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The Pythagorean Theorem

b Pythagoras
Approx 569—475BC



(3,4,5) Pythagorean Triples
(5,12,13)
(7,24,25)
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(21,20, 29)
(33,56,65)
(35,12,37)
(39,80,89)
(45,28,53)
(55,48,73)
(63,16,65)
(65,72,97)
(77,36,85) | Triples of integers a,b,c such that

a? 4+ b2 = ¢?




Enumerating Pythagorean Triples

(CU,y) Slope =t = Yy
(0,1) o 1—¢t2
—1,0 1—|—t2
2
YT 152
Ift:g, then a=s2—1r2 b=2rs, c=s°+r?

IS a Pythagorean triple, and all primitive unordered triples arise
in this way. We can solve two-variable quadratic equations.
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What About Two-variable Cubic
Equations?

Elliptic curve: a (smooth) plane cubic curve
with a rational point (possibly “at infinity” ).
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New rational point from a single rational point.

Y i Y i Y
/e /e /
/ 3 / 3 /
/ [/ /
/ 2 / /
/ 1 / 1 ./
I/‘ //’ T 0 I/‘ // T 0 I/‘ /,,1 5%
L// il,—l) 1 L// \\ 1 L// &&5;,15
\ i \ i \
\ : o \
\ :5 \ :5 \




Iterate the Tangent Process

(0,0)
(17 _1)
(27 _3)

(21 56 )

25’ 125

(480106 332513754)
4225 ' 274625

Fermat
(53139223644814624290821 12282540069555885821741113162699381)

1870098771536627436025 °  80871745605559864852893980186125
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The Group Operation

Y

APOint

/

/

/
//
/
\ // T
X\
\

at infinity

Db e =
(_170) D (Oa _1) — (272)

The set of rational points
on E forms an abelian group.



SAGE Software for Algebra and Geometry Experimentation

SAGE Version 0.7.8, Export Date: 2005-10-05-1650
Distributed under the terms of the GNU General Public License (GPL)
IPython shell -- for help type <object>?, <object>??, Ymagic, or help
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field
sage: P = E([0,0])
sage: 2xP
(1, 0)
sage: 10%*P
(161/16, -2065/64)
sage: 20%*P
(683916417/264517696, -18784454671297/4302115807744)
sage: 50x*P
(24854671723753819921380822649312751965653209957505606561/
29418784545883822188243570198416287437001335203340988816,
-65343698144990446428357439135977881124804221113554492507243553294512904673973173265/
159564798621271700005828929931002008441744804573070282618997694000714045237979692864)

If you are interested in improving this software, contact me. 1
have grant funds to hire undergraduates.
http://modular.ucsd.edu/sage
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The First 150 Multiples of (0,0)

4

3

Yy

(The bluer the point, the
bigger the multiple.)

Fact: The group E(Q) is
generated by (0,0).

In contrast, y2 + vy = 23 — 22 has
only 5 rational solutions!

What is going on here?
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Mordell’s Theorem

Theorem (Mordell). The group E(Q) of rational points on an
elliptic curve is a finitely generated abelian group:

EQ)=EZ" 8T,
with T finite.

Mazur classified the possibilities for 7. It is conjectured that r
can be arbitrary, but the biggest r ever found is (probably) 24.
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The Simplest Solution
Can Be Huge

Simplest solution to y2 = z3 + 7823:

_2263582143321421502100209233517777
~ 143560497706190989485475151904721

~186398152584623305624337551485596770028144776655756
Y= 1720094998106353355821008525938727950159777043481

(Found by Michael Stoll in 2002.)
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T he Central Question

When does an elliptic curve
have infinitely many solutions?
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Conjectures Proliferated

“The sc of this lecture is rather a special one. I want to de-
scribe some computations undertaken by myself and Swinnerton-
Dyer on EDSAC, by which we have calculated the zeta-functions
of certain elliptic curves. As a result of these computations we
have found an analogue for an elliptic curve of the Tamagawa
number of an algebraic group; and conjectures have proliferated.
[...] though the associated theory is both abstract and technically
complicated, the objects about which I intend to talk are usually
simply defined and often machine computable; experimentally
we have detected certain relations between different in-
variants, but we have been unable to approach proofs of these
relations, which must lie very deep.” — Birch 1965

15



Counting Solutions Modulo p
N(p) = # of solutions (mod p)

y2—|—y=x3—x (mod 7) @
® O O
‘ O
3 N(7) =9
i O
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The Error Term

Let

ap=p—+1—N(p).

Hasse proved that

lap| < 24/p.

ap = -2, a3=-3, a5=-2, ay=-1, a11=-5 a13=-2,

aiz7 =0, a19=0, a2x3=2, ap9=06,
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Stand and Be Counted
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Birch and Swinnerton-Dyer’s Guess

If an elliptic curve E has positive rank, then perhaps N(p) is on

average larger than p, for many primes p. Maybe

>0 AsS ©r — o0

. P
fe(z) = plgw N(p)

exactly when E has infinitely many solutions?

Swinnerton-Dyer



sage:
sage:

sage:

sage:

sage:

sage:

sage:
sage:

sage:

sage:

%

C t T) =
ompute fp(z) = p<$ N(p)

E = EllipticCurve([0,0,1,-1,0])
E.Np(7)

def f(x): return mul([p / E.Np(p) for p in primes(x)])

£(3)

6/35

£ (20)

2717/69120

£(20)*1.0
0.039308449074074076
def f(x): return mul([float(p / E.Np(p)) for p in primes(x)])
sage: f(10000)
0.012692560835552851
£ (20000)
0.013677015955706331
£ (100000)
0.010276462823395276
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Graphs of WfE( = Hpgx%

re log-scale graphs of, fg(x):
681B: 42+ 2y = 23+ 22 — 1154z — 15345
(Shaf.-Tate group order 9)

T he followjng

|
| —

33A: y2—|—xy=x3—|—x2— 11x

37B: y2 4+ y =23+ 22 — 232 — 50

14A: v + oy +y=2a23+42—6

L\ _______ f_\xxJwa 11A: y2—|—y:333— 2 _ 102 — 20

DOIA. T —rg—,b +=T=—27

O el 2 B3 4 5 6 5077A 2 £ y=zx3+ 72+ 6




Something Better: The L-Function

Theorem (Wiles et al., Hecke) This function extends to a

holomorphic function on the whole complex plane:

L(B,s) = H( . )
| pa\l—ap-p~5+p-p=25)

Note that formally,

1 p p
L(E,1 —|| _|| _||_
( ) MA<1—ap-p1—|—p-p2> MA<p—ap—|—1> Np




Real Graph of the L-Series of

y*ty=a°—z

Real ¢

\

Zero of order 1 at s = 1
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More Graphs of Elliptic Curve
L-functions
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The Birch and Swinnerton-Dyer
Conjecture

Conjecture: Let E be any elliptic curve over Q. Then E has
infinity many solutions if and only if L(E,1) = 0. (More precisely,
the order of vanishing of L(FE,s) as s = 1 equals the rank of

E(Q).)
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The Kolyvagin and Gross-Zagier
T heorem

Theorem: If L(E,1) #= 0 then E has only finitely many solutions.
If L(E,1) =0 but L'(E,1) # 0, then E(Q) has rank 1.




