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Abstract

The project is about calculating zeros of p-adic L-functions with Dirichlet
characters. First the p-adic numbers are introduced as a natural completion
of the rational numbers. Then classical L-functions are investigated and a
result about their values at negative integers is introduced. This is then used
to construct the p-adic analogue of classical L-functions.

Using a relatively simple formula, I developed a C program to calculate
the zero for a given p. The program was run on the AP3000 Fujitsu su-
percomputer at Imperial College and calculated the zero to 1000 decimal
places. Also included in the report are the zeros of the p-adic L-function for
all irregular primes smaller than 500 up to 98 decimal places.
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Chapter 1

Introduction

This project is about computing the zeros of p-adic L-functions. Before
we embark on calculating anything, we first have to understand what p-adic
Numbers are and also investigate classical L-functions. P-adic Numbers were
introduced by K. Hensel in a 1902 paper entitled ’iiber die Entwicklung der
algebraischen Zahlen in Potenzreihen’. Translated, this means "The devel-
opment of algebraic numbers in power series’ and that is surely one way to
understand them.

Although p-adic fields arose about a hundred years ago, it took some time
for them to seep through into standard mathematics. Nowadays, they are
not only used in Number Theory, but also have their applications in other
fields, like representation theory and algebraic topology.

L-functions arise naturally as a generalisation of the Riemann zeta func-
tion. They introduce an extra element into the formulation of the function:
a Dirichlet character. The values that these functions take at negative in-
tegers have a a very special form in terms of Bernoulli numbers. Instead of
working with real numbers, we will work with p-adic Numbers, so that we
will consider p-adic analogues of the classical L-functions.

The Riemann Zeta function has many interesting properties and seems
to encode in some way a lot of Number Theory. For example the question,
"What is the probability that two integers chosen at random are coprime’ has
as answer simply Zeta(2). Using classical L-functions, you can construct
class number formulae, which is a striking application. Now the p-adic L-
function is a much more algebraic object that has many of these fascinating
number-theoretical properties as well.

The importance of p-adic L-functions can be seen in the attempts to



solve the Birch-Swinnerton-Dyer conjecture, which is one of the Millenium
Prize Problems (each worth $1 million). The p-adic version of L-functions for
elliptic curves have been used to bridge the gap between algebra and analysis
in one of the most successfull attacks of the problem.

One of the greatest unsolved problems in Pure Mathematics is the Gen-
eralised Riemann Hypothesis, which says that all the non-trivial zeros of an
L-function have real part equal to 1/2. Although it has not been proved yet,
it has been verified for the first 200.000 cases [10]. The Riemann Hypothesis
was one of the famous 23 problems for the century, announced by D. Hilbert
in 1900. As it has still not been resolved, it is also one of the Millenium Prize
Problems.

Surprisingly, very little is known about the zeros of the p-adic L-functions.
Basing ourselves on a paper by S. Wagstaff [4] we set about computing these
zeros, but found soon that a different approach was needed. There is in fact
another way to compute them, based on a formula in the book by L.C. Wash-
ington [9]. So over the course of the project we will introduce this formula
for the p-adic L-function and use it to calculate different zeros. The highest
precision achieved up to date is 256 digits for the case p = 37 (Sunseri [8]).



Chapter 2

p-adic Numbers

Over the course of this chapter, we will show that any field can be completed
with respect to some valuation and that the p-adics are precisely a completion
of Q with respect to the p-adic valuation. This chapter is based on an exercise
outlining the main proof in Cassels’ book [2]. Some parts are also inspired
by K. Mahler’s exposition [6].

2.1 Valuations

Definition 2.1.1. A valuation is a function from a field k to the real num-
bers R which satisfies the following arioms:

1. Vb ek, |b] >0, with [b| =0 only if b=10

2. ¥b,c €b, |bc| = |b||c|

3. 3C € R such that forb € k and |b| <1 ,[1+b <C
Example 2.1.2. The trivial valuation is defined as follows

0 #sfb=0
\b|o={ /

1 otherwise

This clearly satisfies all the axioms for a valuation.

Example 2.1.3. Toke the usual absolute value on the real numbers R. It
clearly satisfies axioms 1) and 2). If we take C = 2, it also satisfies axiom
3). If b| <1 then =1 <b<1,500<1+b<2 and hence [b+1| < C,
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Corollary 2.1.4. 1. [1| =1, as [1%| = |1| and |1?| = |1||1|. But |1| # 0,
as 1 #0, so |1| = 1.

2. If |a"| = 1, then |a| = 1.
3. =1/ =1, so|—al =lal.

4. If k is a finite field then then there is only the trivial valuation, as
a" =1 for some n, which means by (2) that |a] = 1 for any a.

Lemma 2.1.5. If || is a valuation on a field k and X is a real number > 0,
then | |1 = | | is also a valuation.

Proof. The function | |; clearly satisfies axioms 1 and 2. To satisfy axiom 3,
we just take the constant C; = C*. O

Definition 2.1.6. If two valuations are related as in Lemma 2.1.5, then they
are said to be equivalent. FEquivalence of valuations is easily seen to be an
equivalence relation.

Definition 2.1.7. The triangle inequality is the following relation:
Va,bek ,|a+b| <|a|+ [0

Theorem 2.1.8. A wvaluation satisfies the triangle inequality if and only if
one can take C =2 in aziom 3).

Proof. Part 1
Suppose it satisfies the triangle inequality.
Then if |b] < 1, we have |1+ b| < |1|+|b]. Now |1+ |b] =1+ |b] < 2. So we
can take C' =2 in axiom 3).

Part 2
Suppose C' = 2 satisfies axiom 3.

Take ai,as € k with say |a;| > |az| and as = aa; so that |a| < 1. Then
we get

a1 + az| = [a1(1 + a)| = |as1[|1 + a| < 2|a|.

so for any a; and a, this means

la; + ag| < 2max{|a], |as|}.

by induction we get for 1 < j <27
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lar + ... + agn| < 2"max|a;].
Now take a1,...,ay in k. Set n such that 2"~! < N < 2" and define
aNs+1 = ... = agn = 0. From what we showed above, we get
la1 + ...+ an| < 2"max]|a;| < 2Nmax|a;|.

So in particular, if a1 = ay = ... = ay = 1, we get for a positive integer
N that |[N| < 2N. So take b,c € k and let n be a positive integer. Then we
get

b+c" =[(b+c)"

5 (e

r=0

So by what we showed above (as we have n + 1 terms),
n _
|6+ c|” < 2(n+ 1)max]| ( )brc” "
T
n _
< 2(n + 1)max| ( )Hbr||c” |
r
Now we use the fact that [N| < 2N with N = (%)
n _
b+ c|" < 4(n+ 1)max< )\b|’”|c|” "
r

The maximum term is smaller than the sum of all terms (as they are > 0)

pe <) S (7)o

r=0
=4(n+ 1)(|b| + |c|)".
Now take the n-th root and let n tend to infinity to get

b+ c| < [b] + |c



Corollary 2.1.9. FEvery valuation is equivalent to one satisfying the triangle
inequality

Proof. Say we have a valuation || with the corresponding constant C. Then

we can define the equivalent valuation | |* with A = llgggé whose constant is
log 2
ClogC = 2. O

2.2 Field Completions

Definition 2.2.1. Let k be a field with valuation ||. Then a sequence {a,} =
{ai,as,...} is said to tend to b as a limit (with respect to the valuation) if
for every € > 0, there exists an ng(€) such that |a, —b| < € for all n > ngy(e).

Example 2.2.2. Take the sequence {1,1+ %, 14 % + 2%, ... in the rationals.
loge
log% :

It tends to the limit Lt = 2 as if we fix €, then we can take ny(e) =
2

In general, the limit of a sequence is clearly unique (If there were two limits
b# 1, then take e = w, for example).

Definition 2.2.3. For a constant sequence, we write {a,a,a,...} = S(a).

Definition 2.2.4. Let k be a field with valuation ||. Then a sequence is
said to be fundamental if for every e > 0, there exists an ni(e) such that
| — an| < € for all m,n > ny(€). Another term for a fundamental sequence
is a Cauchy sequence.

Example 2.2.5. Take for example the sequence {1,1 + 1,1 + 1 + %, 1+
1+ % + %,} in the rationals. This is just the sequence of successive
approximations to the power series of €*, evaluated at 1. This sequence is
fundamental, as if m > n, then we can use the following inequality to get
some ny for any € > 0.



am_an_ﬁ—i_. +%
m=—n)l+(m-n-1+...4+1
N m)
— )
<m(m n)
m)
B (m —n)!
- (m—1)!

1
< —— forn>1.
m—1

So for any € > 0, we can choose ni(€) = maz{*t<,1}. So the series
converges, but it does not have a limit in the rationals. Its limit in the reals
s e. So there exist sequences, which are fundamental in some field k and do
not have a limit in k.

Lemma 2.2.6. A fundamental sequence is bounded by some constant C > 0.
In other words, there exists C > 0 such that |a,| < C for all n.

Proof. Fix € > 0 and let ¢ = ny(€) as in Definition 2.2.4. Then for all n > g,
we have

|an| = |ag + (an — ag)]
< lagllan — aq
< lag| +¢€
= (] say

So Cy only depends on the sequence {a,} and on e. So we can define the
constant C required by lemma as follows

lan| < max(|a1],...,|as-1],C1) = C.
]

Definition 2.2.7. The field k is complete with respect to the valuation || if
every fundamental sequence has a limit.
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Definition 2.2.8. Let k be a field with valuation ||. Then a field K is
a completion of k with respect to || if K is complete and there exists an
isomorphism from k onto a subfield of K and k is dense in K (i.e. elements
of K can be arbitrarily closely approxzimated by elements of k).

An isomorphism is a bijective function ¢(x) such that ¢(zy) = ¢(z)P(y)

and ¢(z + y) = d(z) + d(y).

Now we will set about to prove that for any field £ with some valuation,
there exists a completion of k. The proof will be broken up into several
steps. First, we will show that the set of fundamental sequences can be given
a ring structure. Then we will define new elements which are not part of &
by setting them to limits of fundamental sequences. After taking care of null
sequences, we will finally define the field K, which is the completion of k.

Lemma 2.2.9. The set F' of fundamental sequences is a ring under the fol-
lowing definitions.

1. {an} + {bp} = {an + by}
2. {an} — {bn} = {an - bn}
3. {an} x {b,} = {an x b,}

Proof. As we have shown before that every valuation is equivalent to one
satisfying the triangle inequality, we can assume with loss of generality that
|| does satisfy the triangle inequality.

Let us first show closure for the operations. For addition, we get the
following argument.

Fix some € > 0. As {a,},{b,} are fundamental sequences, for every £,
there exist n4, 73 such that |a, —a,| < § for every m,n > n, and |b,, —b,| < 5
for every m,n > n,. So take n; = max(ng,ny). Then for every m,n > nq,
we get

[(@m + i) — (an + bp)| < |am + by | + |an + by

<€+6
2 2
=c

For subtraction, the proof is exactly the same. So let us do multiplication
now. As we have seen in Lemma 2.2.6, there exist C; > 0 and Cy > 0 such
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that |a,| < C; and |b,| < Cs. Now fix some € > 0. As {a,} is a fundamental
sequence, there exists an integer n; such that |a,,—a,| < ﬁ for alln,m > n;.
Similarly, there exists ns such that |b,, — b,| < s¢; for all n,m > ny. So we
get

|ambm - anbn| - |am(bm - bn) + (am - an)bn|
< am!|bm — bl + [@m — @by
S C1l|bm - bn| + 02|am - an|

€ €
<O —_ _
< 01201 +C2202

= €.

The remaining ring axioms are directly derived from the corresponding
properties of the field k. So + and x are associative, commutative and
distributive. The additive and the multiplicative identity are

S(0) = {0,0,0,...}
S1)={1,1,1,...}
]

Note that F' as defined in Lemma 2.2.9 is not a field, as it has zero divisors.
For example {2,0,0,0,...} x {0,1,0,0,...} = S(0) but neither of the two
terms is zero. So we have to take care of these zero divisors. First we have
to prove a technical lemma about these sequences which tend to 0.

Lemma 2.2.10. Let {a,} be a sequence which does not tend to 0, then there
exrists an integer ny and r > 0 such that

lag| > 1 for all n > ny.

Proof. We will prove it by contradiction. So suppose that on the contrary
for every € > 0 and for every integer no, there exists an n such that

1
|an| < 56
Now, as {a,} is a fundamental sequence, there exists ni(€), such that

1 1
|G — an| < 5¢ for all m,n > n1(§€)'

12



So, if v > ny(%€), there exists an n > n(5¢) such that

|am — 0] = |ag + (am — an))|
< lan||am — an|

1 1

§6+ 56

€

N

IN

In other words, {a,} tends to 0, which contradicts our hypothesis. So there
exist r > 0 and ny as required by the lemma. O

Proposition 2.2.11. Let N be the set of sequences in F' with limit 0. Then
N is a maximal ideal of F.

Proof. To prove that N is a maximal ideal of F', we will first prove that N
is a prime ideal. A prime ideal satisfies the conditions

1. N is closed under addition and multiplication.
2. If {a,} € N and {b,} € F, then {a,}{b,} € N.
3. If {a, }{b.} € N then {a,} € N or {b,} € N.

