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ABSTRACT

Let E be an elliptic curve over Q and ` be an odd prime. Also, let K be a number field

and assume that E has a semi-stable reduction at `. Under certain assumptions, we prove

the vanishing of the Galois cohomology group H1(Gal(K(E[`i])/K), E[`i]) for all i ≥ 1.

When K is an imaginary quadratic field with the usual Heegner assumption, this vanishing

theorem enables us to extend a result of Kolyvagin, which finds a bound for the order of

the `-primary part of Shafarevich-Tate groups of E over K. This bound is consistent with

the prediction of Birch and Swinnerton-Dyer conjecture.
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1 Introduction

1.1 Historical background

An elliptic curve over Q is a smooth, projective curve of genus 1 defined over Q, together

with a distinguished rational point on it. Let E be an elliptic curve over Q. The study

of the finitely generated abelian group E(Q), which consists of all the points with rational

coordinates on E, is very important both for theoretical and practical reasons. However

the algorithm of computing E(Q) for any E is not, in general, guaranteed to terminate in

finitely many steps. At the heart of this problem lies the finiteness of an abelian group, the,

so called, Shafarevich-Tate group X(E/Q). For any number field K, X(E/K) is defined as

the kernel of the restriction map H1(K, E) −→
∏

v H1(Kv, E), where v runs over all places

of K. It has long been conjectured that X(E/Q) should always be finite for any elliptic

curve E. However, the first example of such an E was given in the 80’s when Rubin [12]

proved the finiteness of X(E/Q) for the elliptic curve E with complex multiplication whose

value at s = 1 of the Hasse-Weil L-function L(E/Q, s) is non-zero. Another fundamental

advance in this direction was made soon thereafter by Kolyvagin [6], [7]. He proved the

finiteness of X(E/Q) for the elliptic curve E when the order of vanishing of L(E/Q, s) at

s = 1 is less than or equal to 1. The arguments of both Rubin and Kolyvagin mentioned

above can be described as particular instances of the application of the theory of Euler

systems, which was developed by Kolyvagin in [7].

Kolyvagin’s method of Euler Systems allowed him to further study the structure of X.

For a certain class of prime numbers `, he was able to determine a bound for the order

of the `-primary part of X. This result was particularly interesting because his bound is

consistent with the prediction made in a celebrated conjecture of Birch and Swinnerton-

Dyer. (See the next subsection for the precise statement.) This thesis originated as an

attempt of making Kolyvagin’s procedure applicable to a wider class of primes `.

1.2 Main theorem and its connection with Shafarevich-Tate groups

First, we fix some notations. For a finite abelian group A, we will write |A| for its order.

And, “ord` n” will denote the maximal integer m such that `m divides the natural number

n.
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Let E be a (modular) elliptic curve over Q whose conductor is N . And let K be a finite

extension of Q. Fix an odd prime `. For each natural number i ≥ 1, E[`i] will denote the

group of `i-torsion points of E. We let Li be the smallest Galois extension of K over which

E[`i] is defined, and Gi = Gal(Li/K) be its Galois group over K. In particular, we set

L := L1 = K(E[`]) and G := G1 = Gal(L/K). Throughout this article, we will assume that

` satisfies the following.

Assumption 1.1. (a) There is a prime v of K over ` which is unramified in K/Q,

and E has either good reduction or multiplicative reduction over the completion Kv

of K at v.

(b) E(K) has no `-torsion points.

Under this assumption, we prove

Main Theorem. H1(Gi, E[`i]) = 0 for all i ≥ 1 unless ` = 3 and G ' Gexcept.

(See (1) below for the definition of Gexcept.) The proof consists of three steps. The first

step consists of proving the main theorem when G contains a nontrivial homothety. If G

does not contain a nontrivial homothety, we show in §3 that G is isomorphic to Gexcept ⊆

GL2(Z/`Z), where Gexcept is defined as

Gexcept =


a b

0 1

 ∣∣∣ a ∈ (Z/`Z)∗ and b ∈ Z/`Z

 . (1)

Finally, the exceptional case G ' Gexcept is studied in §4. We prove the vanishing except

the case where ` = 3.

