
Curves Over
Q(

√
5)

Stein Elliptic Curves over Q(
√

5)

William Stein, University of Washington

This is part of the NSF-funded AIM FRG project on Databases of L-functions.

This talk had much valuable input from Noam Elkies, John Voight, John Cremona, and others.

February 25, 2011 at Stanford University



Curves Over
Q(

√
5)

Stein

1. Finding Curves



Curves Over
Q(

√
5)

Stein

Finding Elliptic Curves over Q

Tables of Elliptic Curves over Q

1 Table(s) 0: Published books. Antwerp IV and Cremona’s
book – curves of conductor up to 1,000.
http://wstein.org/tables/antwerp/

2 Table 1: All (modular) elliptic curves over Q with
conductor up to 130,000. Cremona’s
http://www.warwick.ac.uk/~masgaj/ftp/data/.

3 Table 2: Over a hundred million elliptic curves over Q with
conductor ≤ 108. Stein-Watkins. http://db.modform.org

4 Table 3: Rank records.
http://web.math.hr/~duje/tors/rankhist.html

http://wstein.org/tables/antwerp/
http://www.warwick.ac.uk/~masgaj/ftp/data/
http://db.modform.org
http://web.math.hr/~duje/tors/rankhist.html
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Tables of Elliptic Curves over Q

Example Application of Tables of Elliptic Curves over Q

Having tables lets you do things like ask: “Give me
smallest (known!) conductor example of an elliptic curve
over Q with rank 2 and nontrivial X(E/Q)[3].”
Answer (Watkins): y2 + xy = x3 − x2 + 94x + 9, which
has (prime) conductor 53,295,337.

Or ‘Give the simplest (known) example of an elliptic curve
of rank 4.‘”
Answer: y2 + xy = x3 − x2 − 79x + 289 of conductor
234,446. (Who cares? Open problem, show that the
analytic rank of this curve is 4.)
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Problem 1: Finding Elliptic Curves over Q(
√

5)

Tables of Elliptic Curves over Q(
√

5)

Our ultimate goal is to create the following tables (not done
yet!), along with BSD invariants, etc.

1 Table 1: All (modular) elliptic curves over Q(
√

5) with
norm conductor up to 106.

2 Table 2: Around one hundred million elliptic curves over
Q(
√

5) with norm conductor ≤ 108 (say).

3 Table 3: Rank records.

Any table starts with the smallest conductor curve over Q(
√

5):

y2 + xy + ay = x3 + (a + 1) x2 + ax

of conductor having norm 31, where a = (1 +
√

5)/2.
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My Motivation for Making Tables over Q(
√

5)

1 Q(
√

5) is the simplest totally real field besides Q; extra structure
coming from Shimura curves and Hilbert modular forms

2 Shou-Wu Zhang’s “program”: Heegner points, Gross-Zagier,
Kolyvagin, etc., over totally real fields. Make this more explicit
and refine his theoretical results. Provide examples.

3 Deep understanding over one number field besides Q suggests
what is feasible, setting the bar higher over other fields.

4 Some phenomenon over Q becomes simpler or different over
number fields: rank 2 curves of conductor 1?

5 Numerical tests of published formulas... sometimes (usually?)
shows they are slightly wrong, or at least forces us to find much
more explicit statements of them. See, e.g.,
http://wstein.org/papers/bs-heegner/; at least three published
generalizations of the Gross-Zagier formula are wrong.

6 New challenges, e.g., prove that the full BSD formula holds for
specific elliptic curves over Q(

√
5).

http://wstein.org/papers/bs-heegner/
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Finding Curves via Modular Forms

1 Standard Conjecture: Rational Hilbert modular newforms over
Q(
√

5) correspond to isogeny classes of elliptic curves over
Q(
√

5). So we enumerate newforms over Q(
√

5).

