Next: About this document ...
Up: Visibility of Shafarevich-Tate Groups
Previous: Invisible Elements that Becomes
-
- AS02
- A. Agashe and
W.A. Stein, Visible Evidence for the Birch and
Swinnerton-Dyer Conjecture for Rank 0 Modular
Abelian Varieties, Preprint.
- BCP97
-
W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I.
The user language, J. Symbolic Comput. 24 (1997), no. 3-4,
235-265, Computational algebra and number theory (London, 1993).
- BLR90
-
S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models,
Springer-Verlag, Berlin, 1990.
- Cas63
-
J.W.S. Cassels, Arithmetic on curves of genus 1.
V. Two counterexamples, J. London Math. Soc. 38 (1963),
244-248.
- CM00
-
J.E. Cremona and B. Mazur, Visualizing elements in the
Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1,
13-28.
- Cre
-
J.E. Cremona, Elliptic curves of conductor
,
http://www.maths.nott.ac.uk/personal/jec/ftp/data/.
- Cre97
-
J.E. Cremona, Algorithms for modular elliptic curves,
second
ed., Cambridge University Press, Cambridge, 1997.
- Edi92
-
B. Edixhoven, The weight in Serre's conjectures on modular
forms, Invent. Math. 109 (1992), no. 3, 563-594.
- Gro65
-
A. Grothendieck, Éléments de géométrie algébrique. IV.
Étude locale des schémas et des morphismes de schémas. II,
Inst.
Hautes Études Sci. Publ. Math. (1965), no. 24, 231.
- Gro66
-
A. Grothendieck, Éléments de géométrie algébrique. IV.
Étude locale des schémas et des morphismes de schémas. III,
Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
- Gro67
-
A. Grothendieck, Éléments de géométrie algébrique. IV.
Étude locale des schémas et des morphismes de schémas IV, Inst.
Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
- Gro70
-
A. Grothendieck, Schémas en groupes. I: Propriétés
générales des schémas en groupes, Springer-Verlag, Berlin, 1970.
- Kle01
-
T. Klenke, Modular Varieties and Visibility, Ph.D. thesis, Harvard
University (2001).
- LT58
-
S. Lang and J. Tate, Principal homogeneous spaces over abelian
varieties, Amer. J. Math. 80 (1958), 659-684.
- Maz99
-
B. Mazur, Visualizing elements of order three in the
Shafarevich-Tate
group, Asian J. Math. 3 (1999), no. 1, 221-232.
- Mil86
-
J.S. Milne, Arithmetic duality theorems, Academic Press
Inc., Boston, Mass., 1986.
- O'N01
-
C. O'Neil, The period-index obstruction for elliptic curves, to appear
in Journal of Number Theory.
- Rib90
-
K.A. Ribet, Raising the levels of modular representations,
Séminaire de Théorie des Nombres, Paris 1987-88, Birkhäuser Boston,
Boston, MA, 1990, pp. 259-271.
- Ser79
-
J-P. Serre, Local fields, Springer-Verlag, New York, 1979, Translated
from the French by Marvin Jay Greenberg.
- Ste00
-
W.A. Stein, Explicit approaches to modular abelian
varieties, Ph.D. thesis, University of California, Berkeley (2000).
- Stu87
-
J. Sturm, On the congruence of modular forms, Number theory (New York,
1984-1985), Springer, Berlin, 1987, pp. 275-280.
William A Stein
2002-02-27