The motivation of this work is the following. Take K = Q(
√

D) to be an imaginary

quadratic extension with fundamental discriminant D 6= −3,−4 where all prime divisors of

N split. We also let yK ∈ E(K) be the Heegner point associated with the maximal order

in K. Kolyvagin [7] proves that, when yK is of infinite order, E(K) has rank one and the

Shafarevich-Tate group X(E/K) of E over K is finite. Let m be the largest integer such

that yK ∈ `mE(K) modulo `-torsion points. In [8], Kolyvagin proves the following.

Theorem 1.2 (Kolyvagin). Suppose that yK is of infinite order. Assume that ` is an odd

prime. If the Galois group Gal(Q(E[`])/Q) is isomorphic to GL2(Z/`Z), then we have

ord` |X(E/K)| ≤ 2m.
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This bound for the `-part of |X(E/K)| is consistent with the conjecture of Birch and

Swinnerton-Dyer. In fact, Gross and Zagier [4] obtained a formula for the value of the

derivative of the complex L-function of E over K in terms of the height of yK . This

formula, when combined with the conjecture of Birch and Swinnerton-Dyer, yields the

following conjectural formula for the `-order of X(E/K).

Conjecture 1.3. Suppose that yK is of infinite order. Then X(E/K) is finite and its

`-order is

ord` |X(E/K)| = 2m + 2 ord`

(
|E(K)tor|
c ·Πq|Ncq

)
.

Here cq is the number of connected components of the special fiber of the Néron model

of E at q, and c is the Manin constant of a modular parametrization of E.

In view of conjecture 1.3, it is natural to expect that the assumption that E(K) has

no nontrival `-torsion points should be sufficient to yield the same bound as in Theorem

1.2, even in the case where Gal(Q(E[`])/Q) is a proper subgroup of GL2(Z/`Z). We are

not proving this result in this thesis. Instead, under the condition that the mod ` Galois

representation

ρQ : Gal(Q̄/Q) −→ Aut(E[`]) ' GL2(Z/`Z)

is irreducible over Z/`Z, we show that the same bound can be obtained (Theorem 5.1). See

§5 for more detailed discussion in this direction.
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2 Vanishing of the cohomology groups H1(Gi, E[`i])

First, we investigate the natural maps between H1(Gi, E[`i]).

Proposition 2.1. For each i ≥ 1, there is a natural injection

H1(Gi, E[`i]) −→ H1(Gi+1, E[`i+1]). (2)

Proof. There are two natural injections

H1(Gi, E[`i]) −→ H1(Gi+1, E[`i]) (3)

and

H1(Gi+1, E[`i]) −→ H1(Gi+1, E[`i+1]). (4)

Indeed, the map (3) is just the inflation in the exact sequence

0 −→ H1(Gi, E[`i]) Inf−→ H1(Gi+1, E[`i]) Res−→ H1(Gal(Li+1/Li), E[`i])Gi . (5)

Also, the map (4) is given as follows. The exact sequence

0 −→ E[`i] −→ E[`i+1] `i

−→ E[`] −→ 0

gives the Gi+1-cohomology long exact sequence, part of which is

E[`]Gi+1 −→ H1(Gi+1, E[`i]) −→ H1(Gi+1, E[`i+1])
(`i)∗−→ H1(Gi+1, E[`]). (6)

The group E[`]Gi+1 is zero by Assumption 1.1, (b). Therefore, the map H1(Gi+1, E[`i]) −→

H1(Gi+1, E[`i+1]) is injective. This is (4).

Finally, the composion of (3) and (4) gives (2).

The following lemma tells us how to control the size of H1(Gi, E[`i]) inductively.

Lemma 2.2. If the restriction map

Res : H1(Gi+1, E[`i]) −→ H1(Gal(Li+1/Li), E[`i])Gi

in (5) is the zero map, then

dimZ/`Z

(
H1(Gi, E[`i])⊗ Z/`Z

)
= dimZ/`Z

(
H1(Gi+1, E[`i+1])⊗ Z/`Z

)
.

In particular, the above equality is true if H1(Gal(Li+1/Li), E[`i])Gi = 0.
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Proof. Consider the short exact sequence

0 −→ E[`] ι−→ E[`i+1] `−→ E[`i] −→ 0

of Gi+1-modules. Its Gi+1-cohomology long exact sequence shows that

(ι)∗ : H1(Gi+1, E[`i]) −→ H1(Gi+1, E[`i+1])

is injective. Therefore, the kernel of (`i)∗ in (6) coincides with that of the endomorphism

of multiplication by `i on H1(Gi+1, E[`i+1]).

