
Building SAGE
Packaging SAGE

Building and Packaging SAGE into a Mainstream
GNU/Linux Environment

Bobby Moretti

May 25, 2006

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Traditional UNIX Build Process

I Using GNU Autoconf and Automake, we generate a
configure script

I Normally, we execute ./configure, which (ideally) tests the
functionality on our machine, generating a makefile

I Then make, which builds the application

I Then make install, which should install the application
(copying files and setting permissions)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Traditional UNIX Build Process

I Using GNU Autoconf and Automake, we generate a
configure script

I Normally, we execute ./configure, which (ideally) tests the
functionality on our machine, generating a makefile

I Then make, which builds the application

I Then make install, which should install the application
(copying files and setting permissions)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Traditional UNIX Build Process

I Using GNU Autoconf and Automake, we generate a
configure script

I Normally, we execute ./configure, which (ideally) tests the
functionality on our machine, generating a makefile

I Then make, which builds the application

I Then make install, which should install the application
(copying files and setting permissions)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

How do we build SAGE?

I We download and untar

I We run make. . . there is no configure script

I SAGE is done, and we run it in situ.

bob@localhost$ tar xf sage-1.3.2.tar
bob@localhost$ make
[lots of output]
bob@localhost$./sage

and we are then greeted by the SAGE prompt.

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Pros and cons of a monolithic distribution

I Pros:
I SAGE can be easily made to run in its own chroot

environment
I We don’t mess with the user’s install
I The user’s install doesn’t mess with us
I Doesn’t integrate with the environment
I Almost “just works”

I Cons:
I Doesn’t integrate with the environment
I Doesn’t take advantage of the user’s python libraries
I Builds its own python, GAP, Maxima, Singular, etc.
I Users will likely have two copies of many of these (especially

python)
I A 50 MB tarball of source code (may not seem to large, but

we can do much better)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

sage-libdist

We already have a monolithic release. . . wouldn’t it be nice to have
a SAGE that installs like a normal UNIX application?

I SAGE libdist: a distribution that is meant to be installed into
an existing python in an existing GNU/Linux distribution

I 17 MB tarball
I How it works:

I We run sage -libdist
I The script takes a standard SAGE source package, untars it,

eliminates software that is commonly available (like python,
singular, GAP, etc.) and retars it

I We untar this package, and run python setup.py install
I The install script checks for a few depenedencies
I If they are met, it builds SAGE sans those dependencies
I Now ./sage will run from the system’s python interpreter

(reading from the system’s python libraries, the system’s install
of Maxima, GAP, etc.)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

sage-libdist

I This is a good start, but it’s not enough.

I SAGE still runs from its own build directory

I We need to move SAGE somewhere once it has finished being
built à la make install

I Do you have experience with UNIX software that doesn’t use
the standard build tools? See me.

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Package Management

I Most GNU/Linux distributions come with their own package
management system

I Ideally, any software you want to run is available by typing a
simple command, or using a simple GUI

I Ideally, it just works

I With some Linux distributions, it actually does
(apt-get install octave in Debian/Ubuntu. . . and voilà,
Octave is now installed)

I VERY convenient for the user!

I We would like to see SAGE installed this way, packaged on all
the mainstream distros

I The goal:

bob@localhost$ apt-get install sage

w00t.

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

First try: Making a package for Ubuntu GNU/Linux

Why Ubuntu?

I Ubuntu has a very large userbase

I Geared for the desktop (as opposed to the server)

I Ubuntu runs Debian’s APT/deb package management system,
which is very robust, very well tested, and fairly standard

I William and Alex use Ubuntu

I I use Ubuntu

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

First try: Making a package for Ubuntu GNU/Linux

Why Ubuntu?

I Ubuntu has a very large userbase

I Geared for the desktop (as opposed to the server)

I Ubuntu runs Debian’s APT/deb package management system,
which is very robust, very well tested, and fairly standard

I William and Alex use Ubuntu

I I use Ubuntu

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

First try: Making a package for Ubuntu GNU/Linux

Why Ubuntu?

I Ubuntu has a very large userbase

I Geared for the desktop (as opposed to the server)

I Ubuntu runs Debian’s APT/deb package management system,
which is very robust, very well tested, and fairly standard

I William and Alex use Ubuntu

I I use Ubuntu

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

First try: Making a package for Ubuntu GNU/Linux

Why Ubuntu?

I Ubuntu has a very large userbase

I Geared for the desktop (as opposed to the server)

I Ubuntu runs Debian’s APT/deb package management system,
which is very robust, very well tested, and fairly standard

I William and Alex use Ubuntu

I I use Ubuntu

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

First try: Making a package for Ubuntu GNU/Linux

Why Ubuntu?

I Ubuntu has a very large userbase

I Geared for the desktop (as opposed to the server)

I Ubuntu runs Debian’s APT/deb package management system,
which is very robust, very well tested, and fairly standard

I William and Alex use Ubuntu

I I use Ubuntu

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Debian Packages

I There are two types of packages: source and binary

I To make a binary package, we take a source package and
build it

I We want to make a binary package, so first we need a source
package

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

The anatomy of a Debian package

I We start with a standard source tarball and untar it into a
directory

I We run dh make, which “Debianizes” the directory

I This actually just creates a directory, called debian, and adds
a few files

I In this directory, several files have been created, the most
important being

I control
I copyright
I changelog
I rules

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

The control file

I Contains various important information about the package

I Has a nice, simple, (somewhat) intuitive syntax

I The most important being the dependencies:

Depends: python2.4 (>= 2.4), flex, bison, GAP, ...
Conflicts: foo
Recommends:
Suggests: gcc (>= 3.0)
Replaces: bar (<< 5), bar-sage (<= 7.6)

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

Towards a binary package

I A Makefile, with instructions for Debian’s
dpkg-buildpackage

I dh_make tries to give us a nice one, based on the source’s
current Makefile

I However, with something as complicated as SAGE (14000
files to install!) we need some more custom engineering

I Does anyone know the canonical way of doing this?

I Once we have rules, we’re in good shape. We use various
debian package testing tools to test the integrity of the
package

I Then we run dpkg-buildpackage to create our .deb file

I We add our own APT repository containing the .deb

I bob@localhost$ sudo apt-get install sage

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

Building SAGE
Packaging SAGE

In the near future. . .

I plan to:
I Come up with a make install target system

I Thoroughly read the Debian New Maintainers tutorial (59
pages!)

I Read the GNU autoconf installation framework documentation
I Hopefully the solution will end up being obvious, once I see it

I Get a simple sage-monolithic debian package running

I Test it a bunch

I Put together a sage-libdist package

I Add it to a custom APT repository (users will add a custom
repository to their /etc/apt/sources.list file)

I Eventually, get it added to a standard testing universe Ubuntu
repository

I Finally, add it to the standard Ubuntu, Debian, Gentoo
(. . . Slackware, Fink,. . .) package repositories

Bobby Moretti Building and Packaging SAGE into a Mainstream GNU/Linux Environment

	Building SAGE
	Packaging SAGE