Let us first prove closure under addition. It is pretty much the same proof as
for closure of F. If {a,},{b,} € NN, then for every §, there exist n, n, such
that |a,| < § for every n > ny and similarly for {b,}. So if m = max(n, ns),
then for every n > m we get

|@n + bn| < |an| + [ba] =€

We will prove closure under multiplication and part 2) together now. So
say that {a,} € N and {b,} € F. So as {b,} is a fundamental sequence,
we can find C' > 0 such that |b,| < C by Lemma 2.2.6. Moreover, for every
& > 0, there exists an m such that |a,| < § for every n > m. So finally, we
get



For number 3), we just prove that if two sequences do not tend to zero,
then their product does not either. So say that {a,} and {b,} do not tend
to 0. By Lemma 2.2.10, there exist N, N',r, 7’ such that

lan| > 7 foralln > N
|b| > 7' for all n > N’

So let M = max(N, N') and get

lanbn| = |an||bn| > 77" >0 for n > M

Hence {a,b,} does not tend to 0.

So we conclude that if {a,}{b,} € N then {a,} € N or {b,} € N.

So N satisfies the three axioms and is a prime ideal of F'. In order to prove
that NV is maximal, we need to prove that if there is an ideal J containing N
and bigger than N, then J = F. So suppose {a,} € J such that {a,} does
not belong to N, so it does not tend to 0. Then we can construct an inverse
for {a,} as follows.

As {a,} does not tend to 0, we get by Lemma 2.2.10 that there exist ng
and r > 0 such that

la,,| > r for all n > ns.

So construct a new sequence {b,} as

ai 1fn2n2

n

) _{0 if1<n<n,—1

Then {b,} is a fundamental sequence, as if we fix ¢ > 0, there exists
no(r?¢) such that for all m,n > ng(r?¢), we have

\am — an| < 72€ for all m, n > ny(r’e).

So we get for all m,n > max(ngy(r?¢), ny),

14



Now this sequence {b,} is indeed an inverse of {a,}, as

{a . }{b,} ={0,...,0,1,1,1,...}
where we have ny zeros in the beginning. {0,...,0,1,1,1,...} is in the
same equivalence class mod N as S(1), as they only differ by the sequence
{1,...,1,0,0,0,...}, which tends to 0.

So S(1) € J and hence J = F, so that N is maximal. O
Corollary 2.2.12. The structure K defined by K = % 15 a field.

Proof. As the ideal N is maximal, the ring of equivalence classes modulo N
is a field and hence the result. O

So now we have constructed our bigger field K. What we are left to do
is to see whether this field is indeed complete and whether there exists an
isomorphism from £ onto a subfield of K. Let us start with the second bit.

Lemma 2.2.13. The function
o:k— K
z—{z}+ N
defines an isomorphism from k onto a subfield of K.

Proof. First note that if x # y € k then ¢(x) # é(y), as {x — y} is not a null
sequence. As K is a field and by definition of addition and multiplication in
F (and so in K), we get that if z,y € k then

p(x+y)={z+yt+ N={z} +{y} + N = ¢(2) + ¢(y)
¢(zy) = {zy} + N = {zH{y} + N = ¢(z)d(y)

15



So ¢ is a homomorphism. The image of ¢ in K is the set I = {{a}+Nla € k}.
It is easy to see that ¢ is an isomorphism, as its inverse can be defined as
follows

oI =k
{z}+ Nz
Finally, it follows from & being a field, that I is a field. O

So now we are left with proving that K is complete. In order to do that,
we first have to extend our valuation to K.

Lemma 2.2.14. Take {a,} + N € K such that {a,} converges to a in k,
then
la| = lim |ay,|.
n—oo

Proof. First we note that since {a,} converges to a, for every ¢ > 0, there
exists an ngy(e) such that |a, — a| < € for all n > ng(e). This is just the
definition of a limit, so we can write in shorter notation

lim |a, —al| =0
n—oo

Now for any z,y € k, we have
2 =y + (= —y)|
< ly[+ |z —yl.
Similarly, we get |y| < |z|+ |y — z|. As |z — y| = |y — x|, this means that
x| —y
R T
lyl — ||
So if | | denotes the usual absolute value on the real numbers,

2] = lyllee < |2 —yl.
This all implies that {|a,|} is a fundamental sequence in R, as {a,} is a
fundamental sequence, so for each € > 0, there exists an n; such that for all
n,m > nq,

||an| - |am||oo S |an - am| < €.
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Now, we have to assume the real numbers are complete so that the limit
of |a,| as n tends to infinity exists. As I do not try to construct the real
numbers, but rather the p-adic numbers in this project, this is fine. So
assuimg this limit exists, we get the following argument.

Since |a,| = |a+ (an — a)| < |a| + |a, — a], we get

lim |a,| < |al.
n— 00
We have as well |a| = |a, — (an, — a)| < |an| + |an — al, so
la| < lim |ay,|.
n—00
So finally,

lim |a,| = |al.
n—0o0

Lemma 2.2.15. The function ||| defined as
Il: K =R
{an} + N — lim |a,|
n—o0
15 a valuation on K.

Proof. So we have to prove that the three axioms in the definition of a val-
uation hold (from Definition 2.1.1). Take two elements of K, {a,} + N = A
and {b,} = B. Then

[A]l = lim [a,] >0
n—r00
as all the |a,| > 0. Now say that ||A|| = 0. Then
lim |a,| =0
n—0oQ

so {a,} converges to 0 and so {a,} € N. Hence A = 0x = {0} + N. So
the first axiom is satisfied. For axiom 2), we have to prove

IAB]| = [l A[l[|B]]

17



Now, we have
|AB|| = lim |a,b,|

n—oo

= lim |a,||by,|.
n—oo

= lim |a,| lim |b,|
n—oo n—oo

as both {|a,|} and {|b,|} converge in R
= [[A[lIB]l-

Now for axiom 3), we can take C' = 2 as we have assumed that | | satisfies
the triangle inequality. So assuming

JAll = lim Ja| <1
n—oo

we get
|A+ 1| = lim |a, + 1]
n—oo

<1

< Jim (Jag| + 1)

=1+ lim |a,|

n—oo

<2

So ||| is a valuation. O

So the only thing that we still have to be prove is that K is complete with
respect to the valuation || ||. Before doing that, we will show that elements
in K can be approximated arbitrarily closely by elements of k.

Lemma 2.2.16. If A € K, then A can be approximated arbitrarily closely
by elements of k.

Proof. Let A = {a,} + N and fix € > 0. As {a,} is a fundamental sequence,
there exists w such that |a,, — a,| < € for every m,n > w. So

14 = (S(aw) + N[ = [{an — aw} + N|

= lim |a, — ay|
n—oo

< lim €
n— o0

= €.

18



So the element S(a,) + N is arbitrarily close to A. As a, € k, we can
say with a slight abuse of language that a,, is arbitrarily close to A. O

Theorem 2.2.17. The field K is complete

Proof. Let {A,} be a fundamental sequence in K. In other words, for each
€ > 0, there exists ny such that |4, — A,|| < € for all m,n > n;. We will
now construct a limit of {4, } which belongs to K.

Write A,, = {anm} + N. By Lemma 2.2.16 there exists for every integer
n > 0, an integer w(n) such that

1
14 = (S(aue) + Ml < -

The sequence {A, — (S(awm)) + N)} therefore tends to 0 in K. So it is
a fundamental sequence. As {A,} is also a fundamental sequence,

{An} — {4n = (S(awm)) + N)} = {S(aw@)) + N}
= {A} say.

is also a fundamental sequence with terms A, A,.... Soitslimitis A € K.
So every fundamental sequence in K has a limit in K and K is complete. [

2.3 p-adic Numbers

After having done all the technical things we needed to know about field
completions, we can finally introduce the magical p-adic numbers. As you
have probably guessed already, they are a completion of the rational numbers.
In fact it can be proved that every non-trivial valuation on the rationals is
equivalent to either the ordinary absolute value (in which case the completion
is R), or the p-adic valuation defined below. So in that sense, the p-adic
numbers are just as important as the real numbers, and you can do pretty
much everything with the p-adics that you can do with the real numbers.
Note that for this construction to work, p has to be a prime. So for the
remainder of the chapter, let p be a prime.

Definition 2.3.1. Fiz a prime p. Define the p-adic valuation on the field Q
as follows. If ¢ € Q\{0}, then we can write by unique factorisation in 7Z,
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q= ’% where s € Z and ptu € Z and p{v € Z. Then the p-adic valuation
of q is

S

|q‘p =p
and |0[, = 0.

From now onwards, || will always stand for the p-adic valuation, unless
specifically stated otherwise.

Lemma 2.3.2. The function ||, is in fact a valuation
Proof. So we have to prove the three axioms from Definition 2.1.1.

1. If ¢ # 0 then p=® > 0 and |0| = 0 as required.

t

2. For q,r € Q, |g| = p® say and |r| = p* say, then clearly |gr| =

p=* = Jq|Ir|

3. Instead of proving it in the form as it is in the definition, we will prove
that |¢ + r| < max(|g|, |r|), which is a stronger version of the triangle
inequality and is called the ultrametric inequality. So by Theorem 2.1.8,
it will be a valuation.

Take r,q € Q. Assume with loss of generality that |r| > |¢| > 0. Write
r="P%and g =22

so a > 0. Then

with s,u,v,t,z,y € Z and p t uvzry. Let t — s = a,

S

p°’U
\%
where V = vy € Z and U = uy + p®vx € Z. Clearly, p t V, but it

is very well possible that p|U. So say that U = p°W with b > 0 and
p{W. Then

r+q=

r+g| =p Y < p* = max(|r],|q|)

Definition 2.3.3. If a valuation satisfies the ultrametric inequality
lg + 7| < maz(|q|, |r])

then it is said to be non-archimedean.
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Corollary 2.3.4. If the valuation || is non-archimedean, then the following
hold

1. |a1 + as + ...+ an| < maz|a,]|
2. |a, — a1| < mazjaji — a;

Proof. Part 1) is easily proved by induction on n using the definition. Part
2) is obtained by replacing a; with a;+1 — a;. O

Definition 2.3.5. The p-adic numbers Q, are the completion of Q with re-
spect to the p-adic valuation. The p-adic integers Z, are a subring of Q,, with
Z, = {a such that a € Q, and |a| < 1}. Define ¢ as the following subset of
Zy : M = {a such that a € Q, and |a| < 1}.

Note that it is obvious that Z, is a subring, as the ultrametric inequality
holds.

Corollary 2.3.6. The set I is a mazimal ideal of Z,,.

Proof. Tt is again easy to see by the ultrametric inequality that 9 is an
ideal. Now, if |a| = 1 belongs to an ideal bigger than 9%, then by definition
of the p-adic valuation |a!| =1 too, so a ' € Z, and so the bigger ideal is
just Zy,. O

We still do not really know though what these p-adic numbers look like,
so now we will introduce step by step a way to write down p-adic numbers.

Definition 2.3.7. A waluation is discrete if there exists some real number
€>0 such that 1 —e < |a| <1+€e=|a] =1.
Lemma 2.3.8. The p-adic valuation is discrete

1

Proof. We can pick € = . Now |a| = p* for some integer s, so we have

1 . 1
l--<p?’<1l4+-.
p p
But this implies that
-1
pT <p73:>8§0

1
Zi:>520.
p

p° <
So s =0and |a| = 1. O
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Lemma 2.3.9. The ideal M is principal.

Proof. As the p-adic valuation is discrete, the set {|a| : |a| < 1} has an upper
bound. From the definition of the p-adic valuation, we see that |a| < ]l) with
equality for example when a = p. So if |a| < 1 then a = pb for some b with
b <1 (so b€ Zy,). So M is a principal ideal. O

Lemma 2.3.10. The quotient ring Z,/9M is isomorphic to

(Z/pzZ)={0,1,... ,p—1}.

Proof. First note that Z,/9 is in fact a field, as the ideal 9 is maximal.
Now define the sets

a={ala € Q and |a| < 1} and 8 = {ala € Q and |a| < 1}.

Then « is clearly a ring and § an ideal of . We will prove that Z,/90 is
isomorphic to a/f. Clearly, Z,NQ = « and MNQ = 3, so we can construct
the natural map

¢:aff— Lpy/M
a+ B a+IM

It is a homomorphism, as Z, N Q = o and M N Q = 3, so we only need
to prove that it is onto. Take any b € Z,, then there exists a € Q such
that |b —a| < 1, by Lemma 2.2.16 as Q, is the completion of Q. As || is
non-archimedean, ¢ € a. Moreover b —a € 9, so that in Z,/9 we have
b+ 9M=a+ M. So ¢ is an isomorphism.
Now what is a set of representatives in a/f ? Take some ¢ = 1% e Q
with |g| < 1. Then s > 0. If s > 1, then ¢ € 3, so let us say that s = 0. so
U

q9=-
v

vg=u
vq = u(mod p)

As ptov and p{ u, there exists a such that
¢ = a(mod p).

As furthermore any number in {1,... ,p — 1} has valuation 1 and if we
use 0 to represent the class 0 + 3, we have shown that

a/B = (Z/pZ).
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Definition 2.3.11. We say that the infinite sum

o0

Do

n=0

where a, belongs to some field, converges to s , if

N
s = ]\}i—rfcl)oSN with sy = Zan.
n=0
Proposition 2.3.12. Suppose we work in a complete field with a non-archi-
medean valuation. Then the infinite sum Y -, an converges if and only if
a, — 0 when n — oo.

Proof. Part 1) Suppose that Y >° @, converges. Then
lim anN = lim (SN — SN_1)
N—00 N—o0

= lim sy — lim sy_;
N—oxo N—oo

=5—35
=0.

Part 2) Suppose that a, — 0 when n — 0. Fix some ¢ > 0, then there
exists Ny such that |a,| < € for all n > Ny. Let M > N > N, then

lspr— sn| = lans1 + ...+ au|

< max |ay|
N<n<M

<€
So {sn} is a fundamental sequence and converges as the field is complete. [J

Note that this fact is not true for general valuations. In the real numbers
for example, it is very well possible to construct an infinite sum whose terms
tend to zero, but which goes off to infinity. For example, it is well known
that

=1 1
n=1

But as the p-adic norm is non-archimedean, nothing like that can happen

in the p-adic numbers. Now we have all the tools we need to be able to

construct a useful notation for the p-adics.
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Lemma 2.3.13. Consider a € Z,, then a can be written uniquely in the

form
oo

azz%pn , with a, € {0,... ,p—1}
n=0

Conwersely, the right hand side always converges to an element a € Z,,.