However, the sequence (5) says that H1(Gi, E[`i]) is isomorphic to H1(Gi+1, E[`i]). Now,

from (6), H1(Gi+1, E[`i]) is the kernel of the multiplication on H1(Gi+1, E[`i+1]) by `i, so

the lemma follows.

We study the structure of H1(Gal(Li+1/Li), E[`i])Gi = HomGi(Gal(Li+1/Li), E[`i]) more

closely.

Define A to be the additive group M2(Z/`Z) of all 2 × 2 matrices with coefficients in

Z/`Z, and turn it into a Gi-module by first projecting Gi onto G = G1 and then letting it

act on A by conjugation. By definition, this action factors through G.

Fix a basis for E[`i+1]. Then, we can identify Gi+1 with a subgroup of GL2(Z/`i+1Z).

An element of Gal(Li+1/Li) will be of the form I2 + `iA for some matrix A with coefficients

in Z/`i+1Z, where I2 is the 2 × 2 identity matrix in GL2(Z/`i+1Z). Note that A modulo

` is uniquely determined, independent of the choice of A, hence defines an element of A.

Therefore the map

I2 + `iA 7−→ A mod `

identifies Gal(Li+1/Li) with a Gi-submodule of A which will be denoted by Ci.

Let f be an element in HomGi(Gal(Li+1/Li), E[`i]) ' HomGi(Ci, E[`i]). Since Ci is of

exponent `, the image of f lies in E[`] ⊆ E[`i]. Moreover, the action of Gi on Ci factors

through G = G1. Therefore, we have HomGi(Gal(Li+1/Li), E[`i]) ' HomG(Ci, E[`]). In

summary, we obtain the isomorphism

H1(Gal(Li+1/Li), E[`i])Gi ' HomG(Ci, E[`]) (7)

When HomG(Ci, E[`]) = 0, one can control the rank of H1(Gi+1, E[`i+1]) inductively.

This is the case when G contains a homothety, that is, a (Z/`Z)∗-multiple of the identity

endomorphism of E[`].
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Theorem 2.3. If G contains a nontrivial homothety, then H1(Gi, E[`i]) = 0 for all i ≥ 1.

Proof. Let 〈η〉 be the cyclic subgroup of G generated by a nontrivial homothety η. Then

obviously E[`]〈η〉 = 0. Further the cohomology group H1(〈η〉, E[`]) = 0 since the order of

〈η〉 is prime to `. Therefore, by the following Hochschild-Serre spectral sequence,

0 −→ H1(G/〈η〉, E[`]〈η〉) −→ H1(G, E[`]) −→ H1(〈η〉, E[`])

we get H1(G, E[`]) = 0.

Now, assume that H1(Gi, E[`i]) = 0 for some i. From Lemma 2.2 and (7), we only need

to show that HomG(Ci, E[`]) = 0. Let f ∈ HomG(Ci, E[`]). Note that any homothety acts

trivially on A. So, for any v ∈ Ci, we have

f(v) = f(vη) = ηf(v).

But, only the zero element of E[`] can be fixed by η, hence f(v) = 0. Therefore f ≡ 0.
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3 The structure of G

The main theorem in this section is

Theorem 3.1. If G does not contain a nontrivial homothety, then G can be represented as

Gexcept =


a b

0 1

 ∣∣∣ a ∈ (Z/`Z)∗ and b ∈ Z/`Z


with respect to some basis for E[`].

The proof of this theorem will be given throughout this section. The main tool used is

a result of Serre [14, §§1–2]. Serre studies the image of the representation

ρK : Gal(K̄/K) −→ GL(E[`])

restricted to the local Galois group. Together with a group theoretic argument, Serre’s

result is used to classify all the possible subgroups of GL2(Z/`Z) without homotheties that

can occur as our Galois group G. Our assumption that E(K) has no `-torsion points also

helps us limit the possibilities.

3.1 Subgroups of GL(V )

The definitions in this subsection are taken from [14, §§1–2]. We summarize what we need

for our study of G.