2 There is an approach of Dembele to compute (very sparse!)
Hecke operators on modular forms over Q(

√
5). (I designed and

implemented the fastest code to do this.) Table got by
computing space:
http://wstein.org/Tables/hmf/sqrt5/dimensions.txt

3 Linear algebra and the Hasse bound to get rational eigenvectors.

4 http://wstein.org/Tables/hmf/sqrt5/ellcurve_aplists.txt

http://wstein.org/Tables/hmf/sqrt5/dimensions.txt
http://wstein.org/Tables/hmf/sqrt5/ellcurve_aplists.txt
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Computing Modular Forms over Q(
√

5)

Overview of Dembele’s Algorithm to Compute Forms of level n

1 Let R = maximal order in Hamilton quaternion algebra B
over F = Q(

√
5).

2 Let S = R×\P1(OF/n), and X =
⊕

s∈S Z[s].

3 To compute the Hecke operator Tp on X , compute (and
store) certain R×-representative elements αp,i ∈ B with
norm p, then compute Tp(x) =

∑
αp,i (x).

That’s it! Making this really fast took thousands of lines of
tightly written Cython code, treatment of special cases, etc.

http://code.google.com/p/purplesage/source/browse/psage/modform/

hilbert/sqrt5/sqrt5_fast.pyx

http://code.google.com/p/purplesage/source/browse/psage/modform/hilbert/sqrt5/sqrt5_fast.pyx
http://code.google.com/p/purplesage/source/browse/psage/modform/hilbert/sqrt5/sqrt5_fast.pyx
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Rational Newforms over Q(
√

5)

Norm Cond Number a2 a3 a5 a7 a11a a11b ... (hecke eigenvalues) ...