Proof. The proof of the converse is easy by Proposition 2.3.12. As |a,p"| =
p~ ", the sequence {a,p"} tends to 0 as n tends to infinity, and the term with
the highest norm is aop° with norm 1, so it belongs to Z,.

Now prove the other way. Let a € Z, be given. Then there is precisely one
ag € {0,...,p— 1} such that |a — ag| < 1 by Lemma 2.3.10. So a = ag + pb;
for some b; € Z,. Then there is exactly one a; € {0,...,p — 1} such that
|by —a1| < 1 and by = a; + pb, for some by € Z,. Do this step N times to get

a=ao+ ap+ap’ +...+axp” +byp" !
with a; € {0,... ,p — 1} and by41 € Z,. Now, as

lim |bN_|_1pN+1| =0.
N—00

we have indeed o
a= Z anp".
n=0
O

Example 2.3.14. Take for example the integer 7 and say we work in the
5-adic numbers. Now |7|s = 1, as 5 does not divide 7. So there exists exactly
one ag € {0,1,2,3,4} such that |7 — agl|s < 1. This is of course ag = 2. So
7T=2+4+5x1. Now |15 =1, so there is a; = 1 such that |1 — a1]5 < 1 and
1=1+0x5. As |0|5 =0, we can stop here and get the following expression
for 7 in the 5-adcis

7T=24+1x5.

Example 2.3.15. Now take a more complicated example. Take for exam-
ple % in the 5-adics. Now |%|5 = 1 and so there exists eractly one ay €
{0,1,2,3,4} such that |5 —agls < 1. So we have to find ay such that 1 — 3ag
s divisible by 5. So we solve the congruence
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1-3ap=0 (mod 5)

—3ap = —1 (mod 5)
3ag =1 (mod 5)
ag = 2 (mod 5)

So 3 =245 and |55 = 1. So there exists ay such that |5 —a1]5 < 1.
So we solve the congruence

1+3ap=0 (mod 5)
3ag =4 (mod 5)
ag =3 (mod 5)

So _71 =3+ 5%2. Now there exists ay such that |_T2 —asls < 1. We
see that ay = 1 satisfies this. So %2 =1+ 5%1. But we already know that
-1

_ -2 ~
5 = 3+535. So from here onwards, we will only repeat 3,1,3,1,.... So

the expression for % in the b-adics is

1
§:2+3X5+1X52+3X53+1X54+---

Now we can extend Lemma 2.3.13 so that we can write down elements of
Q, as well.

Corollary 2.3.16. Every a € Q,\{0} is of the form

a:Zanp" with a, € {0,1,... ,p—1} and ay # 0.
n=N

Proof. First, note that elements of Q,\{0} also have valuation equal to
p~*® for some s, as the valuation is discrete. Then if a € Q,\ {0}, then
there exists some N such that p™"a € Z,, as if |a] = p~* then N = s and
p~Va| = p N =1, 0
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So now we have a convenient way to write down p-adic numbers. We can
relate this notation to the decimal notation for real numbers. In the reals,
we have for example

% = 0.333333. ..

In the p-adics we can write along the same lines

% =...31313132

The p-adics are written from the right to the left, as 2 is the digit corre-
sponding to 5°, the first 3 from the right corresponds to 5', ... In the results
from the computation of the zero of the p-adic L-function, we use a different
format of presentation though. They are presented in a table starting with
the coefficient of p°.

Now we will introduce some standard theorems about p-adic analysis that
we will need later. First we will start off with a version of Hensel’s Lemma,
which is a generic term used for inferring the existence of a solution of an
equation from the existence of an approximate solution. The version given
here is analogous to Newton’s method for the real numbers. Before doing
that, we need to know something about derivatives of polynomials in Z,[z].

Definition 2.3.17. Let f(x) € Z,[z].
Define fi(z) with (j =1,2,...) as follows

flz+y) = flz)+ filz)y + fol2)y® + ...
Then the formal derivative of f is f'(z) = fi(z).

Lemma 2.3.18. (Hensel)
Let f(z) € Z,|z] and let a, € Z, be such that

[f(ao0)] < | f(ao)[*
Then there ezists an a € Z, such that f(a) = 0.

Proof. As |f(ao)| < |f'(ao)|?, we know that there exists a by € Z,, such that

f(ao) + bo fi(ao) = 0.
By definition 2.3.17, we have
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| f(ao + bo)| < max | f5(@0)bp|-

Since f;(z) € Zy[z] and ay € Z,, we have that |f;(ag)| < 1. As moreover
| < |b3| for n =2,3,..., we have

| (a0 + bo)| < |5
_ |f(6l0)|2
[ f(a0)?
< [f(ao)|

as | f(ao)| < |f'(a,)|?>. In the same way, we get

| f1(ao + bo) — fi(ao)| < |bo| < [f1(ao)l-
Now |g — r| < |r| can only happen if |¢| = |r|, so we get
| f1(ao + bo)| = [ fi(ao)]-

Now let a1 = ap+0by and repeat the same process. Then we get a sequence
{a,} such that

|f1(an)| = | fi(ao)l.

So we get,

|f(an)?
‘f(a’n+1)| S |f1(a'n)‘2

_ If(an)P
| f1(ao)|?

As |fi(ao)| < 1, we have that |f(ao)| < 1. Hence

o ) _
| fa)

So,
lim f(a,) =0.

n—oo
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From that we get easily

@1 — an| = |byl
_ ()
|f1(an)]
 f(a)
| f1(ao)|

SO |any1 — ay,| tends to 0 as f(a,) tends to 0. Define the sequence {b,} with
b, = Gpy1 — an. Then b, tends to 0 as n tends to infinity, so by proposition
2.3.12, {a,} tends to a limit @ in Z,. Moreover f(a) = 0 by what we proved
above. O
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Chapter 3

Dirichlet L-series

3.1 Dirichlet Characters

Definition 3.1.1. A Dirichlet character is a multiplicative homomorphism
X : (Z/nZ)* — C*, where n is a positive integer. In other words it is a
function from F, = (Z/nZ)* to C* satisfying the condition

Va,b € F, : x(ab) = x(a)x(b).

Notes (1) We can extend the definition of the Dirichlet character by defining
it on all integers prime to n. Then x(a) (a € Z) depends only on a mod n.
We say that x is a Dirichlet character modulo n. Further extending the
definition, we put x(a) = 0 if a is not coprime to n.

(2) Take m € Z such that m|n and m # n and m > 0. Let X' be
a character modulo m. Then X’ induces a character modulo n, Y, in the
obvious way. For all integers a coprime to n (hence also coprime to m)
define: x(a) = x'(a mod m).

(3) If x is a character modulo n which is not induced in this way, we say
that it is primitive. Then n is called the conductor of x. We write f, for the
conductor of y.

(4) If x(a) = 1 for all a € (Z/nZ)* then we say that x is the trivial
character and write y = 1.

Example 3.1.2. (1) Let x : (Z/5Z)* — C* be defined by x(1) =1, x(2) =
—1. Then necessarily x(2?) = (x(2))> = 1 = x(4) and x(2%) = -1 =
X(8 mod 5) = x(3). This character is primitive since 5 is prime so it does
not have proper divisors which could induce x.
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(2) Let x : (Z/6Z)* — C* be defined by x(1) = 1 and x(5) = —1.
Here x is induced by the character x' : (Z/37Z)* defined by x'(1) = 1 and
X'(2) = —1. So x is not primitive.

In the course of this document, we will only consider primitive Dirichlet
characters so when speaking of characters, primitive will always be implied.

Lemma 3.1.3. Let x be a character of conductor f such that x(a) # 1 for
at least one a € (Z/fZ)* (i.e. x #1). Then

f
D x(a)=0
a=1
Proof. Take b such that x(b) # 1 and b € (Z/fZ)*. Then hcf(b,n) =1
so multiplication by b permutes the numbers 1,... , f modulo f. Indeed, if
1<a< f, then
ab=1x mod f
cb=1x mod f,

implies that a = ¢ mod f. So we can write

/ /
X)) > x(a) =) x(a)x(b)
a= a;
= x(ab)
F
=> xl(a)
Hence
/
(x(®) =1) > x(a) =0.
As x(b) # 1 this entails that Zf::l x(a) = 0. O
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Lemma 3.1.4. If x is a Dirichlet character, then so is x ' with x '(a) =
(x(a))~! for a such that hef(a, f) = 1.

Proof. As hef(a, f) =1, we have x(a) #0. Soif a,b € (Z/fZ)*, then

1 1

= Sy = xax® X

- X(ab) _l(a)X_l(b)'

O

Definition 3.1.5. The multiplication of two characters x, vy with conductors
fx and fy respectively is defined as the primitive character associated to vy
with

v : (Z)lem(fy, fpZ)* — C*
a — x(a)y(a).

Lemma 3.1.6. Let x,v be Dirichlet characters. Then
x(a)(a) = xi(a)

unless x(a) = ¥(a) =0

Proof. In general, characters from (Z/nZ)* to C* can be written as a prod-
uct of characters of prime power conductor. So we can restrict ourselves to
the case where the conductors of x and v are some power of a prime p. Now

the only way that x(a)y(a) # x¥(a) is when f,,, # f, fy and when p | a. But
this means that both x and 1 are non-trivial. Hence x(a) = ¢(a) =0. O

3.2 [-series

Definition 3.2.1. Let x be a primitive Dirichlet character of conductor f.
The L-series attached to x is defined by:

L(s,x) = Z x(n)

ns

n=1

where s € C and Re(s) > 1.
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Notes (1) If x = 1 (so that chi(a) = 1, Va) then the L-series is just the
usual Riemann zeta function.

_ i !
n=1 n’

(2) The L-series can be analytically continued to the whole complex plane,
except possibly for a simple pole at s =1 when x = 1.

(3) The L-series take really interesting values at both positive and nega-
tive integers. Later we will investigate some of those values more closely. The
zeros of this family of functions have nice properties too. It can be proved
that L(n,x) = 0 if (—=1)" # x(—1) for negative integers n. These are called
the trivial zeros of the L-function. Now are there any other zeros 7 In fact
there are, as for example % + 4 x 14.1347... (From A. Odlyzko’s Internet
site [7]) is a zero of the Riemann Zeta function. It is conjectured that the
non-trivial zeros of the analytic continuation of the L-series all have real part
equal to % This conjecture is called the Generalised Riemann Hypothesis
and has many important consequences in Mathematics. If the conjecture is
true, it implies for example that there exists a non-probabilistic primality
testing algorithm which finishes in polynomial time [3].

Definition 3.2.2. We may extend the definition a bit further and define the
Hurwitz zeta function for Re(s) > 1 and 0 < b <1 as:

¢(s,0) :z b+n

n:O

Lemma 3.2.3. ;
L(s,x) = > _x(a)f~%¢ (s, %)
a=1

where Re(s) > 1 and f is the conductor of x.
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Proof.

O

The idea for the construction of a p-adic L-function is that we want it to be
a function taking the same values as the Dirichlet L-series on the negative
integers. With a few modifications, we will be able to do this. So we will
now investigate the values of the L-series. Before we can do so, we first have
to introduce the Bernoulli numbers as they will appear in the formula for the
values that the L-series takes on at negative integers.

3.3 Bernoulli Numbers

Definition 3.3.1. The Bernoulli numbers B,, are defined by




The generalised Bernoulli numbers B, , are defined by

! x(a)te® & B t"
eft—1 Z "Xl
a=1 n=0

(e is just exp(1), x is a Dirichlet character of conductor f)
The Bernoulli polynomials B,(X) are defined by

teXt o0 tn

The Bernoulli numbers appear in many parts of mathematics. They were
first introduced by Jacques Bernoulli (1654-1705) to write down infinite series
expansions for hyperbolic and trigonometric functions.

Here is a list of the first few Bernoulli numbers:

By, Bi B, By Bs Bs By B2 By Big Big By
1 L1 1 11 1 5 691 7 3617 43867 _ 174611

2 6 30 42 30 66 2730 6 510 798 330

The By for k odd (# 1) are not in the table since they are zero as proved
in the following lemma.

Lemma 3.3.2. The odd Bernoulli numbers are zero (except By ).

Proof. The following is unchanged by substituting —¢ for ¢:

et_1+§:2(e

So we get the following argument
t t —1 —1

et—1+2 e—t—1+2

t t tlext 4 e 2)
bl

So,
it —t
et —1 et—1
_ Bl B22 B33 B44 BS5
—t=Bo+ Jpt+ ot + ottt
Bl B22 BS3 B44 B55
—(Bo— ppt+ 5t — ottt = )
— Bs 3 Bs s
—t——t+2§t +2§t + ...
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So that finally, we get

Bs 3 | Bs 5 _
ﬁt +§t +...=0.
As the series expansion is identically equal to 0, all the coefficients have
to be equal to 0 and hence the result. O
Lemma 3.3.3.
B,(1-X) = (-1)"B,(X).
Proof.
te(l_X)t tet—Xt
-1  e—1
te—Xt
T 1t
()X
et —1
00 _4)m
- B
n!
n=0
So B,(1 — X) = (—1)"B,(X). O
Lemma 3.3.4. .
B,(X) = <”) B X"
1
=0

Proof. The generating function of the Bernoulli polynomials is the product
of

and
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So the n-th term in the product is just

n

Y (?) B, X" = B,(X).

i=0
0

Proposition 3.3.5. Let F' be any multiple of f where f is the conductor of
X. Then

F
_ a
By =F"Y x(a)B, (F) .
a=1

Note that B, (a/F) is the Bernoulli polynomial and not Bernoulli number
B, times a/F.

