next up previous
Next: About this document ... Up: Discriminants of Hecke Algebras Previous: The Conjecture

Conjectures

Conjecture 6.1   Suppose $ p$ is a prime and $ k\geq 4$ is an even integer. If

$\displaystyle (p,k) \not\in \{$ $\displaystyle (2,4),(2,6),(2,8),(2,10),$    
  $\displaystyle (3,4),(3,6), (3,8),$    
  $\displaystyle (5,4), (5,6), (7,4), (11,4)\}$    

then $ d_k(\Gamma_0(p))>0$.

Frank Calegari outlined a possible strategy for proving this conjecture.

Conjecture 6.2   Suppose $ p>2$ is a prime and $ k\geq 3$ is an integer. If

$\displaystyle (p,k) \not\in \{$ $\displaystyle (3,3),(3,4),(3,5),(3,6),(3,7),(3,8),$    
  $\displaystyle (5,3),(5,4), (5,5), (5,6), (5,7)$    
  $\displaystyle (7,3), (7,4), (7,5), (11,3), (11,4), (11,5),$    
  $\displaystyle (13,3), (17,3), (19,3)\}$    

then $ d_k(\Gamma_1(p))>0$.



William A Stein 2002-09-30