31 5*a-2 0 -3 2 -2 2 4 -4 4 -4 -2 -2 ? ? -6 -6 12 -4 6 -2 -8 0 0 16 10 -6

31 5*a-3 0 -3 2 -2 2 -4 4 -4 4 -2 -2 ? ? -6 -6 -4 12 -2 6 0 -8 16 0 -6 10

36 6 0 ? ? -4 10 2 2 0 0 0 0 -8 -8 2 2 -10 -10 2 2 12 12 0 0 10 10

41 a+6 0 -2 -4 -1 -6 -2 5 6 -1 2 9 -10 4 ? ? -3 4 6 -8 -12 9 -11 -4 -1 -8

41 a-7 0 -2 -4 -1 -6 5 -2 -1 6 9 2 4 -10 ? ? 4 -3 -8 6 9 -12 -4 -11 -8 -1

45 6*a-3 0 -3 ? ? -14 -4 -4 4 4 -2 -2 0 0 10 10 -4 -4 -2 -2 -8 -8 0 0 -6 -6

49 7 0 0 5 -4 ? -3 -3 0 0 5 5 2 2 2 2 -10 -10 -8 -8 -8 -8 5 5 0 0

55 a+7 0 -1 -2 ? 14 ? ? 8 -4 -6 6 8 -4 -6 6 -12 0 -10 2 0 0 -4 8 -18 6

55 -a+8 0 -1 -2 ? 14 ? ? -4 8 6 -6 -4 8 6 -6 0 -12 2 -10 0 0 8 -4 6 -18

64 8 0 ? 2 -2 10 -4 -4 4 4 -2 -2 0 0 2 2 12 12 -10 -10 8 8 -16 -16 -6 -6

71 a+8 0 -1 -2 0 -4 0 0 2 -4 6 -6 2 8 6 12 -12 6 -4 -10 ? ? 14 -4 6 18

71 a-9 0 -1 -2 0 -4 0 0 -4 2 -6 6 8 2 12 6 6 -12 -10 -4 ? ? -4 14 18 6

76 -8*a+2 0 ? 1 -3 -4 -6 3 ? ? -6 3 5 5 6 6 6 -12 8 8 -9 0 -1 -1 9 0

76 -8*a+2 1 ? -5 1 0 2 -3 ? ? -10 5 -3 7 2 2 10 0 12 -8 7 -8 15 5 -15 0

76 -8*a+6 0 ? 1 -3 -4 3 -6 ? ? 3 -6 5 5 6 6 -12 6 8 8 0 -9 -1 -1 0 9

76 -8*a+6 1 ? -5 1 0 -3 2 ? ? 5 -10 7 -3 2 2 0 10 -8 12 -8 7 5 15 0 -15

79 -8*a+3 0 1 -2 -2 -2 -4 0 8 4 -2 6 0 -8 -2 2 4 -4 10 14 12 -16 ? ? 18 -14

79 -8*a+5 0 1 -2 -2 -2 0 -4 4 8 6 -2 -8 0 2 -2 -4 4 14 10 -16 12 ? ? -14 18

80 8*a-4 0 ? -2 ? -10 0 0 -4 -4 6 6 -4 -4 6 6 12 12 2 2 -12 -12 8 8 -6 -6

81 9 0 -1 ? 0 14 0 0 -4 -4 0 0 8 8 0 0 0 0 2 2 0 0 -16 -16 0 0

89 a-10 0 -1 4 0 -4 -6 0 -4 2 6 6 -4 -4 0 6 12 0 14 -4 0 12 -16 2 ? ?

89 a+9 0 -1 4 0 -4 0 -6 2 -4 6 6 -4 -4 6 0 0 12 -4 14 12 0 2 -16 ? ?

95 2*a-11 0 -1 -2 ? 2 0 0 ? ? -6 6 -4 8 -6 -6 12 12 -10 14 12 0 -16 8 6 -6

95 -2*a-9 0 -1 -2 ? 2 0 0 ? ? 6 -6 8 -4 -6 -6 12 12 14 -10 0 12 8 -16 -6 6

99 9*a-3 0 1 ? -2 2 ? ? 4 -4 6 -2 -8 8 -6 2 12 12 -2 -2 8 -8 16 8 2 -14

99 9*a-6 0 1 ? -2 2 ? ? -4 4 -2 6 8 -8 2 -6 12 12 -2 -2 -8 8 8 16 -14 2

100 10 0 ? -5 ? -10 -3 -3 5 5 0 0 2 2 -3 -3 0 0 2 2 12 12 -10 -10 15 15

100 10 1 ? 5 ? 10 -3 -3 -5 -5 0 0 2 2 -3 -3 0 0 2 2 12 12 10 10 -15 -15
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Implementation in Sage: Uses Cython=C+Python

Install PSAGE: http://code.google.com/p/purplesage/.

Hecke Operators over Q(
√

5) in Sage

sage: import psage.modform.hilbert.sqrt5 as H

sage: N = H.tables.F.factor (100019)[0][0]; N

Fractional ideal (65*a + 292)

sage: time S = H.HilbertModularForms(N); S

Time: CPU 0.31 s, Wall: 0.34 s

Hilbert modular forms of dimension 1667, level 65*a+292

(of norm 100019=100019) over QQ(sqrt (5))

sage: time T5=S.hecke_matrix(H.tables.F.factor (5)[0][0])

Time: CPU 0.05 s, Wall: 0.05 s

sage: time T19=S.hecke_matrix(H.tables.F.factor (19)[0][0])

Time: CPU 0.25 s, Wall: 0.25 s

(Yes, that just took much less than a second.)

http://code.google.com/p/purplesage/


Curves Over
Q(

√
5)

Stein

Why Not Use Only Magma?

Why not just use Magma, which already has modular forms over

totally real fields in it (Voight, Dembele, and Donnelly)?
[wstein ]$ magma

Magma V2.17-4 Thu Feb 24 2011 14:43:58 on deep

> F<w> := QuadraticField (5);

> M := HilbertCuspForms(F,

Factorization(Integers(F)*100019)[1][1]);

> time T5 := HeckeOperator(M,

Factorization(Integers(F)*5)[1][1]);

Time: 81.770

> time T19 := HeckeOperator(M,

Factorization(Integers(F)*19)[1][1]);

Time: 6.600

My code took less than 0.05s for T5 and 0.25s for T19.
In fairness, Magma’s implementation is very general, whereas Sage’s

is specific to Q(
√

5), and Magma is doing slightly different

calculations.
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Use Sage (not just Magma)

1 Many of these computations are very intricate and have
never been done before, hence having two (mostly)
independent implementations raises my confidence.

