Notation

1. Abelian varieties. For a number field $ K$ , $ A_{/K}$ denotes an abelian variety over $ K$ . We denote the dual of $ A$ by $ A^\vee_{/K}$ . If $ \varphi : A\to B$ is an isogeny of degree $ n$ , we denote the complementary isogeny by $ \varphi '$ ; this is the isogeny $ \phi' : B \rightarrow A$ , such that $ \varphi \circ \varphi ' = \varphi ' \circ \varphi = [n]$ , the multiplication-by-$ n$ map on $ A$ . Unless otherwise specified, Néron models of abelian varieties will be denoted by the corresponding caligraphic letters, e.g., $ \mathcal{A}$ denotes the Néron model of $ A$ .



2. Galois cohomology. For a fixed algebraic closure $ \overline{K}$ of $ K$ , $ G_K$ will be the Galois group $ {\mathrm{Gal}}(\overline{K}/K)$ . If $ v$ is any non-archimedean place of $ K$ , $ K_v$ and $ k_v$ will always mean the completion and the residue field of $ K$ at $ v$ , respectively. By $ K_v^{{\mathrm{ur}}}$ we always mean the maximal unramified extension of the completion $ K_v$ . Given a $ G_K$ -module $ M$ , we let $ \H ^1(K, M)$ denote the Galois cohomology group $ \H ^1(G_K, M)$ .



3. Component groups. The component group of $ A$ at $ v$ is the finite group $ \Phi_{A,v} = \mathcal{A}_{k_v} / \mathcal{A}_{k_v}^0$ which also has a structure of a finite group scheme over $ k_v$ . The Tamagawa number of $ A$ at $ v$ is $ c_{A,v} = \char93 \Phi_{A,v}(k_v)$ , and the component group order of $ A$ at $ v$ is $ \overline{c}_{A,v} = \char93 \Phi_{A,v}(\overline{k}_v)$ .



4. Modular abelian varieties. Let $ h = 0$ or $ 1$ . A $ J_h$ -modular abelian variety is an abelian variety $ A_{/K}$ which is a quotient of $ J_h(N)$ for some $ N$ , i.e., there exists a surjective morphism $ J_h(N) \twoheadrightarrow A$ defined over $ K$ . We define the level of a modular abelian variety $ A$ to be the minimal $ N$ , such that $ A$ is a quotient of $ J_h(N)$ . The modularity theorem of Wiles et al. (see [BCDT01]) implies that all elliptic curves over  $ \mathbb{Q}$ are modular. Serre's modularity conjecture implies that the modular abelian varieties over $ \mathbb{Q}$ are precisely the abelian varieties over  $ \mathbb{Q}$ of $ {\mathrm{GL}}_2$ -type (see [Rib92, §4]).



5. Shimura construction. Let $ \displaystyle f=\sum_{n=1}^\infty a_n q^n\in S_2(\Gamma_0(N))$ be a newform of level $ N$ and weight 2 for $ \Gamma_0(N)$ which is an eigenform for all Hecke operators in the Hecke algebra $ \mathbb{T}(N)$ . Shimura (see [Shi94, Thm. 7.14]) associated to $ f$ an abelian subvariety $ {A_f}_{/\mathbb{Q}}$ of $ J_0(N)$ , simple over $ \mathbb{Q}$ , of dimension $ d = [K : \mathbb{Q}]$ , where $ K = \mathbb{Q}(\dots, a_n, \dots)$ is the Hecke eigenvalue field. More precisely, if $ I_f = {\mathrm{Ann}}_{\mathbb{T}(N)}(f)$ then $ A_f$ is the connected component containing the identity of the $ I_f$ -torsion subgroup of $ J_0(N)$ , i.e., $ A_f = J_0(N)[I_f]^0 \subset J_0(N)$ . The quotient $ \mathbb{T}(N)/I_f$ of the Hecke algebra $ \mathbb{T}(N)$ is a subalgebra of the endomorphism ring $ {\mathrm{End}}_\mathbb{Q}(A_{/\mathbb{Q}})$ . Also $ \displaystyle L(A_f,s) = \prod_{i = 1}^d L(f_i,s)$ , where the $ f_i$ are the $ G_\mathbb{Q}$ -conjugates of $ f$ . We also consider the dual abelian variety $ A_f^\vee$ which is a quotient variety of $ J_0(N)$ .

theorem_type[remark][theorem][][remark][][] In this paper tex2html_wrap_inline$A_f$ always denotes an abelian subvariety of tex2html_wrap_inline$J_0(N)$. By abuse of notation, it is also common to denote by tex2html_wrap_inline$A_f$ the dual of the subvariety tex2html_wrap_inline$A_f$, which is a quotient of tex2html_wrap_inline$J_0(N)$ (see e.g. []).



6. $ I$ -torsion submodules. If $ M$ is a module over a commutative ring $ R$ and $ I$ is an ideal of $ R$ , let

$\displaystyle M[I] = \{ x \in M : mx = 0$    all $\displaystyle m \in I\}
$

be the $ I$ -torsion submodule of $ M$ .



7. Hecke algebras. Let $ S_2(\Gamma)$ denote the space of cusp forms of weight $ 2$ for any congruence subgroup $ \Gamma$ of $ {\mathrm{SL}}_2(\mathbb{Z})$ . Let

$\displaystyle \mathbb{T}(N) = \mathbb{Z}[\ldots, T_n, \ldots]\subseteq {\mathrm{End}}_{\mathbb{Q}}(J_0(N))
$

be the Hecke algebra, where $ T_n$ is the $ n$ th Hecke operator. $ \mathbb{T}(N)$ also acts on $ S_2(\Gamma_0(N))$ and the integral homology $ H_1(X_0(N),\mathbb{Z})$ .



8. Modular degree. If $ A$ is an abelian subvariety of $ J_0(N)$ , let

$\displaystyle \theta:A\to J_0(N) \cong J_0(N)^{\vee} \to A^{\vee}
$

be the induced polarization. The modular degree of $ A$ is

$\displaystyle m_A = \sqrt{\char93 {\mathrm{Ker}}(A\xrightarrow{\theta} A^{\vee})}.
$

See [AS02] for why $ m_A$ is an integer and for an algorithm to compute it.

William Stein 2006-06-21