Proof.
- Fn—l d B a tn _ d - Fn—lB a tn
> P x@B (5) o= Yo x@ Y P () o
n=0 a=1 a=1 n=0
F [e's)
_ x(a) ay (Ft)"
=YY B(F)
a=1 n=0
—XF: (@ tela/F)Ft
- pot X eFt _ 1

Set g = ? and a = b+cf with 1 < b < f. As the character x is only defined
modulo f, we have x(a) = x(b), so we get

fog-1 b+cf f
— cft
S0 = Yo efgt_lze
b=1 c=0 b=1
f tebt  efet — 1
ZZX(b) Tat 7
— efat — 1 eflt —1
f bt
te
= x5
b=1
o0
tTL
:ZBH’XTL'
n=0



by definition of the generalised Bernoulli numbers. Hence we get the result.
O

The following theorem will only be cited and not proved, as the proof is
of complex analytic nature and would take us too far afield. For a proof, see
Washington [9] Chapter 4, pages 32-34.

Theorem 3.3.6. Let n be an integer with n > 1, then

B,

And more generally

For0<b<1.

3.4 Von Staudt-Clausen

In this section we will prove an interesting result about Bernoulli numbers,
which says that the denominators in Bernoulli numbers cannot get arbitrarily
large. This will be an important fact when we try to define the p-adic L-
functions. First we will start off with a technical Lemma needed in the proof
of this theorem.

Proof. We have

X (n-1)X "X —1
l14+e*+...+e =—
e —1 (3.1)
e -1 X
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Do the power series expansion on both sides. First, we see that the left-hand
side gives :

1+eX + ... 4+ e DX

1+

X2 X3 Xk
1+X+j+§+...+ﬂ+...+

2X)? 2X)3 2X)k
1+2X+(2|) +(3') +...+(k,) 4+ ...+

So the coefficient of X* in the sum is

426+ . +(n=1D% Si.n
k! e - kk(!) (3:2)

Now the power series expansion for e™¥ is just

nX)? nX)
2! 7!
So the expansion for e");(—l is
n?X n3X? nt X1
T

7!
As we have seen before, the power series for ex%l is

B B

1 2 2 k 3k
Bo+1—!X+2—!X +...+EX + ...
So the coefficient of X* in their product is

nk+1 B1 nlc

B N Bi nk-l—l—i
T T I

Thri— TR
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We can write this as the following sum

k
E BT nk—l—l—r
ik —r)(k+1—-r1)

r k+1—r
ka( )k—l—l—rn

Now we can identify the coefficients of X* from both sides of (3.1) by using
(3.2) and (3.3) to get the result. O

(3.3)

Theorem 3.4.2. (Von Staudt-Clausen)
Let k be an even integer. Then

Bk + Z qil <Y/
q prime

(¢—1)lk

Proof. As a first step, we prove that if n — 0 p-adically (which means that
In|, tends to 0), then

— lim ol
Bk_rlgr(l)n Sk(n).

Now we can say without loss of generality that n runs through the se-
quence p,p%, p,...,p™, ..., as this sequence tends to 0 p-adically. So we let
[ tend to infinity in the usual sense, so that p' tends to 0 p-adically and get

hmp lSk _ li}gp lz< >k+1_Tpl(k+1—T)

k
— lim (k> _De i)
ool \r)k+1—71

Now if r < k, we are left with an exponent p**~") and no matter now many
times p appears in the denominator of the binomial, or in the denominator
of B,, as | tends to infinity, the p!*~") term take over in the end. So all terms
with » < k tend to 0 p-adically. So we get
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k By
1 —l N — i W(k—Fk)
Jim p~Sk(p') l;%“o(k)m_kp

l—00

= Bj.

Now let us compare p™ 'S, (p™ ™) and p—mSi(p™). Now every integer j
with 0 < j < p™*! is uniquely of the form

j=upm+ovwith0<u<pand0<v<p™

So we can write

pm+171
S = Y g
§=0
p—1pm-1
=33 o
u=0 v=
p—1pm-1 p—1 pm—1
= v* + kp™ Zu Z vkl (mod p*™)
u=0 v=0 u=0 v=0
p™—1 p—1 pm-1
=p Z vF + kp™ Zu Z pFt (mod p*™)
v=0 u=0 v=0

by using the binomial theorem, as all other terms are multiplied by at
least p?™. As k is even, and as

2> u=p(p-1)=0(p),

we get by using the fact that Z’;Z;l vk = Sp(p™),
Sk(P™ ) = pSe(p™) (mod p™*).

Now divide both sides by p™*! and we get
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P Sk (™ ) = p TS (™) |y < 1.
So by Corollary 2.3.4, it follows that for any positive integers [, m we have

P Sk(P) —p Sk (P™)]p < 1.
Put m = 1 and let ! tend to infinity in the usual sense, so that p' tends
to 0 p-adically. Then

|By —p 'Sk(p)|, < 1. (3.4)

Let us analyse what Si(p) is congruent to modulo p. If (p — 1) divides £,
then i* = 1 (mod p) for all 1 < 4 < p as the order of 4 is p — 1 in (Z/pZ)*.
So in this case Sy = (p—1) x 1 = —1 mod p.

If (p — 1) 1 k, then let ¢ be a primitive root modulo p. As (p — 1) t k and
the order of ¢ is p — 1, t* is not congruent to 1 modp. Multiplication by ¢
mod p permutes the integers from 1 top — 1, asif ta =b mod p and tc =0
mod p, then ¢ = ¢ mod p. So we get modulo p,

Sk(p) = ij mod p
= Z (t5)* mod p
=tk ij mod p
= t"Sk(p) mod p

So Sk(p)(t* — 1) = 0 mod p. But as we said before, t* is not congruent
to 1 mod p, so Sy =0 mod p. Putting these two cases together, we have

Sk(p) _ 5

—1 (mod p) if (p — 1)|k
0  (mod p) otherwise
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So we can put 3.4 and 3.5 together to get

1By +p7Hp <1 if (p—1)[k
|Belp <1 otherwise

Now define

W, = By, + Z qil.
¢ prime
(-1)lk

If ¢ # p, then |1/q|, = 1 by definition of the p-adic valuation. If ¢ = p,
then we can use the first case in 3.6 to say that |Bx +p~'[, < 1. So if we
sum everything together, we can use the non-archimedean property of | |, to
get

Welp < 1.

This implies that W) has no primes in its denominator. Hence it must
belong to Z, just as the theorem states. O
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Chapter 4

p-adic L-functions

After introducing the p-adic numbers and proving some results about classical
L-functions, we will finally introduce p-adic L-functions. The construction is
not straightforward, as the usual L-series does not converge p-adically. So,
as we have already pointed out before, the p-adic L-function will agree with
the classical L-function on negative integers after introducing a fudge factor.
As we have seen in the previous chapter, these values are algebraic over Q,
as they depend on the values of Dirichlet characters.

4.1 Results from p-adic Analysis

In this section we will introduce all the tools we need in order to be able to
construct p-adic L-functions. Some of the proofs in this section are omitted,
as they would take us too far afield. The results are standard results from p-
adic analysis and can for example be found in Washington [9] or in Cassels [2].
First, let us remember some basic definitions.

Definition 4.1.1. A field is algebraically closed if every polynomial can be
factorised into linear factors.

Definition 4.1.2. An element of some algebraically closed field K is alge-
braic over a subfield k of K, if it is a root of a polynomial in k|x].

Lemma 4.1.3. Q, is not algebraically closed.

Proof. First, we prove that if a polynomial with integer coefficients prime to
p has no solutions mod p, then it has no solutions in Q.
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Say the integer polynomial f|x] with coefficients prime to p has a solution
a in @Q,, then the solution is of the form

a=2anp” with a, € {0,1,... ,p—1} and ay # 0.

n=N

Now if N > 0, then a = 0 mod p, so there is a solution mod p. If N <0,
then ag is a solution mod p. So if f[z] has no solutions mod p then it has no
solutions in Q.

For p = 2, consider the polynomial X2 + X + 1, which is always 1 mod
2. So (@, is not algebraically closed. Now if p > 2 is a prime, about half the
numbers in {1,... ,p— 1} are not squares mod p. This can easily be deduced
from the fact that the map z — 2 is 2-to-1, as (—z)? = z? mod p. So for
each p, there exists an a in {1,... ,p — 1} such that

X% —a=0 (mod p)
has no solution mod p, so QQ, is not algebraically closed. O

As @Q, is not algebraically closed, but we need to work with algebraic
numbers, we need to consider its algebraic closure Q,,.

Proposition 4.1.4. @p 1s not complete.

The proof would take us too far into the theory of cyclotomic fields, so it
is not given here. For a proof please see Washington [9] Chapter 5, page 48.

Definition 4.1.5. Let C, be the completion of @p, then C, 1is algebraically
closed.

Again, a proof of fact that C, is algebraically closed can be found in
Washington [9] Chapter 5, pages 48,49.

Definition 4.1.6. A solution of
XD _1=0
in Zy is called a (p — 1)st root of unity.

Lemma 4.1.7. For each a € Z, such that p 1 a, there exists a (p — 1)st root
(or square root for p = 2) of unity congruent to a mod p. This (p — 1)st root
of unity is denoted by w(a). So w(a) = a mod p (mod 4 for p =2).
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Proof. The case p = 2 is easily dealt with, as if 2{ a, then a =1 or 3 mod 4,
sow(a) =1lorw(a) =-1=1+2+22+.... Now say that p > 2. When
a € Z, and p { a, then a is congruent to one of 1,... ,p — 1 modulo p. As
the size of (Z/pZ)* isp—1, foreach x € {1,... ,p—1}, 27! =1 mod p. So
there exists a root x of f(X) = X®"1 —1 modulo p with z = a (p).

The derivative of f is f/(X) = (p — 1)X®=2 and f'(z) is not congruent
to 0 mod p, as x # 0. So we have the following requirement for Hensel’s
Lemma,

[f(@)]p < |F'(2)];-
Hence, by Hensel’s Lemma, there exists a (p—1)st root of unity congruent
to a mod p. O
Definition 4.1.8. For a € Z,, define {a) = w *(a)a.
Note that then (a) =1 mod p as w™'(a) = 1/a mod p.

Definition 4.1.9. Define the p-adic exponential function as follows

o0

X’I'L
exp(X) = Z K
n=0

Lemma 4.1.10. The radius of convergence for exp(X) is | X| < p~/ =1,

Proof. Recall that as the p-adic valuation is non-archimedean, a sum con-
verges if and only if the n-th term tends to 0 as n tends to infinity. So we
have to analyse how big p-adically, the n! term can get. Let [§] denote the
integer part of the rational §. As there are [n/p] multiples of p* less than or
equal to n, the exponent v of p in the factorisation of n! is (if p* < n < p**1)
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p° P .
. 1
< limn —
b—o0 - pa
1—
— o 1 pbtt
=T oY
D
_ p
=n( T -1
. n
=

Let us also find a lower bound for

<[ [

Now as we have a terms in §, it is certainly bigger or equal to

—(a+1)_1
n+...+%—a=n<pi—1)—a

P p pt-1
B (p“—p 1—p>
=n — —a
I-p 1-p
n—np @
=— —a.
p—1
As p® < n < p**l we get
np “<p
—np~* > —p

n—np *® n-—p
p—1 p—1

because p — 1 > 1. Moreover we have

logn

a < .
~ logp
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So we finally get

n—np° n—p logn

a > — .
p—1 p—1 logp
By putting the inequations together we obtain

n—p logn

<wv
p—1 logp p—1
where v is the exponent of p in the factorisation of n!. So we get for the
valuation of n!,
u+1£5ﬁ

p i tlogr > |nl| > peeT

First, let us see how the lower bound on |n!| influences convergence for
the series. For simplicity write o = 1%' Then we get

Inl[ > p

1

< (&3

nl] =7

X’I’L
|F‘ < |X"[p®.

In order for % to tend to 0, as n tends to infinity, we have to have

| X"p* < 1
X" < pe
n

p—1
1

p—1

X | < pir.

nlog | X| < — logp

log | X| < —

logp

Along the same lines, we can prove with the other inequality that if | X| >
p~1/®=1)_ then | X"/n!| = co when n — co. So the radius of convergence is
in fact

X < p /1),
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Definition 4.1.11. Define the p-adic logarithm as the power series

log,(1+ X) = i ﬂ

n
n=1

The next three lemmas are not proved here, but as they are necessary for
the construct of the p-adic L-function, they are cited here. For proofs please
see Washington [9].

Lemma 4.1.12. The p-adic logarithm as given in definition 4.1.11 is con-
vergent for |z| < 1. There is a unique extension of log, to all of C,\{0}

such that log,(p) = 0 and log,(zy) = log,(z) +log,(y) for all z,y € C,\{0}
Lemma 4.1.13. Suppose that v < p~"/®Y < 1 and

=3 ()

n=0
with |a,| < Mr™ for some M.Then f(X) can be expressed as a power
series with radius of convergence at least R = (rp*®=)=1 > 1,

As we have defined an exponential function and a logarithm function, it
makes sense now to talk about arbitrary powers of p-adic numbers. Note
that before we have restricted ourselves to integer powers.

Definition 4.1.14. Let a € Z, such that p{ a. Define

(a)” = exp(z log(a)).

Lemma 4.1.15. The function (a)* converges if |z| < qp~"/®=V where q is
defined as

_Jp, dp#F2
1 4, ifp=2.