2 I want to run some of the computations on a
supercomputer, and Magma is expensive.

3 Visualization – of resulting data

4 Cython – write Sage code that is as fast as anything you
can write in C.

5 Lcalc – zeros of L-functions

6 I think I can implement code to compute L(E , s) for E
over Q(

√
5) about 20 times faster than Magma (2.17).

This speedup is crucial for large scale tables:
1 month versus 20 months.
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How Many Isogeny Classes of Curves?

Rational Newforms over Q(
√

5) of (norm) level up to X
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How Many Isogeny Classes of Curves?

Rational Newforms over Q(
√

5) of level ≤ X (Least Squares)

#{newforms with norm level up to X} ∼ 0.082 · X 1.344

0 5000 10000 15000 20000
0

10000

20000

30000

40000

50000
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For comparison, Cremona’s tables up to 20,000

Cremona’s tables

#{newforms with norm level up to X} ∼ 0.55 · X 1.21

0 5000 10000 15000 20000
0

20000

40000

60000

80000

Conjecture (Watkins): Number of elliptic curves over Q with
level up to X is ∼ cX 5/6.



Curves Over
Q(

√
5)

Stein

Rational Newforms 7→ Curves over Q(
√

5)

1 Big search through equations, compute corresponding
modular forms by a point count, and look up in table.
(Joanna Gaski and Alyson Deines doing this now: http:

//wstein.org/Tables/hmf/sqrt5/finding_weierstrass_equations/)

2 Or, apply Dembele’s paper An Algorithm For Modular
Elliptic Curves Over Real Quadratic Fields (I haven’t
implemented this yet; how good in practice?)

3 Or, apply the method of Cremona-Lingham to find the
curves by finding S-integral points on other curves over
Q(
√

5). (Not implemented in Sage yet; only in Magma.)
Example: Cremona’s program found the curve

y2 + xy + ay = x3 + (−a+ 1) x2 + (416a− 674) x + (5120a− 8285)

with conductor norm 124 = 4 · 31; the first unknown curve.

4 Or, Elkies’ new method...

http://wstein.org/Tables/hmf/sqrt5/finding_weierstrass_equations/
http://wstein.org/Tables/hmf/sqrt5/finding_weierstrass_equations/
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Elkies λ method...

Elkies Method for Finding Weierstrass Equations

Noam Elkies: “Apropos Cremona-Lingham: remember that at
Sage Days 22 I suggested a way to reduce this to solving S-unit
equations (via the λ-invariant), which is effective, unlike finding
S-integral points on y2 = x3 + k.”
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Isogeny Class

Enumerate the curves in an isogeny class.

1 For a specific curve, bound the degrees of isogenies using
the Galois representation. (Don’t know how to do this yet.)

2 Explicitly compute all possible isogenies, e.g., using
Cremona’s student Kimi Tsukazaki’s Ph.D. thesis full of
isogeny formulas, and work of Elkies. (I’m not sure how to
do this.)

3 Open problem: give an explicit analogue of Mazur’s
theorem but over Q(

√
5). What are the degrees of rational

isogenies of prime degree of elliptic curves over Q(
√

5)?
(At least finiteness is now known, due to a recent result of
two Harvard undergraduates.)
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Elliptic Curves over Q(
√

5)
Joanna Gaski and Alyson Deines make tables like this (a = (1 +

√
5)/2)

31 5*a-2 0 -3 2 -2 2 ... [1,a+1,a,a,0]

31 5*a-3 0 -3 2 -2 2 ... [1,-a-1,a,0,0]

36 6 0 ? ? -4 10 ... [a,a-1,a,-1,-a+1]

