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Abstract

This 20-minute talk reports on a project to verify the Birch and Swinnerton-
Dyer conjecture for all elliptic curves over Q in Cremona’s book.

Joint Work: Stephen Donnelly, Andrei Jorza, Stefan Patrikas, Michael Stoll.

Thanks: John Cremona, Ralph Greenberg, Grigor Grigorov, Barry Mazur, Robert

Pollack, Nick Ramsey, and Tony Scholl.
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1 The Birch and Swinnerton-Dyer Conjecture

BSD Conjecture: Let E be an elliptic curve over Q, and let r = ran = ords=1 L(E, s). Then

ran = rank E(Q)

and
L(r)(E, 1)

r!
=

ΩE · RegE ·
∏

p|N cp

#E(Q)2tor

· #X(E).

Notation:

1. L(E, s) is an entire L-function that encodes {#E(Fp)}
2. #E(Q)tor – torsion order

3. cp – Tamagawa numbers

4. ΩE – real volume
∫

E(R) ωE

5. RegE – regulator of E

6. X(E) = Ker(H1(Q, E) →
⊕

v H1(Qv, E)) – Shafarevich-

Tate group
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2 Birch and Swinnerton-Dyer

Birch and Swinnerton-Dyer in Leiden, Netherlands, Summer 2000.
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3 Motivating Problem 1

Motivating Problem 1. Compute every quantity in the BSD conjecture in practice.

NOTE: 1. This is not meant as a theoretical problem about computability, though by compute

we mean “compute with proof.”

2. I am also very interested in the same question but for modular abelian varieties.

STATUS:

1. When ran = ords=1 L(E, s) ≤ 3, then we can compute ran.

Open Problem: Show that ran ≥ 4 for some elliptic curve E.

2. Easy to compute #E(Q)tor, cp, ΩE.

3. Computing RegE is same as computing E(Q); interesting (sometimes very difficult)

4. Computing #X(E) is very very difficult.

Theorem (Kolyvagin): ran ≤ 1 =⇒ X(E) is finite (with bounds)

Open Problem: Prove that X(E) is finite for some E with ran ≥ 2.
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4 Victor Kolyvagin

Kolyvagin’s work on Euler systems is crucial to our project.

Kolyvagin in New York’s Chinatown, 2003.
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5 Motivating Problem 2: Cremona’s Book

Motivating Problem 2. Prove the BSD Conjecture for every elliptic curve over Q of con-

ductor at most 1000, i.e., every curve in Cremona’s book.

We have:

1. By Tate’s isogeny invariance theorem, it suffices to prove BSD for each X0(N)-optimal

elliptic curve of conductor N ≤ 1000.

2. Rank part of the conjecture has been verified by Cremona for all curves with N ≤ 25000.

3. All of the quantities in the conjecture, except for #X(E/Q), have been computed by

Cremona for all curves of conductor ≤ 25000.

4. Cremona (Ch. 4, pg. 106): We have X(E)[2] = 0 for all optimal curves with

conductor ≤ 1000 except 571A, 960D, and 960N. So we can mostly ignore 2 henceforth.
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6 John Cremona

John Cremona’s software and book are crucial to our project.

Cremona in Nottingham, UK, 2001.
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7 The Four Nontrivial X’s

Conclusion: In light of Cremona’s book, the problem is to show that X(E) is trivial for all

but the following four optimal elliptic curves with conductor at most 1000:
Curve a-invariants X(E)?
571A [0,-1,1,-929,-105954] 4

681B [1,1,0,-1154,-15345] 9

960D [0,-1,0,-900,-10098] 4

960N [0,1,0,-20,-42] 4

Divisor of Order:

1. Using a 2-descent we see that 4 | #X(E) for 571A, 960D, 960N.

2. For E = 681B: Using visibility (or a 3-descent) we see that 9 | #X(E).

Multiple of Order:

1. For E = 681B, the mod 3 representation is surjective, and 3 || [E(K) : yK ] for K =

Q(
√
−8), so (our refined) Kolyvagin theorem implies that #X(E) = 9, as required.

2. Kolyvagin’s theorem and computation =⇒ #X(E) = 4? for 571A, 960D, 960N.

3. Using MAGMA’s FourDescent command, we compute Sel(4)(E/Q) for 571A, 960D, 960N

and deduce that #X(E) = 4. (Note: Documentation currently misleading.)
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8 The Eighteen Optimal Curves of Big Rank

There are 18 curves with conductor ≤ 1000 and rank ≥ 2 (all have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C,

707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E nobody currently knows how to show that X(E) is finite, let alone trivial. (But

mention, e.g., Perrin-Riou’s work.)

Motivating Problem 3: Prove the BSD Conjecture for all elliptic curve over Q of conductor

at most 1000 and rank ≤ 1.

SECRET MOTIVATION: Our actual motivation is to unify and extend results about BSD

and algorithms for elliptic curves. The computational challenge is just to see what interesting

phenomena occur in the data.
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9 The Plan

The Dataset:

• There are 2463 optimal curves of conductor at most 1000.

• Of these, 18 have rank 2, which leaves 2445 curves.

