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Joint Work...

This talk represents joint work with Jonathan Bober, Alyson Deines,
Joanna Gaski, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew
Ohana, Ashwath Rabindranath, and Paul Sharaba.

Acknowledgement: John Cremona, Lassina Dembele, Noam Elkies,
Tom Fisher, Richard Taylor, and John Voight for helpful conversations
and data. | used Sage (http://www.sagemath.org) extensively.
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http://www.sagemath.org

Motivation

“The object of numerical computation is
theoretical advance.”

- Oliver Atkin
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My Two Talks

HERE
Now

o Talk 1: (Fri at 3pm) Survey talk about
elliptic curves over F.

o Talk 2: (Sun at 8:30am) Tables of elliptic
curves over F.
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Background: Elliptic Curves

sage: E = EllipticCurve([1l,-1,0,-79,289]); E
Elliptic Curve defined by
y'2 + xxy = x"3 - x72 - 79xx + 289
over Rational Field
sage: v = E.gens(); Vv
[(-9:19:1), (-8:23:1), (=7:25:1), (4:-7:1)]
sage: v[0] + 2xv[1l]
(-467/529:235410/12167:1)
sage: E.plot ()
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Background: The Million Dollar Question — BSD
Analogue of Riemann Zeta function for E is the L-function:

o0

nS’
n=1

where, e.g., a, = p+ 1 — #E(GF(p)) for primes p.
Birch and Swinnerton-Dyer Rank Conjecture:

ords—1 L(E, s) = rank(E(Q))
Here E(Q) ~ Z(E©@) x E(Q)or.

Birch and Swinnerton-Dyer Formula: r = rank(E(Q)).

N(E/Q,1)  Qe-I,cep- Rege -#I(E)

r! - #E(Q)f
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Elliptic Curves over Q (in one very dense slide!)

@ Computation:
@ Cremona: data about all curves with conductor < 234446+.
@ Firstof ranks 0,1,2,3,4 have Ng = 11, 37, 389, 5077, 234446.
© Stein-Watkins: table of data about 136,832,795 curves with
conductor N < 108, and 11,378,911 with prime conductor N < 10'°.
© (Stein, Miller, et al.) Full BSD for conductor < 5000 and rank < 1
(for all but 11 curves with reducible mod 5, 7).
@ (Stein, Wuthrich) For a rank 2 curve: BSD “at p” for all but 19
primes p < 48, 859.
@ Theory:
@ Theorem (Wiles et al.) All elliptic curves over Q are modular.
@ Theorem (Gross-Zagier, Kolyvagin, et al.) Heegner Points, Euler
System — the Birch and Swinnerton-Dyer rank conjecture is true
for curves with ords—1 L(E/Q, s) < 1.
© Iwasawa Theory (Kato, Mazur, Skinner, et al.): p-adic L-functions;
much known toward analogues of BSD.

@ Theorem (Mazur) Classification of isogenies and torsion.
@ Theorem (Gauss, Heegner et al.): Classification of CM curves.
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The Golden Ratio (obligatory colloquium slide)

a+tb _a_
a b 7

a b

M’Y_‘J

atb

Thus 1+ ¢ ' =, 80 02 —p—1=0, hence ¢ = (1+/5)/2.

‘l...] the Golden Ratio has inspired thinkers of all disciplines
like no other number in the history of mathematics.”

— Mario Livio (wrote a prize-winning popular book on ¢)
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The Field F

Q@ F=QW5)={a+by:abcQ}

@ F is the next totally real field after Q (order by |D)).
© Class number 1, so R = Z[] is a PID.

© Unit group: {+1} x (), where ¢ = %

© Totally real fields are hospitable for elliptic curves:

@ Hilbert modular forms and the Modularity Conjecture (major area
of research since Taylor and Wiles 1990s breakthroughs!):

conj &

{L(E,s): E/F} {L(f, s) : f certain Hilbert modular forms }

@ Shimura curves, Heegner points, Euler systems

=
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Elliptic Curves over F

@ Computation:

@ (Pinch) See his talk tomorrow — bounded reduction tables.

@ (Donnely-Voight) Tables of Hilbert modular newforms up to around
norm conductor 7500 (and equations for many curves).

© (Stein et al.) Complete (assuming modularity) table of elliptic
curves of norm conductor up to 1831 (first rank 2).

© Code using Sage to (often) compute BSD invariants.

© Classification of CM curves: those with Aut(E/C) # {+1}.

@ Theory:

@ (Zhang) Gross-Zagier theorem for modular abelian varieties over
totally real fields and an Euler system. Consequence: mild (but
essential) hypothesis = the Birch and Swinnerton-Dyer rank
conjecture is true for many curves with ords—1 L(E/F,s) < 1.