4.2 p-adic L-function

This section introduces the p-adic L-function. This function was first intro-
duced in 1964 by Kubota and Leopoldt [5]. The exposition here is closely
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based on the account given in Washington [9]. There are other ways of arriv-
ing at this result which yield more insight into relationships with cyclotomic
fields (see Chapter 7 of Washington [9]). For our purposes, the approach
given here is better as it results in a nice formula which is the basis of the
computer algorithm used in the computational part of the project.

Definition 4.2.1. Let s be a complex variable and a, F' integers with 0 <
a < F. Define the function H(s,a, F) as

o

H(s,a,F) st.
(F)

m>0

We are mainly interested by the values that H takes at negative integers.
Lemma 4.2.2. Let n be an integer with n > 1. Then
F' B, (%)

H(1-n,a,F)=— "

And H(1 —n,a,F) € Q.
Proof.

m>0

1
:Z(a+nF)

n=0

8

8 I

1
N
nX% (% +n)

= F (s, 7).

where (() is the Hurwitz Zeta function defined in Definition 3.2.2. Note that
these steps are valid, as 0 < a < F so that 0 < a/F < 1. Now we can use
Theorem 3.3.6 to write

"B (3)
Bul®),

H(l-n,a,F)=—

This expression belongs to Q, as the Bernoulli polynomials are polynomials
with rational coefficients, and everything else in the formula is rational. [
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As H is rational at negative integers, it also belongs to @,. Now by its
definition, H has a close relationship to the Hurwitz Zeta function, which
in turn is closely related to the classical L-functions by the formula given in
Lemma 3.2.3.

Theorem 4.2.3. Take q as in Lemma 4.1.15. Suppose q | F andp 1t a, Then
there exists a p-adic meromorphic function Hy(s,a, F) with a, F € Z on

{s € C, such that |s| < gp Y/® Y > 1}
such that
H,(1-n,a,F)=w"(a)H(l —n,a,F) forn>1.
In particular, whenn =0 mod (p—1) (orn=0 mod 2 if p=2), then
H,(1-n,a,F)=H(l—-n,a,F).

The function Hy, is analytic except for a simple pole at s =1 with residue
1/F.

Proof. Define the function H), as

v = g3 (1) (5)

§=0

where B; is Bernoulli number j and (a) is as defined in definition 4.1.8.
First, assuming convergence, we will prove the identities given in the theorem.
If 7 > n, the binomial coefficient is zero, so we get

§=0 J

=)o (0)
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By Lemma 3.3.4, we can introduce Bernoulli polynomials B, (X) to get

Hy(1—n,a,F) = —F:L_l (%)nB" (%)

=1 fu=1a\" a
Y )
n ( a ) F

By Lemma 4.2.2, this means that

H,(1-n,a,F)=w "(a)H(1 —n,a,F).

Now if n =0 mod (p—1), then w"(a) = 1, as it is root of unity of order
p — 1. So in that case we have indeed

H,(1-n,a,F)=H(l—-n,a,F).
At s =1, we have the residue

1, ox= (0 F\’' 1

— Bi|—| =—=.

Fr ()5 (0) =7

So let us now prove convergence in the domain |s| < gp~¥/®~Y. Using
the theorem of von Staudt-Clausen (3.4.2) proved in the previous chapter,
we can say that |B;|, < p. Moreover, as p { a, we have that |a| =1 and from
q | F follows that |g| > |F|. This implies

(B;) <§)]

Using Lemma 4.1.13 with 7 = |¢| = ¢ and M = p we conclude that

() (2)

J

< plql’.

is analytic on the disc D = {s € C, such that |s| < ¢gp~/®"V}. As
gp~ /=1 > 1, we have |1—s| < max{|1], |s|} < ¢gp~/®~) so0 that D coincides
with {s € C, such that |1 — 5| < gp~/®~D}. Hence
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£ () ()

=0
is also analytic on D. Similarly we conclude from the fact that (a)*
converges for |s| < gp~ /=Y (Lemma 4.1.15) that (a)'~* is analytic in D.

So (s — 1)Hp(s, a, F) is analytic in D, which is what we had to prove.
U

The p-adic L-function will have two parameters, s and x, just like the
complex L-series defined in definition 3.2.1. We have said before (defini-
tion 3.1.1) that Dirichlet characters are a function from Z to C*. As we now
work in C,, we regard the values of x(a) to lie in C,. This works because C,
and C are algebraically isomorphic (see Washington [9] Chapter 5,page 49)
and x(a) lies in some algebraic extension of Q.

Lemma 4.2.4. The function w(a) is a multiplicative homomorphism from
Z to C, with conductor q.

Proof. First remark that w(a) is only defined modulo ¢ so the conductor is
indeed ¢. The case p = 2 is obvious, so we can restrict ourselves to elements
of (Z/pZ)*.

Now w(a) is defined to be the p — 1st root of unity congruent to a. So
w(ab) = ab mod p is the unique p— 1st root of unity congruent to ab. As the
product of two roots of unity of order p — 1 is also of order p — 1, w(a)w(b)
is a p — 1st root of unity. Moreover it is congruent to ab mod p. Hence
w(ab) = w(a)w(b) O

Theorem 4.2.5. Let x be a Dirichlet character of conductor f and let F' be
any multiple of q (as in Lemma 4.1.15) and f. Then there ezists a p-adic
meromorphic (analytic if x # 1) function L,(s,x) on {s € C, such that |s| <
qp~ /DY with

-n n— Bn, w™n
Ly(1—mn,x)=—(1—xw"(p)p 1)+ forn > 1.

If x =1 (x(a) = 1Va) then Ly(s,1) is analytic except for a pole at s =1
with residue (1 —1/p).
Moreover the formula for L,(s,x) is
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L= S e (M e (5)
o

=0 \ 7

Proof. First we show that the analytic properties hold, then we prove that
the given formula does indeed give the desired values at 1 —n forn > 1. We
have

§ = zia(s,x)

As Ly(s,x) is the sum of meromorphic functions defined on D = {s €

C, such that |s| < gp~*/®~1) > 1}, it is also meromorphic in D. The residue
at s=11s

F 1 1 F
= 1
2E =2
pla pla
1
e
F D
1
=1--.
P

If x # 1, we can write

1 & 1 &
R= FZX(G) - fo(pb)
a=1 b=1

23



As F' is a multiple of f, the first sum is zero by Lemma 3.1.3. If p | f,
then x(pb) = 0, as hef(pb, f) > 1, so the second sum is also zero. Now if
p1 f, then f | (F/p) so again by Lemma 3.1.3 the second sum is zero. Hence
if x # 1, the residue is 0, so that L, (s, x) has no pole at s = 1 and is analytic.

Now let us verify the identity for L,(1 —n,x) (n > 1). We have by
theorem 4.2.3

(1 —mn,x) = ZX —n,a,F)
p’ra
F
=3 @ "(@H(1 - n,a,F).
pTa

Now use lemma 4.2.2 to get

Ly(1—n,) ZX —Fn_lBg(a/F)
p’fa
= —%F”‘l Zx(a)w*"(a)Bn (%) .
o

We can use lemma 3.1.6 to multiply the two characters x and w™" as

w™"(a) # 0 to get

F
Ly(1—mn,x) = Lpn "y xw™(a)By (%)
=
1 n—1 B -n a
=——F ;XW (a)By, (F)
n—1 & —-n bp
LS e ()



Now the second part of the sum can be rewritten as

1 F/p bp
_Fn—l -n B e
S e w7

= %xw""‘(p)pn‘1 (%) - gﬁ xw™"(b) Br (FL/Z)) :

So we can use proposition 3.3.5 on both parts of the sum to get

1 N
Lp(1 =1n,X) = == (Bpywn — Xxw "(0)P" ™ Bpywn
n
1 o
= —— (1= xw™"(P)P" ") Buyur-

Hence the result. O

So we do indeed have this p-adic function which agrees with the classical
L-function on negative integers except for the fudge factor (1—xw™™(p)p" ™).
This factor is called the Euler factor at p for L(s, xw™™). So theorem 4.2.5
now provides with an easy formula to calculate the power series of L,(s, x).
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Chapter 5

Programming Details

5.1 Preliminaries

We restrict ourselves to the case of teichmuller characters and irregular
primes. The teichmuller character of index i is defined as x(a) = w(a)’.
An irregular prime is a prime which divides some Bernoulli number B with
0 < k < p—1. The only interesting case for teichmuller characters is when
i =k — 1, as it can be proved that for other values of 7, L,(s, x) is a p-adic
unit and hence has no zeros.

5.2 Overall Strategy

The overall strategy is to first compute the p-adic L-function for some prime p
and some teichmuller character with index index. The function is expressed
as a power series in the variable s with ac terms, so that ac is the accuracy
we want. Then Hensel’s Lemma is used to compute the zero of the resulting
power series.

The algorithm to express the L-function as a power series is based on the
formula given in Washington [9], namely

= S (7)n(2)

a=1 7=0

The program calculates the sums in the same order as the formula. Each
processor is assigned the task to calculate the inner sum for a few values of a.
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If we have for example 16 processors, and the prime p is 37, then processors
0 to 11 will calculate the inner sum for 2 values of a and processors 12 to
15 do it for 3 values of a. If the total task cannot be evenly distributed
amongst the processors, then the higher burden is placed on the processors
with higher id, as processor 0 will do all the remaining work alone.

The Bernoulli numbers are precomputed for each processor in the array
bernvec, so that they do not have to be calculated again for a different a. The
calculation of the inner sum is quite straightforward. A sensible optimization
I did was to keep track of the binomial coefficient and multiply it by the
required value for each iteration of the inner sum, instead of just using the
PARI function binomial().

After the processors have finished summing up their part of the series,
they all transfer the results to processor 0, which sums up the final series.
The result is divided by p and s — 1 to give the final form of the L-function.
Then the function do_Hensel () is invoked, which calculates the zero. It does
so by first finding a solution sol mod p? and then using the following recursion

L,(sol;)

solj 1 = sol; —
L, (sol;)

5.3 The PARI Library

As the program uses a lot of mathematical functions which have already
been implemented by other people in highly optimized ways, I thought it
would be best to use one of those libraries. The particular one I used was the
PARI library which is developed at the University of Bordeaux and can be
downloaded freely from ftp://megrez.math.u-bordeaux.fr/pub/pari. It has a
lot of functions for use in Number Theory already built in, which helped me
considerably.

The PARI variables have data type GEN in the C programming language.
A GEN can be either an integer (of any size), a real (not used here), a series or a
p-adic number. Functions are provided for addition, multiplication, division,
logarithms, ... with any type of GEN’s. Moreover there are functions for
calculating a derivative (as used in Hensel’s Lemma) and for substituting a
value for a variable in a series or polynomial.

The only thing that requires a bit of attention when programming in
PARI is memory management. The GEN’s are not regular pointers, but rather
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indices in a huge array which PARI uses to store its variables. When a
calculation is done, the result is stored below all other variables in the array.
The variable AVMA keeps track of where the last variable ends. So if we want
to delete the result from an operation, we store AVMA in a temporary variable
1top before the operation and then after, set AVMA to 1top again. If however,
we would like to keep the result and discard any intermediate results, we have
to use the function gerepile(). This function frees all the space used by
intermediate variables and moves the result (usually the last variable put
into the array) into the space made free. For a more thorough explanation
please refer to the PARI programming tutorial [1].

5.4 The MPI library

As I ran the program on the Fujitsu AP3000 supercomputer, I had to use the
MPI (Message Passing Interface) library to send variables from one processor
to another. Each processor has its own memory and the only way to commu-
nicate between different processes is to send messages. These messages can
be of any length and just need the target processor’s id. The main functions
involved are sendstruc() and recvstruc() which send PARI objects from
one processor to another. Because these structures are stored as a continous
chunk of memory on the PARI stack, transfer is relatively straightforward.

There is one problem though. Inside the structures are pointers to other
parts of the structure. A p-adic number for example has for example a pointer
to three integers, namely the prime, the base integer and the p-adic valuation.
These pointers have to be translated after the structure has been tranferred
from one processor to another, as the exact memory location will certainly
be different on the two processors.

In order to correct these pointers, we have to translate the pointers ac-
cording to the new memory location. This translation is done at the end of
recvstruc (). This took me quite some time to get right, as the PARI library
is generally accessed through high-level mathematical functions and there is
no documentation on the nitty gritty bits of how memory management works
in detail. Essentially, I worked my way through the freely available code of
the PARI library and pieced the address translation together myself.
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5.5 Precision Issues

As with all computations, we have to analyze the precision to which we
get the value of the zero by running the program. In our case it is quite
straightforward. By setting the variable ac, we control the number of terms
in the series expansion of L,(s,x) and the number of terms in the inner
summation. Remember the formula for L, (s, x),

=3t S (o ()

a=1 7=0

The main problem in terms of powers of p in the denominator of a term
is the binomial coefficient. As we showed in the proof of the radius of con-
vergence of the exponential function, we have

n
p—1

where v is the exponent of p in the factorisation of j!. So in term j in
the inner summation, we get to precision j — v with respect to the binomial
term. Now B; has p at most once in its denominator. So the inner sum is
computed to a p-adic precision of ac — ac/(p — 1) — 1. Now F/a, (a) and
X(a) are not divisible by p. We still have the 1/p term on the outside. So in
total, if we do the calculations to accuracy ac, we get a precision of

<

ac—ac/(p—1) —2.

So to calculate the zero for p = 37 to 1000 ”decimal places”, we have to
set ac to 1029. As I did the calculations for the other primes with ac set to
100, T get for p > 100 an accuracy of 100-2=98 digits. If p < 100, we get 97
digits.
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Chapter 6

Appendix

6.1 Appendix A : Program Listing

// Program to calculate the Zero of a p-adic L-function

// It runs on multiprocessor machines (if MULTI is defined)
// and can be compiled to run on single-processor as well.
// It uses the PARI library to do the mathematical

// calculations and the MPI library to handle inter-process
// communication if it’s running on a multi-processor

// machine.

