Quotients of arbitrary dimension

For $ N\geq 4$ , let $ \Gamma$ a subgroup of  $ \Gamma_1(N)$ that contains  $ \Gamma_0(N)$ , let $ X$ be the modular curve over $ {\bf {Q}}$ associated to $ \Gamma$ , and let $ J$ be the Jacobian of $ X$ . Let $ I$ be a saturated ideal of the corresponding Hecke algebra $ {\bf {T}}$ , so $ {\bf {T}}/ I$ is torsion free. Then $ A = A_I = J/IJ$ is an optimal quotient of $ J$ .

For a newform $ f = \sum a_n(f) q^n \in S_2(\Gamma)$ , consider the ring homomorphism $ {\bf {T}}\to
{\bf {Z}}[\ldots, a_n(f), \ldots]$ that sends $ T_n$ to $ a_n(f)$ . The kernel $ I_f\subset {\bf {T}}$ of this homomorphism is a saturated prime ideal of $ {\bf {T}}$ . The newform quotient $ A_f$ associated to $ f$ is the quotient $ J/I_f J$ . Shimura introduced $ A_f$ in [Shi73] where he proved that $ A_f$ is an abelian variety over $ {\bf {Q}}$ of dimension equal to the degree of the field $ {\bf {Q}}(\ldots,a_n(f),\ldots)$ . He also observed that there is a natural map $ {\bf {T}}\to {\rm End}(A_f)$ with kernel $ I_f$ .

For the rest of this section, fix a quotient $ A$ associated to a saturated ideal $ I$ of $ {\bf {T}}$ ; note that $ A$ may or may not be attached to a newform. The modular degree tex2html_wrap_inline$m_A$ of an optimal quotient tex2html_wrap_inline$A$ of tex2html_wrap_inline$J$ is the (positive) square root of the degree of the induced composite tex2html_wrap_inline$A^&or#vee; &rarr#to;J^&or#vee;&cong#cong;J &rarr#to;A$.



Subsections
William Stein 2006-06-25