@ (Taylor, Gee, Kisin et al.) Modularity theorems

© Iwasawa theory, p-adic L-functions: no cusps, so no
obvious-to-me construction; but Coates et al. makes me wonder...
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Classification of CM Elliptic Curves over F
Proposition

There are 31 distinct Q-isomorphism classes of CM elliptic curves
defined over F, more than for any other quadratic field.

Let Hp(X) = minimal polynomial of the j-invariant of any elliptic curve
with CM by the order Op. Excluding Hp of degree 1, we find':

Field D so Hp has roots in field Field D so Hp has roots in field
Q(vV2)  —24,-32,—64,-88 Q(v21) —147
Q(v3)  —36,-48 Q(V29) -232
—15,-20, —35, —40, —60, Q(v33) —99
UVE) 75" 100, 115, 235 Q(V37) —148
Qe 72 Q(v41) —123
QW7) 112 Q(vel)  —427
Q(vV13) —52,-91,-403 Q(v89) —267

Q(v17) —51,-187

#{ CM j-invariantsin F } =2 x 9+ 13 = 31

with help from Cremona and Watkins

William Stein (University of Washington) Elliptic Curves Over F = Q(+/5) April 27-29, 2012 11/23



CM j-invariants over F: here they are

sage: cm_Jj_invariants (QuadraticField(5))

[-12288000, 54000, 0, 287496, 1728, 16581375, -3375,
8000, —-32768, -884736, -884736000, -147197952000,
-262537412640768000, 146329141248%a — 327201914880,
-146329141248xa - 327201914880, 9845745509376*a +
22015749613248, -9845745509376+a + 22015749613248,
16554983445/2+a + 37018076625/2, -16554983445/2*a +

282880xa + 632000, -282880xa + 632000,

26378240xa — 58982400, -26378240xa - 58982400,
95178240%a + 212846400, —-95178240xa + 212846400,
95673435586560%a - 213932305612800, -95673435586560%a
- 213932305612800, 184068066743177379840%a -
411588709724712960000, -184068066743177379840x%a

- 411588709724712960000]

sage: len(_)

31

37018076625/2, 85995/2%a - 191025/2, -85995/2%xa-191025/2,
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Image of Galois
The next few slides may be connected to what Elkies’ will talk about
this weekend (Remarks on Isogenies over F...)
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Torsion Subgroups of Elliptic Curves over F

Theorem (Kamienny-Najman)

The following is a complete list of torsion structures for elliptic curves
over F:

7/ mZ, 1<m<10, m=12,
7/27 & 7./2mZ, 1< m<4,
Z./15Z.

Moreover, there is a unique curve with 15-torsion.

This is exactly the same as the list over Q, except for the Z/15Z curve.
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Torsion Subgroups of Elliptic Curves over F

This exotic 15-torsion example is a curve of conductor n = (10); over

Q it has conductor 50:

sage: F.<phi> = NumberField(x"2 - x - 1)
sage: E = EllipticCurve(F, [1,1,1,-3,11); E
v'2 + xxy +y = x"3 + x"72 + -3xx + 1

sage: E.torsion_subgroup ()

Torsion Subgroup isomorphic to Z/15

sage: P = E.torsion_subgroup () .gens () [0]
sage: P

(=2%phi + 1 : 2xphi - 4 : 1)

sage: E.conductor ()

Fractional ideal (10)

sage: E = EllipticCurve([1,1,1,-3,1]); E.conductor /()
sage: E.torsion_order ()

5

sage: E.quadratic_twist (5) .torsion_order ()
3
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Torsion Subgroups of Elliptic Curves over F

Table: Distribution of torsion subgroups up to norm conductor 1831

structure #isom example curve Norm(n)
1 296 [0,-1,1,-8,-7] 225
7./27, 1453 [p,—1,0,—p — 1,0 — 3] 164
7./3Z 202 [1,0,1,—-1,-2] 100
7./AZ 243 [e+1,0—1,0,0,0] 79
7/27 ® 7./27 312 [0,0+1,0,4,0] 256
7./57 56 [1,1,1,22,-9] 100
Z/6Z 183 [1,¢,1,0—1,0] 55
Z)77 13 [0,0—1,0+1,0,—¢] 41
Z/8L 21 [1,o+1,0,9,0] 31
7.]27. ® 7./4Z 51 [¢+1,0,0,—4,-3p — 2] 99
7./97 6 [o,—p+1,1,-1,0] 76
Z/10Z 12 [p+1,0,¢,0,0] 36
7./127, 6 [p,0+1,0,20 — 3, —p + 2] 220
7/27 & 7./6Z 11 [0,1,0,—1,0] 80
Z/15Z 1 [1,1,1,-3,1] 100
7/27 & 7/8Z 2 [1,1,1,-5,2] 45
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Isogenies of Elliptic Curves over Q
isogeny = nonzero homomorphism