#include <stdio.h>
#include <memory.h>

#define MULTI

#ifdef MULTI
#include "mpi.h"
#endif

#include "pari.h"

#define PUSED (top-avma)/sizeof (long)
#define DEBUG 1

#ifdef MULTI
void sendstruc(GEN x, long ltop, long lbot, int dest) {
/* Need to transmit the following things :
size of data structure
reference pointer to see how pointers have
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}

to be adjusted (1ltop)
pointer to x
data of x

*/
long *siz,*ptrtop,*ptrx,size;

siz=(long *) malloc(sizeof (long));
ptrtop=(long *) malloc(sizeof (long));
ptrx=(long *) malloc(sizeof(long));

size=(1top-lbot)/sizeof (long) ;
*siz=size;

*ptrtop=1ltop;

*ptrx=(long) x;

/* Send the size, the base pointer and the data structure */
MPI_Send(siz,1,MPI_LONG,dest,99,MPI_COMM_WORLD) ;
MPI_Send(ptrtop,1,MPI_LONG,dest,98,MPI_COMM_WORLD) ;
MPI_Send(ptrx,1,MPI_LONG,dest,97,MPI_COMM_WORLD) ;
MPI_Send((long *)1lbot,size,MPI_LONG,dest,96,MPI_COMM_WORLD) ;

free(siz);
free(ptrtop);

GEN recvstruc(int sender) {

long *siz,ltop,lbot,*ptrtop,*ptrx,dec;
MPI_Status status;
GEN x,11,a,b;

/* Recieve x from the other processor */

siz=(long *) malloc(sizeof(long));

ptrtop=(long *) malloc(sizeof(long));

ptrx=(long *) malloc(sizeof(long));
MPI_Recv(siz,1,MPI_LONG,sender,99,MPI_COMM_WORLD,&status) ;
MPI_Recv(ptrtop,1,MPI_LONG,sender,98,MPI_COMM_WORLD,&status) ;
MPI_Recv(ptrx,1,MPI_LONG,sender,97,MPI_COMM_WORLD,&status) ;

ltop=avma;

avma=((long) ltop)-(*siz)*sizeof (long);
1lbot=avma;

dec=ltop—-*ptrtop;

x=(long *) (*ptrx+dec);

MPI_Recv((long *)1lbot,*siz,
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MPI_LONG,sender,96,MPI_COMM_WORLD,&status) ;

/* Now comes the hard bit :
translating the addresses inside x.
This is based on the code of gerepile
from the pari library

*/

11=(long *)1lbot;
while (11 < (GEN)ltop)
{
const long tl=typ(ll);
if (! is_recursive_t(tl)) {
11+=1g(11);
continue;
}
a = 1ll+lontypl[tl];
if (tl==t_POL) {
b=11+1lgef (11); 11+=1g(1ll);
} else {
11+=1g(11); b=11;
}
for (; a<b; a++) {
*a+=dec;
}
}
free(siz);
free(ptrx);
return Xx;

}
#endif
#ifndef MULTI

typedef long MPI_Status;
int MPI_COMM_WORLD=1;

void MPI_Init(void *a,void *b) {
}

void MPI_Finalize(void) {
}

void MPI_Comm_rank(int cw,int *myrank) {
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*myrank=0;

}

void MPI_Comm_size(int cw,int *mysize) {
*mysize=1;

}

void sendstruc(GEN x, long ltop, long lbot, int dest) {
printf ("Shouldn’t happen\n");
}

GEN recvstruc(int sender) {
GEN x;
printf ("Strange\n") ;
x=st0i(0);
return Xx;

#endif

long pcoeff(GEN a,long i) {
GEN c,p;
long ltop,coeff;

c=(long *)al4];

if (i<=valp(a)) return 0;

ltop=avma; i=i-valp(a);

p=(long *) al[2];

while (i>1) {
c=gdivmod(c,p,NULL) ;
i--;

}

coeff=gtolong(gmod(c,p));

avma=ltop;

return coeff;

}

void print_padic(GEN a,long prec) {
long i;

for (i=1;i<prec;i++) {
printf ("%41i",pcoeff(a,i));
}
printf ("\n");
}

63



GEN do_Hensel(GEN Lfunc,long Lvar,long p,long ac) {
/* Lfunc : p-adic L function normalised and truncated

Lvar : the main variable number of Lfunc
P : the prime we work with
ac ! accuracy

*/
GEN dLfunc,sol,acoeff,bcoeff;
long ltop,ltopl,i,aval,bval;

ltop=avma;

/* Calculate the starting value for using Hensel’s Lemma
If the function is
(0+a1*37+a2%3772...)+(b0+b1%37...)*T+(0+...)*T 2+. ..
Then the starting value is
-(a1*37+a2%37°2) /(b0+b1%*37) mod p~3

*/

printf ("%1i\n",pcoeff ((long *)Lfunc[2],2));

acoeff=(long *)Lfunc[2];

bcoeff=(long *)Lfunc[3];

aval=pcoeff (acoeff,2)+pcoeff (acoeff,3)*p;

bval=pcoeff (bcoeff,2);

sol=gcvtop(gneg(gdiv(gmodulss(aval,p*p),

gmodulss (bval,p*p))),stoi(p),ac);
sol=gerepileupto(ltop,sol);

if (DEBUG==1) {
printf ("Starting value : ");
output (sol);

}

/* Set the right precision for the solution p-adic number */
setprecp(sol,ac);

/* dLfunc is the derivative of the polynomial Lfunc
with respect to the variable Lvar */
dLfunc=deriv(Lfunc,Lvar);

/* Now use Hensel’s Lemma to find a solution */
ltopl=avma;
for (i=1;i<13;i++) {
sol=gsub(sol,gdiv(gsubst(Lfunc,Lvar,sol),
gsubst (dLfunc,Lvar,sol)));
sol=gerepileupto(ltopl,sol);
}
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sol=gerepile(1ltop,avma,sol);
return sol;

}

int main(int argc,char **argv)
{

int myrank,mysize,i;

long int_p, //
int_index, //
int_a, //
S, //
ac, //
out_top, //
in_top, //
ltop, //
mylength, //
1lbound, //
ubound, //
global_timer, //
tim; //
GEN p, //
a, //
teich_a, //
pa, //
bvec, //
out_sum, //
out_term, //
in_sum, //
in_term, //
X, //
bin, //
mins, //
bincoeff, //
*gptr[2]; //

//

MPI_Init( &argc, &argv );

The prime in long format
Character index

Counter

variable "s"

Accuracy of calculation

AVMA pointer outside main loop
AVMA pointer outside inner loop
local use of AVMA

number of steps for processor
lower bound for a

upper bound for a

Time since start of program
Local timer

The prime in PARI format
Counter in PARI format
Teichmuller of a

p/a

Array with Bernoulli numbers
The outer sum accumulator

The outer term

The inner sum accumulator
Inner term

The value for which Lp is 0
binomial coefficient

1-s

binomial coefficient

pointer to array of 2 Gens for
memory management

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );
MPI_Comm_size( MPI_COMM_WORLD, &mysize );

/* Initialise the Pari system with 400 MB of Memory */

pari_init(400000000,100000) ;
global_timer=timer();

/* accuracy of the calculation */
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ac=1029;

/* int_p is the prime we work with */

int_p=37;

/* int_index is the index of the cyclotomic character */
int_index=31;

/* Construct the basic PARI variables we’ll need */

s=fetch_user_var("s"); // our variable will be called s
bin=polx[s]; // construct polynomial "s"
p=stoi(int_p); // Set p to the prime
out_sum=stoi(0); // The sum starts at 0

precdl=ac; // set the series precision to ac

/* Calculate all Bernoulli numbers needed
Remark : this is quick (approx. 155 secs) so
it is calculated once for every processor */

bvec=bernvec(ac);

if (DEBUG==1) {
tim=timer (); global_timer+=tim;
if (myrank==0) {
printf("Calculation of Bernoulli numbers took %1i ms\n",
tim);
}
printf ("Memory used now : %1i longs\n",PUSED);
}

/* Separate the task for the different processors
The total sum is from 1 to int_p-1 */

mylength=(int_p-1) /mysize;

lbound=myrank*mylength+1;

if (myrank>=(mysize-((int_p-1)%mysize))) {
mylength++;
1lbound+=(myrank-(mysize-((int_p-1))mysize)));

}

ubound=1bound+mylength;

if (DEBUG==1) {
printf ("Processor %i going from %1li to %li\n",

myrank,lbound,ubound-1);

¥

/* Now for the outside loop where a goes
from lbound to ubound

*/
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out_top=avma;

for (int_a=lbound;int_a<ubound;int_a++) {
mins=gsubsg(1l,bin); // mins is "1-s"
a=stoi(int_a); // PARI version of a
/* Calculate the X(a)<a>"(1-s) term */
ltop=avma;
teich_a=teich(gcvtop(a,p,ac));
out_term=gtrunc(gmul (gpowgs (teich_a,int_index+1),

gpow(gdivsg(int_a,teich_a),mins,ac)));

out_term=gerepileupto(ltop,out_term);

/* prepare the calculation of the inner sum */
pa=gdiv(p,a); // pa is p/a
/* The binomial coefficient starts at 1 */
bincoeff=stoi(1);

/* Calculate the extra Bl term which is missed in the loop
because the loop goes over the even Bernoulli numbers
(as the odd Bi are O except Bl) */

ltop=avma;

in_sum=gmul (gmul (bernfrac(1) ,binome(mins, 1)) ,pa);

in_sum=gerepileupto(ltop,in_sum);

/* Now do the inner sum

We go from O to ac/2 as the odd Bi are 0 */
in_top=avma;
for (i=0;i<=(ac/2);i++) {

/* Inner term is Bj*binomial(1-s,j)*(p/a)”~j with j=2*i
we have to take bvec[i+1] since PARI just stores
the non-zero Bernoulli numbers and we calculated
the Bl term already before the loop */

ltop=avma;

in_term=gmul (gmul ((long *) bvec[i+1],bincoeff),

gpowgs (pa,i*2));
in_term=gerepileupto(ltop,in_term) ;

/* compute new form of binomial coefficient */
ltop=avma;
bincoeff=gmul (gmul (gsubgs(gsubsg(1l,bin) ,i*2),
gsubgs (gsubsg(1,bin) ,i*2+1)),
gdivgs(bincoeff, (i*2+1)*(i*x2+2)));
bincoeff=gerepileupto(ltop,bincoeff);

/* Add the new term to the inner sum */
in_sum=gadd(in_sum,in_term);
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/* And clean up the stack */
gptr[0]=&bincoeff;
gptr[1]=&in_sum;
gerepilemany (in_top,gptr,2);
}
/* Multiply the inner sum with the outer term and
add everything to the outer sum */
out_sum=gadd (gmul (out_term,in_sum) ,out_sum) ;
out_sum=gerepileupto(out_top,out_sum);
if (DEBUG==1) {
tim=timer(); global_timer+=tim;
printf ("%21i %41i:%21i:%21i ",int_a,
tim/60000, (tim/1000)%60,tim%1000) ;
printf (" (Memory used : %1i)\n",PUSED);
}
}
if (DEBUG==1) {
printf ("Finished : total time : %li s ",
global_timer/1000);
printf (" (Memory used : %1i)\n",PUSED);
}

/* Now processor O does the rest of the work alone
So we send the intermediate results to processor 0

*/

if (myrank!=0) {
sendstruc(out_sum,out_top,avma,0) ;
MPI_Finalize();
return 0;

¥

/* So processor 0 is the only one performing
the following code */

/* Now recieve the sums from the other processors */
ltop=avma;
for (i=1;i<mysize;i++) {
in_sum=recvstruc(i);
out_sum=gadd (out_sum,in_sum);
out_sum=gerepileupto(out_top,out_sum) ;

¥

/* Now divide the sum by (s-1) and by p to have
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the final form of Lp(s,X) */
out_sum=gdiv(gdiv(out_sum,p),gsubgs(bin,1));

if (DEBUG==1) {
printf ("Truncating\n") ;
}
out_sum=gtrunc (out_sum) ;
out_sum=gerepileupto(top,out_sum) ;

if (DEBUG==1) {
tim=timer(); global_timer+=tim;
printf("Calculating Zero\n");
}
x=do_Hensel (out_sum,s,int_p,ac);
print_padic(x,ac);

/* Now apply the Wagstaff normalisation by substituting
-log(1+T) /log(1+p+0(p~ac)) for s in -L

*/

printf ("Now Applying normalisation\n");

p=gcvtop(stoi(int_p+1),stoi(int_p),ac);

x=gpow (p,gneg(x) ,ac);

x=gsubgs(x,1);

x=gerepileupto(top,x);

print_padic(x,ac);

printf("\n");

output (x) ;

if (DEBUG==1) {
tim=timer () ; global_timer+=tim;
printf("Calculation of zero time : %41i:%21i:%21i\n",
tim/60000, (tim/1000)%60,tim%1000) ;
printf ("Total time : %41i:%21i:%21i\n",
global_timer/60000,
(global_timer/1000)%60,
global_timer?%1000);
}

MPI_Finalize();

return 0O;
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6.2 Results

So finally, here are the tables of the zeros of L,(s,X), for different values
of p and different characters y. The characters used are the Teichmuller
characters of index 7, such that p divides Bernoulli number B, ;.

The main result of this project, the zero for p = 37 and ¢ = 31 was
computed on the Fujitsu AP3000 Supercomputer at Imperial College London.
The program used 16 processors and it took 1 day, 14 hours and 58 minutes
to complete. The other tables were computed using a Pentium II-300 and
a Cyrix-1334 under Linux. They took between 10 minutes for the smaller
primes and 3 hours for the big ones. This increase in computing time is due
to the fact that we have to compute the inner sum p times. Moreover the
computation of the inner sum takes longer for large primes too. Internally
in PARI, p-adic integers are represented as usual integers, along with some
other information, so if p is large, an integer representing a p-adic number
mod p!% will be large too. So computing sums and multiplications takes
longer than for small primes.

