
SAGE: System for Arithmetic Geometry

Experimentation

http://modular.fas.harvard.edu/SAGE/

William Stein

Asst. Professor of Mathematics, Harvard University

March 24, 2005, PYCON, Washington, D.C.

1



Arithmetic Geometry

Arithmetic geometry is about geometric questions that have an arithmetic
flavor. Sample famous problems:

• Fermat’s Last Theorem: xn + yn = zn has no solutions with n ≥ 3
and x, y, z all nonzero integers. Andrew Wiles proved this in 1995 using
elliptic curves and modular forms.

• The Birch and Swinnerton-Dyer Conjecture: Discovered from com-
putations in the 1960s. Simple criterion for whether or not for given a, b
the elliptic curve y2 = x3 + ax + b has infinitely many rational solutions.
(Clay $106 dollar problem.)

• The Riemann Hypothesis: Nontrivial zeros of Riemann Zeta function
are on line Re(s) = 1/2. Solution gives deep understanding of distribution
of the prime numbers 2,3,5,7,11,13, . . . . (Clay million dollar problem.)

• Cryptography: Factor integers quickly. E.g., Hendrik Lenstra, used
elliptic curves to give a new algorithms for this. The number field sieve
is a sophisticated algorithm for factoring and uses computation in number
fields. Also, cryptosystems come from elliptic curves over finite fields.

2



The Problem
Create a system for doing computations with the mathematical objects men-
tioned above. Main Goals:

• Efficient: Be very fast – comparable to or faster than anything else
available. This is very difficult, since most systems are closed source,
algorithms are often not published, and finding fast algorithms is often
extremely difficult (years of work, Ph.D. theses, luck, etc.)

• Open Source: The source code must be available and readable, so users
can understand what the system is really doing and trust the results more.

• Comprehensive: Implements enough different things to be really useful.

• Well documented: Reference manual, API reference with examples for
every function, and at least one published book. Make documentation
and source a peer reviewed package, so get academic credit like a journal
publication.

• Extensible: Be able to define new data types or derive from builtin types,
or make code written in your favorite language part of the system.

• Free: Must be sufficiently free (at least GPL).

3



Existing Mature Systems

• Mathematica, Maple, and MATLAB: Arithmetic geometers are not
their target audience. Mathematica does well at special functions, and
both do calculus very well, which is almost never useful in arithmetic
geometry. These systems are closed source, very expensive, for profit.

• MAGMA: By far the best software for arithmetic geometry. It’s very
efficient, comprehensive, and well documented. Great design and class
hierarchy. BUT: It’s closed source (but non-profit), expensive, and not
easily extensible (no user defined types or C/C++-extension code). I’ve
contributed substantially to MAGMA.

• PARI: Efficient, open source, extendible and free. But the documen-
tation is not good enough and the memory management is not robust
enough. Also, PARI does not do nearly as much as what is needed.

• Maxima, Octave, etc.: Open source, but not for arithmetic geometry.

(There’s always something else that I don’t know about.)

All these system use their own custom programming language.

4



SAGE: System for Arithmetic Geometry
Experimentation

I am creating a system using Python that will hopefully solve the problem. I’ve
been working on this for one year (and I’ve been writing arithmetic geometry
software since 1998, in C++ and for MAGMA). Please download and try it,
though it is still far from ready for prime time:

http://modular.fas.harvard.edu/SAGE/.

• Like SciPy/Numarray but for arithmetic geometry.

• Financial Support: My NSF Grant DMS-0400386, and hopefully grad
students when I go to UC San Diego as a tenured professor in July. I
intend to apply for other grants as well. This is a very long-term project.

• Tools: Python, Pyrex, GMP, PARI, mwrank, SWIG, NTL. These are
all are GPL’d and SAGE provides (or will provide) a unified interface for
using them. Also, I’m writing lots of new code, mainly related to my
areas of expertise (modular forms, and linear algebra over exact fields).
Not reinventing wheel. Using design ideas from MAGMA.