41 a+6 0 -2 -4 -1 -... [0,-a,a,0,0]

41 a-7 0 -2 -4 -1 -... [0,a-1,a+1,0,-a]

45 6*a-3 0 -3 ? ? -14... [1,1,1,0,0]

49 7 0 0 5 -4 ? -... [0,a,1,1,0]

55 a+7 0 -1 -2 ? 14... [1,-a+1,1,-a,0]

55 -a+8 0 -1 -2 ? 14... [1,a,1,a-1,0]

64 8 0 ? 2 -2 10 ... [0,a-1,0,-a,0]

71 a+8 0 -1 -2 0 -4... [a,a+1,a,a,0]

71 a-9 0 -1 -2 0 -4... [a+1,a-1,1,0,0]

76 -8*a+2 0 ? 1 -3 -4 ... [a,-a+1,1,-1,0]

76 -8*a+2 1 ? -5 1 0 2... [1,0,a+1,-2*a-1,0]

76 -8*a+6 0 ? 1 -3 -4 ... [a+1,0,1,-a-1,0]

76 -8*a+6 1 ? -5 1 0 -... [1,0,a,a-2,-a+1]

79 -8*a+3 0 1 -2 -2 -2... [a,a+1,0,a+1,0]

79 -8*a+5 0 1 -2 -2 -2... [a+1,a-1,a,0,0]

80 8*a-4 0 ? -2 ? -10... [0,1,0,-1,0]

81 9 0 -1 ? 0 14 ... [1,-1,a,-2*a,a]

89 a-10 0 -1 4 0 -4 ... [a+1,-1,1,-a-1,0]

89 a+9 0 -1 4 0 -4 ... [a,-a,1,-1,0]

95 2*a-11 0 -1 -2 ? 2 ... [a,a+1,a,2*a,a]

95 -2*a-9 0 -1 -2 ? 2 ... [a+1,a-1,1,-a+1,-1]

99 9*a-3 0 1 ? -2 2 ?... [a+1,0,0,1,0]

99 9*a-6 0 1 ? -2 2 ?... [a,-a+1,0,1,0]

100 10 0 ? -5 ? -10... [1,0,1,-1,-2]

100 10 1 ? 5 ? 10 -... [a,a-1,a+1,-a,-a]
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Database

A MongoDB Database

Text files (http://wstein.org/Tables/hmf/sqrt5) and an indexed
queryable MongoDB database:

http://db.modform.org

http://wstein.org/Tables/hmf/sqrt5
http://db.modform.org
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Canonical Minimal Weierstrass Model

Canonical Minimal Weierstrass Models over Q

Fact: Every elliptic curve over Q has a unique minimal
Weierstrass equation [a1, a2, a3, a4, a6] with a1, a3 ∈ {0, 1} and
a2 ∈ {0,−1, 1}?

What about Q(
√

5)?

Something similar is true for Q(
√

5).

Idea: Make a canonical choice of ∆, then transform so
that a1, a3 are unique mod 2OF and a2 is unique mod
3OF . (Easy: this nails down the equation.)

Aly Deines and Andrew Ohana — writing up and coding it.

Annoying unresolved problem: agree on a “canonical”
choice of “nice” generator for each ideal in OF !
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Huge Table: Like Stein-Watkins over Q(
√

5)

1 As in [Stein-Watkins], use Kraus’s Quelques remarques à
propos des invariants c4, c6 et ∆ d’une courbe elliptique
so we only enumerate over pairs (c4, c6) mod 1728 that
satisfy certain congruence conditions so they define a
minimal curve, with bounded discriminant and conductor.
(Details being worked out by Joanna and Aly; they
estimate that there are about 600,000 pairs c4, c6 modulo
1728 to consider.)

2 Compute first few ap (how many??) for each curve; use
these ap as a key, and thus keep at most one curve from
each isogeny class.