The format of the tables is quite intuitive. The entries are the coefficients
of the power series expansion of the root of L, (s, x). So if we write

o0

_ n

§ = E SnD",
n=0

then the entries are the s,. The column number and row number (printed
in bold above, respectively left of the table) are added together to give the
exponent of p for which the entry is the coefficient of.
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30

20

10

0 5 10 15 20 25 30 35

Figure 6.1: distribution of digits for p=37, i=31
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As figure 6.1 shows the digits for p = 37,7 = 31 are distributed not that
evenly. Notably, there seems to be a lack of the digits 19 and 34. However
these fluctuations can probably be explained by the fact that we only have
1000 data points. In the mean, each digit is represented 27 times and the
variance is nearly 40 (38.77).

There is not much point plotting graphs like this for the other zeros as
well because we clearly do not have enough digits to get a sensible graph.
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6.2.1 Appendix B : Results for p = 37 and ¢ = 31

0o 1 2 3 4 5 6 7 8 9

0| 13 20 30 8 11 12 9 24 18 3
10 29 8 33 14 10 25 1 26 0O 12
200 30 1 2 1 36 0 21 18 16 17
300 32 1 31 9 26 6 31 2 35 6
40 9 26 32 2 12 8 6 33 36 18
50| 27 20 22 25 8 2 27r O 15 17
60| 35 13 0 15 28 15 15 7 7 35
700 35 9 10 11 25 36 28 17 29 32
80| 26 18 1 13 31 17 17 16 27 28
90| 29 10 27 31 23 8 35 34 11 9
100 30 16 5 24 23 33 21 8 15 13
110 36 15 16 34 2 32 26 33 15 36
120 15 11 1 26 9 7 9 1 35 1
130 24 11 8 30 25 8 23 13 8 1
140 16 36 10 26 16 9 4 30 31 32
150 10 14 0 12 10 20 2 12 10 36
160 7 21 7 33 21 13 1 29 36 22
170 0 33 14 26 20 2 20 25 12 14
180 22 31 7 12 33 3 15 32 16 31
190 12 19 18 26 31 32 26 14 30 13
200 24 35 32 27 5 32 7 4 32 30
210 16 20 35 31 19 2 12 4 16 7
220 36 19 35 2 13 18 32 &8 30 30
230 2 26 23 21 5 6 29 11 25 1
240 34 28 1 19 11 22 20 36 5 11
250 24 1 21 7 15 35 36 31 2 33
260 33 25 15 14 23 6 7 12 27 4

270 2 4 25 6 12 9 25 30 6 1
280 10 22 14 14 19 2 5 8 3 30
200 14 30 30 31 6 3 21 4 2 20
300 26 36 31 36 29 1 0 7 20 2
3101 20 2 24 36 27v 6 30 28 20 30
320 4 36 13 25 8 27 10 7 21 20
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0o 1 2 3 4 5 6 7 8 9
330 18 31 23 30 21 35 16 22 36 14
340 0 33 0 35 33 12 30 24 35 19
350 32 34 6 3 31 35 12 5 23 16
360 24 24 26 14 26 4 30 6 14 8
370 29 12 27 26 28 28 29 22 1 3
380 10 2 15 3 0 30 10 14 25 19
390 15 14 21 6 14 23 24 27 16 26
400 4 24 9 14 27 0 11 23 26 23
410 9 25 17 23 10 24 4 35 35 5
420 22 28 2 31 36 31 31 5 29 5
430 17 28 29 11 21 9 27 4 30 19
440 7 26 16 17 15 6 26 10 12 29
450 9 23 1 4 29 21 5 5 25 O
460 3 16 34 5 11 9 21 13 18 28
470 16 36 32 27 1 16 6 11 27 25
480 31 4 35 11 7 32 22 14 16 2
490 4 26 22 1 30 25 28 6 21 2
500 18 33 &8 9 31 34 29 29 13 20
510 4 4 14 17 30 30 27 8 20 8
520 16 9 11 24 6 3 2 16 35 1
530 28 33 36 14 1 14 4 27 18 28
540 24 25 33 7 9 12 30 35 20 36
550 7 11 34 33 33 12 5 32 11 2
560 1 18 26 5 24 25 20 11 16 16
570 30 8 33 10 5 23 32 35 9 20
580| 24 33 25 32 23 16 10 23 9 O
590 26 33 24 29 11 18 0 19 4 2
600 15 26 3 6 27 11 26 18 3 22
610 0 26 2 2 31 29 21 30 33 10
620 9 32 7 10 13 27 29 31 19 32
630 0 17 7 10 5 23 2 20 11 26
640| 28 31 25 31 24 32 13 16 35 25
650 17 3 18 18 12 22 31 30 14 35
660 21 31 10 15 16 31 4 8 23 4
670 1 16 35 28 4 5 17 10 2 30
680 31 12 7 10 14 33 28 35 1 29
690 17 36 26 12 7 0 22 13 25 25
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0o 1 2 3 4 5 6 7 8 9
700 1 6 31 8 2 12 10 0 17 3
710 32 21 12 16 26 32 30 29 35 21
720 29 29 35 36 12 34 31 16 10 27
730 3 30 8 12 29 26 28 30 0 2
740 9 15 1 11 22 29 17 36 31 6
750 3 24 31 33 10 30 29 9 9 6
760 10 34 29 26 16 30 26 21 25 3
770 28 15 20 10 7 6 13 7 8 27
780 1 17 31 30 9 30 29 23 16 21
790 18 6 7 16 19 33 34 12 10 25
800| 22 9 35 5 18 6 12 6 33 18
810| 20 25 35 32 24 2 11 2 35 17
820 22 2v 7 34 11 23 36 20 18 28
830 16 32 1 21 10 21 32 34 16 16
840| 31 29 31 0 12 23 0 36 34 15
850 22 8 15 1 33 9 29 23 22 11
860| 14 36 28 8 13 31 6 0 26 19
870 0 16 4 2 7 29 9 20 11 16
880| 23 30 28 17 8 1 4 17 15 5
890 5 29 17 15 31 18 10 12 2 18
900| 12 27 13 4 7 14 7 20 30 14
910 25 27 13 10 33 10 10 30 15 26
920 11 8 17 32 32 15 29 15 26 6
930 26 15 4 33 5 6 10 0 11 15
940 2 32 33 28 26 23 3 27 6 3
950 7 10 23 32 33 3 35 1 27 29
960 2v 0 3 15 14 7 15 31 22 7
970 29 9 32 6 27 4 3 7 22 28
980 7 1 21 25 29 2 3 36 11 34
990 25 23 25 19 5 2 27 10 29 8
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6.2.2 Appendix C : Results for other primes

Prime 59 and Index 43

0O 1 2 3 4 5 6 7 8 9
0| 31 9 15 55 40 51 5 11 30 10
10| 41 21 11 16 3 32 25 51 44 47
200 10 17 30 2 28 3 2 44 10 18
30 2 22 9 15 55 22 9 29 9 13
40 1 16 58 15 56 54 54 54 13 24
50| 48 14 35 26 58 37 4 18 34 24
60| 37 35 37 16 41 40 32 35 12 30
70| 45 7 56 11 38 7 45 52 16 16
80| 54 45 50 20 1 29 30 7 45 5
90| 16 56 37 25 33 0 15
Prime 67 and Index 57
0O 1 2 3 4 5 6 7 8 9
0| 59 51 7 0 64 30 58 62 28 42
10| 15 25 45 38 4 26 43 29 18 47
20 3 42 55 32 2 28 48 61 22 50
30| 25 15 38 59 2 58 47 51 51 64
40| 63 49 32 56 43 47 21 29 40 49
50| 54 64 52 25 17 57 60 64 64 38
60| 51 15 5 26 12 16 33 49 21 50
70| 23 63 31 34 53 10 55 21 46 41
80| 20 28 14 27 15 42 53 53 30 52
90| 13 52 29 59 47 18 60
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Prime 101 and Index 67

0 1 2 3 4 5 6 7 8 9
0| 91 100 88 14 57 94 36 6 35 21
10| 86 72 63 33 67 65 38 54 96 60
20| 79 3 35 88 60 90 11 23 29 66
30| 75 65 8 7 20 16 8 5 14 28
40| 79 47 50 63 53 99 83 62 37 30
50| 63 44 90 81 35 43 27 95 17 57
60| 75 53 37 1 27 47 2 56 15 39
700 93 61 23 58 8 15 26 16 68 80
80| 46 60 45 82 22 33 3 18 36 80
90| 82 45 47 8 61 81 59 77
Prime 103 and Index 23
0 1 2 3 4 5 6 7 8 9
0| 8 84 71 94 58 68 35 40 7 95
10| 67 10 6 28 56 41 36 0 41 19
200 89 26 95 17 6 66 60 12 73 38
30| 64 27 38 64 4 91 31 24 17 41
40 6 94 29 80 100 91 31 86 41 37
50| 39 1 74 22 61 93 64 27 64 34
60| 39 54 4 31 101 98 37 34 98 66
700 19 22 70 75 55 64 32 66 56 10
80| 8 21 84 76 62 57 36 97 91 43
90| 63 102 31 74 87 38 59 74
Prime 131 and Index 21
0 1 2 3 4 5 6 7 8 9
0 72 64 16 31 35 102 55 49 90 2
10 94 68 39 60 35 80 115 14 24 96
20| 109 70 52 33 64 73 66 97 72 55
30 91 15 81 51 99 38 72 48 98 119
40 59 81 82 100 46 50 29 14 88 9
50 2 b5 111 84 40 100 21 54 51 72
60 87 67 18 59 33 64 8 8 90 14
70 70 42 5 30 14 116 54 84 101 55
80| 100 114 28 127 6 42 52 55 88 113
90 60 73 127 66 19 123 19 18
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Prime 149 and Index 129

0 1 2 3 4 5 6 7 8 9
0 94 142 90 8 71 105 97 39 49 8
10| 144 90 12 77 77 36 81 53 79 116
20 24 8 145 109 11 13 79 95 61 148
30 98 45 61 17 116 130 20 38 10 6
40 57 100 1 99 23 60 148 59 5 40
50| 136 55 49 10 12 42 23 60 103 139
60| 129 145 44 139 135 82 0 102 92 122
70 29 18 14 76 56 118 147 62 3 064
80 98 65 138 91 134 62 108 54 17 40
90 67 75 6 12 78 105 106 2
Prime 157 and Index 109
0 1 2 3 4 5 6 7 8 9
0| 121 8 54 108 104 4 60 136 9 123
10 11 44 18 39 102 142 59 132 79 98
20 23 46 36 121 56 138 13 69 110 64
30 66 125 28 8 103 75 18 120 22 96
40| 134 0 124 & 93 96 131 128 90 82
50| 123 38 10 7 23 72 148 17 149 131
60 69 76 94 2 69 83 128 22 100 141
70| 138 35 H4 34 M4 7 43 24 29 105
80 92 155 132 65 124 10 43 37 94 110
90| 114 47 115 17 132 140 50 34
Prime 157 and Index 61
0 1 2 3 4 5 6 7 8 9
0| 136 104 79 118 39 88 86 2 89 129
10 22 21 9 96 38 7 b5 125 30 108
20| 142 31 27 18 26 48 16 82 0 149
30 62 150 89 38 62 72 78 30 36 148
40 92 77 141 93 19 46 147 80 21 28
50| 116 66 18 59 25 7 87 134 36 92
60| 135 147 47 106 33 1 131 34 89 104
70| 151 74 126 110 22 16 30 142 151 77
80 0 88 72 113 81 10 14 122 17 115
90| 138 36 63 51 11 99 154 22
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Prime 233 and Index 83

0 1 2 3 4 5 6 7 8 9
0 90 224 203 10 214 115 25 72 122 121
10 29 154 22 0 53 207 44 76 214 210
20| 169 33 226 38 42 90 104 193 23 22
30 52 122 210 212 28 192 111 177 219 92
40| 140 99 167 72 76 54 89 99 136 132
50 98 15 153 205 14 3 75 205 164 179
60| 184 78 96 92 2 24 151 12 56 148
70 17 71 221 140 39 28 111 228 211 45
80 9 22 215 19 39 149 179 203 195 135
90 57 105 17 63 60 96 27 136
Prime 257 and Index 163
0 1 2 3 4 5 6 7 8 9
0| 229 38 113 172 215 31 206 182 57 153
10| 168 77 157 75 219 13 239 164 211 49
20 52 216 111 80 77 175 7 229 40 241
30 20 147 186 108 102 142 218 212 187 122
40 95 148 57 124 138 155 149 232 196 65
50 68 36 123 130 232 240 250 131 250 31
60 49 225 199 163 245 123 14 57 253 56
70| 189 175 104 255 91 142 125 256 110 174
80| 115 12 25 67 87 182 125 170 64 205
90| 174 56 22 184 108 19 17 242
Prime 263 and Index 99
0 1 2 3 4 5 6 7 8 9
0 99 204 11 218 95 160 102 49 175 197
10| 135 111 72 113 73 232 242 60 237 67
20| 163 153 10 121 8 220 66 179 145 257
30| 204 169 200 196 196 95 139 261 30 34
40| 145 217 187 34 49 168 236 173 155 72
50 99 219 224 69 244 206 9 250 242 239
60| 114 93 188 151 20 90 253 210 18 257
70 91 177 222 56 130 146 129 34 123 216
80 46 14 107 235 231 101 108 244 134 254
90| 148 112 7 101 220 200 151 228
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Prime 271 and Index 83

