G := Gamma0(11); G
Gamma_0(11) Gamma_0(11) |
Generators(G)
[ [1 1] [0 1], [ 3 -2] [11 -7], [ 4 -3] [11 -8] ] [ [1 1] [0 1], [ 3 -2] [11 -7], [ 4 -3] [11 -8] ] |
CosetRepresentatives(G);
[ [1 0] [0 1], [ 0 1] [-1 1], [-1 1] [-1 0], [1 0] [1 1], [ 0 1] [-1 2], [-1 1] [-2 1], [1 0] [2 1], [ 0 1] [-1 3], [-1 1] [-3 2], [1 1] [1 2], [-1 2] [-2 3], [-2 1] [-3 1] ] [ [1 0] [0 1], [ 0 1] [-1 1], [-1 1] [-1 0], [1 0] [1 1], [ 0 1] [-1 2], [-1 1] [-2 1], [1 0] [2 1], [ 0 1] [-1 3], [-1 1] [-3 2], [1 1] [1 2], [-1 2] [-2 3], [-2 1] [-3 1] ] |
DimensionCuspFormsGamma0(11,2)
1 1 |
DimensionCuspFormsGamma1(13,2)
2 2 |
DimensionNewCuspFormsGamma0(100,2)
1 1 |
G<a> := DirichletGroup(37); G
Group of Dirichlet characters of modulus 37 over Rational Field Group of Dirichlet characters of modulus 37 over Rational Field |
Order(a)
2 2 |
[a(n) : n in [1..10]]
[ 1, -1, 1, 1, -1, -1, 1, -1, 1, 1 ] [ 1, -1, 1, 1, -1, -1, 1, -1, 1, 1 ] |
Eltseq(a)
[ 18 ] [ 18 ] |
DimensionCuspForms(a,2)
2 2 |
G<a,b> := DirichletGroup(4*37, CyclotomicField(36)); G
Group of Dirichlet characters of modulus 148 over Cyclotomic Field of order 36 and degree 12 Group of Dirichlet characters of modulus 148 over Cyclotomic Field of order 36 and degree 12 |
Eltseq(b)
[ 0, 1 ] [ 0, 1 ] |