next up previous
Next: The Conjecture Up: Data About Discriminant Valuations Previous: Weight Two

Higher Weight Data

  1. The following are the valuations $ d=d_4(\Gamma_0(p))$ at $ p$ of the discriminant of the Hecke algebras associated to $ S_4(\Gamma_0(p))$ for $ p<500$.

    $ p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
    $ d$ 0 0 0 0 0 2 2 2 2 4 4 6 6 6 6 8 8
    $ p$ 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
    $ d$ 10 10 10 12 12 12 14 16 16 16 16 18 18 20 20 22 24
    $ p$ 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233
    $ d$ 24 24 26 26 26 28 28 30 30 32 32 32 34 36 36 38 38
    $ p$ 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337
    $ d$ 38 40 40 42 42 44 44 46 46 46 48 50 50 52 52 54 56
    $ p$ 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
    $ d$ 56 58 58 58 60 62 62 62 65 66 66 68 68 70 70 72 72
    $ p$ 443 449 457 461 463 467 479 487 491 499              
    $ d$ 72 74 76 76 76 76 78 80 80 82              

    For each prime tex2html_wrap_inline$p$, let displaymath &delta#delta;(p) = S_4(&Gamma#Gamma;_0(p)) - S_p+3(&Gamma#Gamma;_0(1)). Then tex2html_wrap_inline$|&delta#delta;(p) - d_4(&Gamma#Gamma;_0(p))| &le#leq;2$ for each tex2html_wrap_inline$p<500$. Moreover, for every tex2html_wrap_inline$p&ne#neq;139$ we have that tex2html_wrap_inline$&delta#delta;(p)&ge#geq; d_4(&Gamma#Gamma;_0(p))$, but for tex2html_wrap_inline$p=139$, tex2html_wrap_inline$&delta#delta;(p)=23$ but tex2html_wrap_inline$d_4(&Gamma#Gamma;_0(p))=24$.


next up previous
Next: The Conjecture Up: Data About Discriminant Valuations Previous: Weight Two
William A Stein 2002-09-30