next up previous
Next: Some Examples Up: Construction of Visible Elements Previous: Visible Elements of


Proof of Theorem 3.1

Proof. [Proof of Theorem 3.1] The proof proceeds in two steps. The first step is to use the hypothesis that $ B[n] \subset A$ to produce a map $ B(K)/n B(K)\rightarrow
\Vis_J(H^1(K,A))[n]$. This was done in Section 3.3. The second step is to perform a local analysis at each place $ v$ of $ K$ in order to prove that the image of this map consists of locally-trivial cohomology classes. We divide this local analysis into three cases:
  1. When $ v$ is real archimedian, we use that $ \gcd(2,n)=1$. (We know that for any $ p\mid n$ we have $ p>2$ because $ 1\leq e_p<p-1$, by assumption.)
  2. When $ \gcd(\ch(v),n)=1$, we use the result of Section 3.2 and a relationship between unramified cohomology and the cohomology of a component group.
  3. When $ \gcd(\ch(v),n)\neq 1$, for each prime $ p\mid n$, the reduction of $ J$ is abelian and by hypothesis $ e_p<p-1$, so we can apply an exactness theorem from [BLR90].

We now deduce that the image of $ B(K)/nB(K)$ in $ H^1(K,A)$ lies in $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)$. Fix an element $ x\in B(K)$. To show that $ \pi(x)\in
{\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)$, it suffices to show that $ \res_v(\pi(x))=0$ for all places $ v$ of $ K$.

Case 1. $ \mathbf{v}$ real archimedian: At a real archimedian place $ v$, the restriction $ \res_v(\pi(x))$ is killed by $ 2$ and the odd $ n$, hence $ \res_v(\pi(x))=0$.


Case 2. $ \gcd(\ch(v),n)=1$: Suppose that $ \gcd(\ch(v),n)=1$. Let $ m=c_{B,v}= \Phi_{B,v}(\mathbf{F}_v)$ be the Tamagawa number of $ B$ at $ v$. The reduction of $ m x$ lies in the identity component of the closed fiber $ \mathcal{B}_{\mathbf{F}_v}$ of the Néron model of $ B$ at $ v$, so by Lemma 3.4, there exists $ z \in B(K_v^{\ur})$ such that $ n z= m x$. Thus the cohomology class $ \res_v(\pi(m x))$ is defined by a cocycle that sends $ \sigma \in \Gal(\overline{K_v}/K_v)$ to $ \sigma(z) - z
\in A(K_v^{\ur})$ (see diagram (3.2) for the definition of $ \pi$). In particular, $ \res_v(\pi(m x))$ is unramified at $ v$. By [Mil86, Prop. 3.8],

$\displaystyle H^1(K_v^{\ur}/K_v,A(K_v^{\ur}))
=H^1(K_v^{\ur}/K_v,\Phi_{A,v}(\overline{\mathbf{F}}_v)),$

where $ \Phi_{A,v}$ is the component group of $ A$ at $ v$. The Herbrand quotient of a finite module is $ 1$ (see, e.g., [Ser79, VIII.4.8]), so

$\displaystyle \char93 \Phi_{A,v}(\mathbf{F}_v) = \char93 H^1(K_v^{\ur}/K_v,\Phi_{A,v}(\overline{\mathbf{F}}_v)).$

Thus the order of $ \res_v(\pi(m x))$ divides both $ \char93 \Phi_{A,v}(\mathbf{F}_v)$ and $ n$. Since by assumption $ \gcd(\char93 \Phi_{A,v}(\mathbf{F}_v), n)=1$, it follows that $ \res_v(\pi(m x))=0$, hence $ m\res_v(\pi(x))=0$. Again, since the order of $ \pi(x)$ divides $ n$, and $ \gcd(n,m)=1$, we have $ \res_v(\pi(x))=0$.


Case 3. $ \gcd(\ch(v),n)=p\neq 1$: Suppose that $ \ch(v)=p\mid n$. Let $ R$ be the ring of integers of $ K_v^{\ur}$, and let $ \mathcal{A}$, $ \mathcal{J}$, and $ \mathcal{C}$ be the Néron models of $ A$$ J$, and $ C$, respectively. Since $ e_p<p-1$ and $ J$ has abelian reduction at $ v$ (since $ p\nmid N$), by [BLR90, Thm. 7.5.4(iii)], the induced sequence $ 0\rightarrow \mathcal{A}\rightarrow \mathcal{J}\stackrel{\phi}{\rightarrow } \mathcal{C}\rightarrow 0$ is exact, which means that $ \phi$ is faithfully flat and surjective with scheme-theoretic kernel $ \mathcal{A}$. Since $ \phi$ is faithfully flat with smooth kernel, $ \phi$ is smooth (see, e.g., [BLR90, 2.4.8]). By Lemma 3.6, $ \mathcal{J}(R) \rightarrow \mathcal{C}(R)$ is a surjection; i.e., $ J(K_v^{\ur}) \rightarrow C(K_v^{\ur})$ is a surjection.

So $ \res_v(\pi(x))$ is unramified, and again by [Mil86, Prop. 3.8],

$\displaystyle H^1(K_v^{\ur}/K_v,A) \cong H^1(K_v^{\ur}/K_v,\Phi_{A,v}(\overline{\mathbf{F}}_v)).$

But $ H^1(K_v^{\ur}/K_v,\Phi_{A,v}(\overline{\mathbf{F}}_v))=\{0\}$, since $ \Phi_{A,v}(\overline{\mathbf{F}}_v)$ is trivial, as $ A$ has good reduction at $ v$ (because $ p\nmid N$). Thus $ \res_v(\pi(x))=0$. $ \qedsymbol$


next up previous
Next: Some Examples Up: Construction of Visible Elements Previous: Visible Elements of
William A Stein 2002-02-27