next up previous
Next: Motivation and Applications Up: Discriminants of Hecke Algebras Previous: Discriminants of Hecke Algebras

The Discriminant Valuation

Let $ \Gamma$ be a congruence subgroup of $ \SL_2(\mathbb{Z})$, e.g., $ \Gamma=\Gamma_0(p)$ or $ \Gamma_1(p)$. For any integer $ k\geq 1$, let $ S_k(\Gamma)$ denote the space of holomorphic weight-$ k$ cusp forms for $ \Gamma$. Let

$\displaystyle \mathbb{T}= \mathbb{Z}[\ldots,T_n,\ldots] \subset \End(S_k(\Gamma))
$

be the associated Hecke algebra. Then  $ \mathbb{T}$ is a commutative ring that is free and of finite rank as a $ \mathbb{Z}$-module. Also of interest is the image $ \mathbb{T}^{\new}$ of  $ \mathbb{T}$ in $ \End(S_k(\Gamma)^{\new})$.

Example 2.3   Let $ \Gamma=\Gamma_0(243)$, which is illustrated on my T-shirt. Since $ 243=3^5$, experts will immediately deduce that $ \disc(\mathbb{T}) = 0$. A computation shows that

$\displaystyle \disc(\mathbb{T}^{\new}) = 2^{13} \cdot 3^{40},
$

which reflects the mod-$ 2$ and mod-$ 3$ intersections all over my shirt.

Definition 2.4 (Discriminant Valuation)   Let $ p$ be a prime and suppose that $ \Gamma=\Gamma_0(p)$ or $ \Gamma_1(p)$. The discriminant valuation is

$\displaystyle d_k(\Gamma) = \ord_p($the discriminant of $ \mathbb{T}$$\displaystyle ).
$



William A Stein 2002-09-30