0 1 2 3 4 5 6 7 8 9
0| 193 8 225 40 224 81 255 28 113 127
10 7 217 257 20 185 156 134 160 124 252
20| 232 42 125 207 58 83 225 88 215 62
30| 184 232 188 143 45 122 162 242 23 6
40| 140 2 7 130 225 147 224 152 77 24
50| 233 236 148 170 234 246 35 166 238 186
60| 118 206 7 23 189 124 34 135 174 264
70| 222 33 266 0 218 122 31 68 9 169
80 13 217 145 140 253 236 237 25 43 134
90 11 125 58 66 173 201 97 118
Prime 283 and Index 19
0 1 2 3 4 5 6 7 8 9
0| 246 133 55 249 113 150 13 114 19 31
10| 136 204 151 199 121 44 278 235 166 30
20| 196 70 159 241 200 180 170 114 106 23
30 45 156 243 144 42 38 84 215 71 273
40| 241 36 196 133 36 99 52 116 109 23
50| 244 278 142 230 273 226 34 267 163 53
60 99 160 278 21 254 266 206 153 57 248
70 57 258 203 54 141 25 202 220 135 84
80 5 30 235 125 13 274 96 254 210 154
90| 153 168 133 180 279 55 94 259
Prime 293 and Index 155
0 1 2 3 4 5 6 7 8 9
0 75 138 213 51 199 144 1 41 179 236
10| 163 88 195 17 223 69 143 16 148 142
20 8 32 259 148 75 81 254 104 171 204
30 94 103 170 204 142 289 133 25 144 177
40| 114 2 273 137 78 16 27 109 175 95
50 49 174 255 100 218 149 156 236 158 203
60| 277 9 &4 231 216 2 45 57 184 55
70 12 48 266 138 93 188 268 13 254 63
80| 122 234 107 227 57 133 239 291 180 123
90| 166 271 91 241 211 72 96 198
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Prime 307 and Index 87

0 1 2 3 4 5 6 7 8 9
0 290 163 124 121 238 35 0 274 93 128
10| 262 37 74 279 242 249 165 17 117 200
20| 146 36 63 79 231 26 17 131 183 7
30| 201 33 106 146 46 294 196 188 142 257
40 82 267 225 84 301 202 115 241 278 276
50| 170 70 172 12 242 280 29 32 94 224
60| 260 130 223 105 121 7 95 303 104 261
70 74 264 148 226 149 234 95 56 261 19
80 33 14 73 300 26 303 282 112 118 127
90| 235 185 133 133 101 233 77 230
Prime 311 and Index 291
0 1 2 3 4 5 6 7 8 9
0| 224 289 136 250 234 30 40 59 148 95
10| 215 161 169 197 46 221 232 52 56 208
20| 194 243 66 261 207 179 186 28 5 217
30| 294 57 120 255 37 142 112 270 225 31
40 3 79 265 259 158 120 98 64 124 255
50| 149 16 189 262 193 154 59 91 204 209
60| 122 127 250 245 280 94 235 134 35 204
70 90 72 18 260 131 200 95 196 194 253
80 87 215 190 269 232 179 211 163 140 53
90| 108 267 283 65 264 182 299 145
Prime 347 and Index 279
0 1 2 3 4 5 6 7 8 9
0| 181 136 247 156 304 227 31 271 54 76
10 72 197 145 85 316 5 216 282 179 163
20 30 98 168 108 2 181 142 84 316 325
30 24 305 252 134 27 1 26 74 118 95
40| 165 185 202 168 11 306 199 272 232 81
50| 184 2 322 10 154 265 115 269 100 79
60| 209 45 3 299 111 297 157 267 76 106
70| 297 103 337 314 178 64 233 337 45 35
80| 297 289 63 340 335 201 212 139 108 53
90 77 156 175 224 28 210 248 177

81



Prime 353 and Index 185
0 1 2 3 4 5 6 7 8 9

0 5 310 218 20 137 288 197 239 264 210
10| 141 156 44 341 105 214 77 254 111 200
20| 304 344 345 239 26 333 184 25 222 259
30| 219 123 194 73 10 339 78 275 179 106
40| 270 58 79 268 339 75 101 324 41 116
50| 277 158 132 178 131 228 236 231 280 232
60 11 193 58 314 149 196 240 63 139 280
70| 350 121 50 115 193 42 200 134 239 199
80 43 172 234 112 67 160 203 87 279 22
90| 315 120 341 83 243 348 9 85

Prime 353 and Index 299
0 1 2 3 4 5 6 7 8 9

0] 235 118 14 13 93 311 86 258 317 35
10| 104 20 343 242 300 199 167 145 153 291
20 98 67 26 339 29 73 30 123 230 319
30| 141 159 238 258 146 87 280 44 252 234
40| 133 74 331 61 168 98 57 139 319 264
50| 200 292 180 145 331 112 4 70 36 232
60| 344 272 288 111 58 217 71 7 236 114
70 77 122 154 142 248 104 3 332 169 284
80| 205 227 93 47 304 323 123 281 310 244
90| 314 151 0 15 340 164 83 333

Prime 379 and Index 99
0 1 2 3 4 5 6 7 8 9

0| 143 35 190 147 368 175 198 212 350 235
10| 233 60 75 362 221 33 197 176 327 135
20| 216 358 111 53 194 2 226 179 98 51
30| 300 338 8 195 228 268 76 298 203 18
40| 305 351 158 168 259 76 246 196 111 115
50| 146 177 173 127 177 37 323 16 213 174
60| 340 310 261 149 72 68 212 80 6 215
70 43 224 90 235 16 70 175 355 83 290
80| 133 47 301 296 46 57 40 183 294 164
90| 359 24 156 46 296 225 117 270
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Prime 379 and Index 173

0 1 2 3 4 5 6 7 8 9
0| 191 231 182 107 149 236 122 286 245 348
10 89 349 366 27 66 65 99 33 91 360
20| 294 145 374 119 142 351 121 321 2 50
30 15 20 183 87 65 286 5 62 373 39
40| 291 333 286 8 71 290 345 177 122 253
50| 303 168 257 378 209 214 252 143 188 273
60 14 323 114 206 299 295 235 63 356 326
70| 231 230 139 97 58 351 180 18 165 222
80| 198 274 286 337 12 128 235 341 79 325
90| 344 100 78 255 178 225 252 34
Prime 389 and Index 199
0 1 2 3 4 5 6 7 8 9
0| 155 68 337 207 228 189 214 355 307 156
10| 194 207 154 95 140 341 228 256 288 44
20| 106 86 295 192 343 218 26 63 363 321
30| 238 176 348 136 331 37 334 201 39 69
40| 280 281 288 129 210 365 203 254 343 360
50| 310 184 13 143 208 291 78 223 280 254
60| 276 26 18 77 341 130 317 297 270 55
70 53 289 384 12 61 20 269 203 365 298
80| 184 9 241 23 241 288 239 136 80 36
90| 286 99 368 305 320 188 48 52
Prime 401 and Index 381
0 1 2 3 4 5 6 7 8 9
0| 283 263 86 38> 373 149 188 189 34 97
10 43 35 399 385 129 161 271 287 298 388
20| 202 169 12 272 155 336 384 199 331 205
30| 253 309 341 344 181 317 265 356 150 174
40| 378 64 364 46 152 64 195 248 292 4
50| 355 149 131 197 304 268 76 35 391 360
60| 240 354 126 135 98 230 2 120 329 238
70| 390 376 57 205 282 384 15 360 94 113
80| 275 321 215 251 200 388 59 320 296 58
90 3 336 215 375 337 284 141 12

83



Prime 409 and Index 125

0 1 2 3 4 5 6 7 8 9
0| 264 363 312 74 111 162 297 15 88 323
10| 238 226 103 397 391 316 303 377 151 144
20 71 179 77 124 224 88 117 21 97 311
30| 220 66 92 139 360 357 239 320 15 238
40| 203 254 81 60 386 408 122 163 70 14
50 38 37 164 82 217 134 64 168 247 144
60| 280 319 33 80 168 320 26 34 396 118
70| 166 299 273 69 174 9 125 312 78 144
80| 310 146 283 400 252 302 36 392 97 292
90 69 40 99 366 381 129 148 6
Prime 421 and Index 239
0 1 2 3 4 5 6 7 8 9
0o 112 211 315 132 376 39 178 23 212 150
10| 152 208 26 381 291 292 393 41 156 56
20| 379 417 304 3 363 60 181 106 84 304
30| 356 328 370 155 293 207 176 156 45 144
40| 139 264 306 54 400 198 323 206 208 13
50| 302 81 346 105 317 195 60 354 347 332
60| 296 154 133 91 235 78 7 281 388 286
70 19 122 298 80 30 154 293 172 66 286
80| 246 232 284 414 97 91 60 306 173 61
90 65 298 148 54 17 257 95 37
Prime 433 and Index 365
0 1 2 3 4 5 6 7 8 9
0 41 369 29 295 219 306 18 366 308 160
10 92 198 20 17 379 181 327 332 3 21
20| 127 97 238 317 23 216 144 6 418 29
30| 152 60 295 371 63 432 73 279 193 228
40 74 299 426 219 178 166 398 259 159 302
50| 132 11 59 308 126 172 391 155 337 222
60| 411 404 392 216 292 214 318 28 190 263
70 338 73 10 310 45 108 94 166 18 24
80| 306 96 199 189 432 89 222 9 200 114
90| 151 405 202 276 69 1 424 233
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Prime 461 and Index 195
0 1 2 3 4 5 6 7 8 9

0| 228 159 111 289 291 68 454 396 202 354
10| 317 411 408 236 212 175 417 176 451 428
20| 440 399 2 202 45 217 235 273 286 6
30| 375 296 231 358 402 280 158 103 328 336
40| 416 137 434 250 56 445 372 427 172 349
50| 131 74 179 55 129 299 247 46 124 244
60 92 294 339 134 249 174 204 272 202 145
70| 142 113 240 387 304 375 348 329 215 184
80| 209 263 o 174 45 355 155 242 224 181
90| 344 446 324 123 373 286 123 133

Prime 463 and Index 129
0 1 2 3 4 5 6 7 8 9

0] 247 28 183 295 106 374 210 401 356 368
10 0 205 424 8 282 195 39 269 389 60
20| 437 416 9 372 163 189 455 246 412 396
30| 406 21 296 326 208 114 212 220 341 207
40| 116 410 416 296 83 21 195 297 381 71
50 67 120 220 114 444 268 178 407 241 203
60 61 4 428 34 92 321 400 153 5 439
70| 125 352 202 162 211 422 95 270 19 404
80| 305 333 410 119 264 357 389 446 426 54
90 68 211 203 41 371 378 153 444

Prime 467 and Index 193
0 1 2 3 4 5 6 7 8 9

0 90 46 292 264 218 448 392 225 22 228
10| 402 314 350 91 197 113 51 147 318 1
20| 347 452 319 217 100 447 153 377 127 167
30| 434 282 202 183 399 356 394 170 132 249
40| 284 243 172 237 32¢r 8 39 79 19 264
50| 409 394 136 67 110 360 351 87 261 399
60| 173 295 26 388 13 8 63 256 101 116
70| 109 453 209 433 269 55 402 136 346 244
80| 325 434 187 38 257 131 383 172 159 374
90 57 405 193 49 464 327 119 384
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Prime 467 and Index 93

0 1 2 3 4 5 6 7 8 9
0| 126 174 338 272 4 179 107 438 291 394
10| 343 115 165 256 278 185 8 168 40 131
20| 350 306 14 393 207 400 373 161 237 221
30 2 375 206 428 80 284 140 17 298 208
40 74 317 306 99 55 27 284 419 384 249
50| 166 33 454 301 356 53 109 117 237 292
60 7 303 377 448 424 189 131 136 355 400
70 94 182 24 114 61 365 100 54 116 451
80| 324 356 379 80 229 319 314 427 178 302
90| 365 174 396 444 252 78 212 251
Prime 491 and Index 291
0 1 2 3 4 5 6 7 8 9
0| 418 80 417 136 99 67 27 138 25 179
10| 171 73 37 347 346 44 110 160 323 343
20| 400 339 289 19 457 424 150 331 382 344
30| 234 411 153 151 217 72 248 33 138 455
40| 283 2 27 201 46 170 367 88 130 432
50| 186 108 194 411 255 173 412 62 238 162
60| 432 213 194 213 56 484 197 86 183 375
70| 347 487 208 120 131 179 36 455 323 281
80| 360 76 41 32 467 444 360 183 417 472
90| 412 278 317 401 468 199 38 326
Prime 491 and Index 335
0 1 2 3 4 5 6 7 8 9
0| 416 245 25 340 176 309 15 309 95 341
10 69 463 314 335 132 400 202 129 222 282
20| 146 431 123 272 77 310 360 116 208 112
30 83 53 392 370 458 357 185 b1 6 103
40| 104 490 64 173 484 362 455 426 272 417
50 60 137 216 25 363 46 292 458 3 230
60| 345 474 122 383 420 193 201 446 188 9
70| 380 62 484 397 290 10 174 159 278 374
80| 344 54 16 154 246 27 343 421 266 43
90| 223 42 342 459 37 228 362 115
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Prime 491 and Index 337
0 1 2 3 4 5 6 7 8 9

0| 213 100 437 489 418 312 303 155 410 257
10| 363 349 383 320 231 8 164 210 395 405
20 60 280 272 434 5 149 57 0 63 455
30| 319 60 416 244 237 419 158 460 250 158
40| 327 245 313 312 365 459 121 10 384 433
50| 226 435 375 356 7 47 160 99 96 446
60| 449 394 186 484 109 104 41 166 315 35
70| 354 246 389 466 266 166 278 335 58 303
80| 213 146 17 242 361 147 152 107 144 328
90| 150 51 117 437 43 89 211 134
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