• Of these, 2441 are conjectured to have trivial X.

Strategy:

1. [Refine] Prove a refinement of Kolyvagin’s bound on #X(E) that is suitable for computation.

Also take into account refinement of Kato’s theorem (Kato assumes ran = 0).

2. [Algorithm] Create an Algorithm:

Input: An elliptic curve over Q with ran ≤ 1.

Output: Odd B ≥ 1 such that if p - 2B, then p - #X(E).

3. [Compute] Run the algorithm on our 2441 curves.

4. [Descent] If p | B and E[p] is reducible, use p-descent.

5. [New Methods] If p | B and E[p] irreducible, ????????. Kato when ran = 0. When

ran = 1, maybe use Schneider’s theorem and explicit computations with heights and p-adic

L-functions? Visibility and level lowering? Further refinement of Kolyvagin’s theorem?
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10 The Algorithm of Step 2

INPUT: An elliptic curve E over Q with ran ≤ 1.

OUTPUT: Odd B ≥ 1 such that if p - 2B, then X(E/Q)[p] = 0.

1. [Choose K] Choose TWO distinct quadratic imaginary fields K1 and K2 that both satisfy

the Heegner hypothesis and such that E/K1 and E/K2 have analytic rank 1.

2. [Find p-torsion] Decide for which primes p there is a curve E ′ that is Q-isogenous to E such

that E ′(Q)[p] 6= 0. Let A be the product of these primes.

3. [Compute Mordell-Weil]

(a) If ran = 0, compute a generator z for ED(Q) modulo torsion.

(b) If ran = 1, compute a generator z for E(Q) modulo torsion.

4. [Height of Heegner point] Compute the height hK(yK), e.g., using the Gross-Zagier formula.

5. [Index of Heegner point] Compute IK =
√

hK(yK)/hK(z) = [E(K)/ tor : ZyK ].

6. [Refined Kolyvagin] Output B = A · IK .

Theorem (our refinement of Kolyvagin): p - 2B =⇒ X(E/Q)[p] = 0.
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11 Result of Running the Algorithm

• Using Magma and the MECCAH cluster, I implemented and ran the algorithm on the curves

of conductor ≤ 1000, but stopped runs if they took over 30 minutes.

• The computation for 318 curves didn’t finish. We do not include them below. Also, I

don’t trust some of Magma’s elliptic curves functions, since the documentation is unclear.

However, we assume correctness for the rest of this talk.

Results:

1. For 1363 curves we have B = 1. For these curves we have proved the full BSD conjecture!

2. There are 94 curves for which B ≥ 11. Of these, only 6 have rank 0.

3. There are 39 curves for which B ≥ 19, for all of these curves the rank is 1.

4. The largest B is 77, for the rank 1 curves 618F and 894G.

5. The largest prime divisor of any B is 31, for the rank 1 curve 674C.

6. When the rank of E is 0, the algorithm is much more difficult, so more likely to time out.
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12 Major Obstruction: Big Tamagawa Numbers

Serious Issue: The Gross-Zagier formula and the BSD conjecture together imply that if an

odd prime p divides a Tamagawa number, then p | [E(K) : ZyK ].

• If E has ran = 0, and p ≥ 5, and ρE,p is surjective, then Kato’s theorem (and Mazur, Rubin,

et al.) imply that

ordp(#X(E)) ≤ ordp(L(E, 1)/ΩE),

so squareness of #X(E) frequently saves us.

• Unfortunately, in many cases there is a big Tamagawa number and ran = 1.
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13 An Example

The elliptic curve E called 141A and given by y2 + y = x3 +x2− 12x+2 has rank 1 and c3 = 7.

We know that

X(E) = 49?.

The representation ρE,7 is surjective, but E has rank 1.

• [Visibility?] The Jacobian J0(47) is of rank 0 and is simple of dimension 4, and we find that

E[7] sits in the old subvariety of J0(3 ·47). Hope: Proving something about the Shafarevich-

Tate group of the simple rank 0 abelian variety J0(47) will imply something about X(E)[7].

Note that L(J0(47), 1)/Ω = 16/23.

• [p-Adic Approach?] Maybe a p-adic L-function computation will imply that 7 - #X(E)???
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14 What Next?

1. [Efficiency] Make the algorithm more efficient. The reason we chose two fields is so we can

weaken the surjectivity hypothesis that Kolyvagin (or at least Gross, in his article) imposed.

However, in many cases one does have surjectivity and could directly use Kolyvagin’s theorem.

Also Byungchul Cha’s 2003 Johns Hopkins Ph.D. thesis weakens Kolyvagin’s hypothesis in

another way. Combining all this should speed up the algorithm significantly when ran = 0.

2. [Finish!] Run the algorithm to completion on all curves of conductor up to 1000. The hard

part is finding the full Mordell-Weil group of rank 1 curves of the form ED, where D has 3

digits (so the conductor has about 12 digits).

3. [New Theory] Find a strategy that works when ran = 1 and E has a Tamagawa number ≥ 5.

Either refine Kolyvagin, use visibility and level lowering, or Schneider and Kato’s results on

the p-adic main conjecture.

Questions?

15