Theorem (Mazur) J

If1): E/Q — E’/Q is of prime degree, then deg(v¢)) < 163.
Rational Isogenies of Prime Degree

B. Mazur
(with an appendix by D. Goldfeld)

Department of Mathematics, Harvard University, One Oxford Street,
Cambridge, MA 02138, USA

Let N be a positive integer. Examples of elliptic curves over Q possessing
rational cyclic N-isogenies are known for the following values of N:

N 4 v N g v N g v

<10 0 w© 11 1 3 27 1 1
12 0 ] 14 1 2 37 2 2
13 0 w0 15 1 4 43 3 1
16 0 ) 17 1 2 67 5 1
i8 0 0 19 1 1 163 13 1
25 0 o0 21 1 4
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Isogenies of Elliptic Curves over F

Open Problem: Fill in the blank. If ) : E/F — E’/F is of prime
degree, then deg(y) < .

Theorem (Larson-Vaintrob)

Assume GRH. There is an effectively computable constant? C such
that any prime degree isogeny over F has degree at most C.

2Which nobody knows yet.

For making tables?:

Theorem (Billerey, 2011)

If E is a specific elliptic curve over F, then there is an algorithm to
compute the degrees of all rational isogenies i) : E — E’.

2These two theorems are much more general.
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Rational 17-Isogenies over F

The elliptic curve Xp(17), which parametrizes 17-isogenies, has rank 0

over Q, but rank 1 over F.

sage: CuspForms (GammaO (17), 2).dimension ()
1

sage: E = EllipticCurve(’'17a’); E

y'2 + xxy + y =x"3 - x"2 - x - 14

sage: E.rank ()

0

sage: E.quadratic_twist (5).rank ()

1

= There are infinitely many isogenies of degree 17 over F.
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Isogeny Class Size

Theorem (Has anybody actually proved this?)
The largest isogeny class of elliptic curves over Q is 8. }

Open Problem: Fill in the blank. The largest isogeny class of elliptic
curves over F is

There is an isogeny class of cardinality 10 over F (here a = ¢):

45a 1 [1,1,1,-80,242]

45a 2 [1,1,1,-5,2]

45a 3 [1,1,1,0,0]

45a 4 [1,1,1,-10,-10]

45a 5 [1,1,1,-135,-660]

45a 6 [1,1,1,35,-28]

45a 7 [1,1,1,-2160,-39540]

45a 8 [1,1,1,-110,-880]

45a 9 [1,-a+1,a,4976732%a-8052529,6393196917+a-10344409915]
45a 10 [1,a,a+1,-4976733%a-3075797,-6393196918%a-3951212998]
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Modularity of Elliptic Curves over F
Hilbert modular forms = certain holomorphic functionson ) x h
Conjecture (Modularity)

Bijection between L-functions of rational Hilbert modular newforms of
weight (2,2) over F and L-functions of elliptic curves over F.

Taylor: If E[3]|Gal(@/F(<3)) is absolutely irreducible, then the conjecture
follows from work of Gee and Kisin.

|

General case hard, mainly because v/5 € F.
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Applications of Modularity

Assume: Some prime p exactly divides the conductor n of E. Then:
Shimura curve parameterization ¢ : X — E.

Here X = G\h, where G C SLy(R), is a discrete subgroup
constructed using the quaternion algebra over F ramified at p - cc.

@ Heegner points: (Zhang) heights of image in E of the analogue
of Heegner points on X. Theorem: ifords_1 L(E,s) < 1, then
ords—1 L(E, s) = rank(E(F)).

© Tables: Modularity makes it possible to enumerate all curves over
F of given conductor. (my next talk)

© Modular degree: p-modular degree of E is deg(«). (Deines is
studying this for her Ph.D. thesis.)

© Visibility of I11: Mazur’s idea relating 111 and Mordell-Weil.
© Chow-Heegner points: New creative ways to construct points...
Q ETC!
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Table of Curves over F with Norm Conductor < 1831

Bober, Deines, Gaski, Klages-Mundt, LeVeque, Ohana, Rabindranath,
Sharaba, and | made tables about all® elliptic curves E over F with

Norm(ng) < 1831.

Preview of my second talk:
@ Find a list of all rational Hilbert modular newforms f in S2)(ne)-
(Uses: Quaternion algebras and linear algebra)

@ Find Weierstrass equations for all corresponding elliptic curves.
(Uses: Many search techniques and computing isogenies)

© Compute invariants of each curve (Uses: descent, Tate’s
algorithm, L-series, etc.)

3assuming the modularity conjecture
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