next up previous
Next: Visualizing Mordell-Weil in Rank Up: NONVANISHING TWISTS AND VISIBLE Previous: A Conjecture About Nonvanishing

$ p$-Torsion

Fix Let $ K/\mathbb{Q}$ be the abelian extension corresponding to a character $ \chi_{p,\ell}:(\mathbb{Z}/\ell\mathbb{Z})^* \rightarrow \boldsymbol{\mu}_p$ of order $ p$ and conductor $ \ell$.

The diagram we will plug into visibility theory is:

$\displaystyle \xymatrix @=3pc{
{E[p]\,\,}\ar[r]\ar[d] & {E} \ar[dr]^{[p]}\ar[d] \\
{A}\ar[r] & {J} \ar[r]^{\tr} & {E.}
}$

Michael Stoll helped me to prove the following lemma.

Lemma 4.1   If $ a_\ell(E)\not\equiv 2\pmod{p}$, then the following groups have no nontrivial $ p$-torsion:

$\displaystyle E(\mathbb{Q}_\ell), \quad
J(\mathbb{Q}_\ell), \quad
(J/E)(\mathbb{Q}_\ell), \quad
\Phi_{A,\ell}(\mathbb{F}_\ell).
$

Proof.

$ \qedsymbol$


next up previous
Next: Visualizing Mordell-Weil in Rank Up: NONVANISHING TWISTS AND VISIBLE Previous: A Conjecture About Nonvanishing
William A Stein 2001-10-01