• Current Platforms: Linux, Solaris, OS X, Windows (cygwin). Archi-
tecture independent, so no use of psyco.

5



Advantages to Using Python

Asside from being open source, building an arithmetic geometry system on
Python has several advantages.

• Object persistence is very easy in Python—but very difficult in many
other math systems.

• Good support for doctest and automatic extraction of API documen-
tation from docstrings. Having lots of examples that are tested and
guaranteed to work as indicated.

• Memory management: MAGMA also does reference counting but does
not deal with circular references. Python does.

• Python has many packages available now that might be useful to arith-
metic geometers: numarray/Numeric/SciPy, 2d and 3d graphics, net-
working (for distributed computation), database hooks, etc.

• Easy to compile Python on many platforms.

6



Standard Python Math Annoyances

Everybody who does mathematics using Python runs into these problems:

• ** versus ^ – easy for me to get used to, but must define ^ to give an error
on any arithmetic SAGE type. (In IPython shell lines can be pre-parsed,
so this can be solved nicely.)

• sin(2/3) has much different behavior in Python than in any standard
math system.

I think the best solution is to leave the Python language exactly as is, and
write a pre-parser for IPython so that the command line behavior of IPython
is what one expects in arithmetic geometry, e.g., typing a = 2/3 will create a
as an exact rational number, and typing a = 3^4 will set a to 81. One must
still obey the standard Python rules when writing code in a file.

7



Demo
was@form:~$ sage

**********************************************************

* SAGE Version 0.2 *

* System for Arithmetic Geometry Experimentation *

* (c) William Stein, 2005 *

* http://modular.fas.harvard.edu/SAGE *

* Distributed under the terms of the GPL *

**********************************************************

Help: object? -> Documentation about ’object’.

>>> Q

Rational Field

>>> a = Q("2/3")

>>> a

2/3

>>> a in Q

True

>>> type(a)

<type ’rational.Rational’>

>>> 3^4 # illustration of IPython hack!

81

>>> 3\^4 # usual Python behavior (xor)

7

8



Create a matrix as an element of a space of matrices.

>>> M = MatrixSpace(Q,3)

>>> M

Full MatrixSpace of 3 by 3 dense matrices over Rational Field

>>> B = M.basis()

>>> len(B)

9

>>> B[1]

[0 1 0]

[0 0 0]

[0 0 0]

>>> A = M(range(9)); A

[0 1 2]

[3 4 5]

[6 7 8]

>>> A.reduced_row_echelon_form()

[ 1 0 -1]

[ 0 1 2]

[ 0 0 0]

>>> A^20

[ 2466392619654627540480 3181394780427730516992 3896396941200833493504] ...

>>> A.kernel()

Vector space of degree 3, dimension 1 over Rational Field

Basis matrix:

[ 1 -2 1]

>>> kernel(A) # functional notation, like in MAGMA



Compute with an elliptic curve.

>>> E = EllipticCurve([0,0,1,-1,0])
>>> E

y^2 + y = x^3 - x
>>> P = E([0,0])
>>> 10*P

(161/16, -2065/64)
>>> 20*P

(683916417/264517696, -18784454671297/4302115807744)
>>> E.conductor()

37
>>> print E.anlist(30) # coefficients of associated modular form

[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12,
0, -4, 3, 10, 2, 0, -1, 4, -9, -2, 6, -12]

>>> M = ModularSymbols(37)
>>> D = M.decomposition()
>>> D
[Subspace of Modular Symbols of dimension 1 and level 37,
Subspace of Modular Symbols of dimension 2 and level 37,
Subspace of Modular Symbols of dimension 2 and level 37]

>>> D[1].T(2)
Linear function defined by matrix:
[0 0]
[0 0]
>>> D[2].T(2)
Linear function defined by matrix:
[-2 0]
[ 0 -2]