3 Get a table of hundreds of millions of curves over Q(
√

5).
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2. What to do with the curves
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Problem 2: Computing With Curves

Some Invariants of an Elliptic Curve over Q(
√

5)

1 Torsion subgroup

2 Tamagawa numbers and Kodaira symbols

3 Rank and generators for E (Q(
√

5)): Simon 2-descent program.

4 Regulator

5 L(E , s): analytic rank, leading coefficient, zeroes in critical strip

6 #X(E )an: conjectural order of X(E/Q(
√

5)).
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Other Interesting things to compute

Other invariants...

1 All integral points: a recent student (Nook) of Cremona
did this in Magma, so port it. (See next slide.)

2 Compute Heegner points, as defined by Zhang. Find
their height using his generalization of the Gross-Zagier
formula. (Requires level is not a square.) Will provide a
first numerical check on the formula.

3 Congruence number:
1 define using quaternion ideal Hecke module,
2 or define via congruences between q-expansions.

4 Galois representations: Image of Galois (like Sutherland
did for elliptic curves over Q); Sato-Tate distribution.

5 Congruence graph: mod p congruences between all
elliptic curves up to some conductor.
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Integral Points over Number Fields

Hi William,

I saw the slides for your talk on elliptic curves over Q(sqrt(5)).

You mention translating Nook’s Magma code for integral points as

a future project. That’s exactly what Jackie Anderson and I did

at Sagedays 22. If someone is interested in that, make sure they

look at our work first.

The translation is done. There is a speed up against Magma version

by using Python generators. What needs to be done is a bit more

testing (against the Magma version). John Cremona warned us to be

careful with this algorithm because it produces an upper bound and

exhaustively searches up to it. If the bound is a bit lower it

might fail on rare occasions.

Rado Kirov

(This code depends on code to compute E (Q(
√

5)), which Sage

doesn’t quite have yet.)
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Integral Points for curve with norm conductor 199

Demo of Rado Kirov and Jackie Anderson’s Code...

sage: F.<a> = NumberField(x^2-x-1)

sage: E = EllipticCurve ([0,-a-1,1,a,0])

sage: E.conductor (). norm()

199

sage: load "intpts.sage"

sage: time integral_points(E, E.gens ())

[(a : -1 : 1), (a + 1 : a : 1), (2*a + 2 : -4*a - 3 : 1),

(-a + 3 : 3*a - 5 : 1), (-a + 2 : -2*a + 2 : 1),

(6*a + 3 : 18*a + 11 : 1),

(-42*a + 70 : -420*a + 678 : 1), (1 : 0 : 1), (0 : 0 : 1)]

CPU times: user 4.24 s, sys: 0.19 s, total: 4.43 s

Wall time: 7.31 s

(This exists mainly as an email attachment. Get it into psage...)

Magma 2.17 doesn’t come with integral points code over
number fields, but Nook’s code exists...
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Sato-Tate Distribution: Primes up to Norm 1000

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Sato-Tate Distribution: Primes up to Norm 20,000

-1 -0.5 0 0.5 1
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Sato-Tate

Drew Sutherland: Primes up to 109
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Computing ap for N(p) ≤ 106

Computing enough ap to compute L(E , s)

1 To compute L(E , s) to double precision for any E with
norm conductor ≤ 108 requires ap for N(p) ≤ 106.

2 This requires computing #E (OF/p).

3 Only 89 primes of OF of norm up to 106 are inert.

4 Count points mod split primes using Drew Sutherland’s
very fast code (smalljac), which uses baby-step-giant-step.

5 Count points mod inert primes by making a table.
Probably take a CPU month to make; size 200MB.

6 Hope to compute any L-series in about 2 seconds.

7 That’s about 6 years (or a month on a hundred processes)
to compute every L-series I want to compute.
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Finding a zero in the Critical Strip: real and imag parts

1 2 3 4 5

-2

-1

1

2

3

Zero at 1 + 3.678991i .
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Rank Records

The Rank Problem

What are the “simplest” (smallest norm conductor) elliptic
curves over Q(

√
5) of ranks 0, 1, 2, 3, 4, 5,...? Best known

records:

Rank Norm(N) Equation Person
0 31 (prime) [1,a+1,a,a,0] Dembele
1 199 (prime) [0,-a-1,1,a,0] Dembele
2 1831 (prime) [0,-a,1,-a-1,2a+1] Dembele
3 26,569 = 1632 [0,0,1,-2,1] Elkies
4 1,209,079 (prime) [1, -1, 0, -8-12a, 19+30a] Elkies
5 64,004,329 [0, -1, 1, -9-2a, 15+4a] Elkies

Best possible? (Over Q the corresponding best known conductors

are 11, 37, 389, 5,077, 234,446, and 19,047,851. We don’t know if

the last two are best.)
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BSD Challenges

Some Challenges

1 Verify that #X(E )an is approx. perfect square for curves
with norm conductor up to some bound.

2 Prove the full BSD conjecture for a curve over Q(
√

5)

3 Prove the full BSD conjecture for a curve over Q(
√

5)
that doesn’t come by base change from a curve over Q.

4 Make and verify an analogue of Kolyvagin’s conjecture for
a curve of rank ≥ 2. (Elaborate in talk.)

Proving BSD for specific curves may require explicit
computation with Heegner points, the Gross-Zagier formula,
etc., following Zhang. Also, prove something new using Euler
systems.
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Examples: Compute BSD Invariants for First
Curves of rank 0,1,2

Using Sage, I computed all BSD invariants and
solved for Xan for the first curves of rank 0,1,2.

None of these curves are a base change from Q
(in fact, none have j-invariant in Q).
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Conductor 5a− 2

Torsion Z/8Z
Tamagawa Numbers cp = 1 (I1)

Rank and gens 0

Regulator 1

L∗(E , 1) 0.359928959498039

Real Periods 6.10434630671452, 8.43805988789973

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp

=
√

5 · 0.35992 · 82/(6.104346 · 8.43805) = 1.0000000 . . .
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Example: Rank 1 Curve of Norm Conductor 199

E : y2 + y = x3 + (−a− 1) x2 + ax

Table for the curve 199

Conductor 3a + 13

Torsion Z/3Z
Tamagawa Numbers cp = 1 (I1)

Rank and gens 1, gen (0, 0)

Regulator 0.0771542842715149

L∗(E , 1) 0.657814883009960

Real Periods 7.06978549315474, 6.06743219455559

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp

=
√

5 · 0.657 · 32/(3.534 · 6.067 · 0.15430 · 1) = 1.00000 . . .
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Example: Rank 2 Curve of Norm Conductor 1831

E : y2 + y = x3 + (−a) x2 + (−a− 1) x + (2a + 1)

Table for the curve 1831

Conductor 7a + 40

Torsion 1

Tamagawa Numbers cp = 1 (I1)

Rank 2; Gens (0,−a− 1) ,
(
−3

4a + 1
4 ,−

5
4a− 5

8

)
Regulator 0.767786510776225

L∗(E , 1) 2.88288222151816

Real Periods 7.51661850836325, 5.02645072067941

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp
= 0.11111111111111 . . . ∼ 1

9

Wrong. Why? The regulator is wrong (saturation).
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Remark About Saturation

1 Elkies: “ So we must also explore your suggestion about
saturation. Indeed a naive search quickly returns a point
(1,−a), and then 3 times this point plus 6 times your
generator (0,−a− 1) gives your second generator. So
indeed we find a group containing the span of your two
generators with index 3.”

2 Note: Simon’s 2-descent program in Sage does not claim
to make any attempt to saturate.

3 Cremona: I have had students do Ph.D. theses involving
saturation over number fields.
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Summary

1 Three tables: all curves up to given conductor (like
Cremona), large number of curves (like Stein-Watkins),
rank records (like Elkies)

2 Compute all BSD invariants

3 L-functions: zeros, Sato-Tate data, etc.

4 Integral points

5 For everything, much work remains.

Questions or Comments?


