*$ is the saturation of the image of  % latex2html id marker 8965
$ \H ^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{\bf {Z}}_{(\ell)}}})$ , so the Manin constant at $ {\ell}$ is the index of  % latex2html id marker 8969
$ \H ^0(A_{{{\bf {Z}}_{(\ell)}}},\Omega^1_{A/{{\bf {Z}}_{(\ell)}}})$ in $ C^*$ , which is $ {\ell}^r$ by (4), hence is at most $ {\ell}^d$ .

William Stein 2006-06-25