Let V be a two-dimensional vector space over Z/`Z. By GL(V ), we mean the group of all

linear automorphisms of V . For a 1-dimensional subspace V1 of V , define B(V1) ⊆ GL(V ) to

be the subgroup consisting of all s ∈ GL(V ) such that sV1 = V1. Such a subgroup B(V1) is

called a Borel subgroup of GL(V ) defined by V1. The subspace V1 is the unique 1-dimensional

subspace of V which is stable under B(V1). By choosing a basis for V appropriately, such

a subgroup B(V1) can be represented by 2× 2 matrices

B(V1) =


a b

0 d

 ∣∣∣ a, d ∈ (Z/`Z)∗ and b ∈ Z/`Z

 .

When V1 and V2 are two distinct 1-dimensional subspaces of V , we let C(V1, V2) ⊆

GL(V ) be the set of all the elements s ∈ GL(V ) such that sV1 = V1 and sV2 = V2. The
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subgroup C(V1, V2) is called the split Cartan subgroup of GL(V ) defined by V1 and V2. In

the appropriate basis for V , C(V1, V2) takes the form

C(V1, V2) =


a 0

0 c

 ∣∣∣a, c ∈ (Z/`Z)∗

 .

Therefore C(V1, V2) is isomorphic to a product of two cyclic groups of order ` − 1. We

also note that V1 and V2 are the only 1-dimensional subspaces of V which are stable under

C(V1, V2). Let C1 be the subgroup of C(V1, V2), consisting of all elements whose actions

on V1 are trivial. Similarly, one can define C2 to be the subgroup of C(V1, V2) which acts

trivially on V2. Then C1 and C2 can be represented by matrices of the from
(
1 0
0 ∗

)
and

(∗ 0
0 1

)
.

Such subgroups C1 and C2 are called semi-split Cartan subgroups of GL(V ).

Let F`2 be the unique quadratic extension of the field Z/`Z. Then one can embed F∗
`2

into GL(V ), by choosing a basis for F`2 over Z/`Z and by representing F∗
`2 in GL(V ) via

the regular representation with respect to the chosen basis for F`2 . A non-split Cartan

subgroup of GL(V ) is, by definition, a subgroup of GL(V ) which is conjugate to the image

of F∗
`2 under this embedding in GL(V ). Any non-split Cartan subgroup is cyclic of order

`2 − 1. Relevant to our study are the facts that the subgroup (Z/`Z)∗ in F∗
`2 maps onto

the homotheties of GL(V ) regardless of the choice of a basis for F`2 , and thus that any

non-split Cartan subgroup of GL(V ) contains all homotheties.

Finally, we define the Cartan subgroups of PGL(V ) = GL(V )/(Z/`Z)∗ to be the images

in PGL(V ) of the corresponding Cartan subgroups of GL(V ). Clearly, a split and a non-split

Cartan subgroup of PGL(V ) are both cyclic and are of order `− 1 and ` + 1 respectively.

We state a lemma which will be useful later.

Lemma 3.2. If s ∈ GL(V ) is of order prime to `, then the cyclic subgroup generated by s

is contained in a Cartan subgroup of GL(V ).

Proof. The element s is (absolutely) semisimple since its order is prime to `. So, the

cyclic group generated by s is a commutative semisimple subgroup of GL(V ). However,

every maximal commutative semisimple subgroup of GL(V ) is a Cartan subgroup (See [10,

Lemma 12.2, Chap 18.]), hence the lemma follows.
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3.2 Conditions on G

Let v be the prime of K over ` as in Assumption (a) of 1.1, that is v is unramified in K/Q

and E does not have an additive reduction over Kv. We fix a decomposition group D = Dv

of v in Gal(K̄/K), and let I = Iv be the inertia group of v in Dv.

Proposition 3.3. Assume that G contains no nontrivial homothety. Then

(a) E has either ordinary or multiplicative reduction over Kv.

(b) G contains a semi-split Cartan subgroup of GL(E[`]). In particular, G contains a

cyclic subgroup of order `− 1.

Proof. If E has a supersingular reduction over Kv, the subgroup ρK(I) ⊆ G is a non-split

Cartan subgroup of GL(E[`]) [14, Proposition 12] and it would contain all homotheties,

which contradicts our assumption on G. Therefore, we conclude that the reduction type

of E over Kv is either ordinary or multiplicative. In either case, the subgroup ρK(I) ⊆ G

contains a semi-split Cartan subgroup of GL(E[`]). (See [14, Corollaire to Proposition 11]

and [14, Corollaire to Proposition 13].) Also, see §§3.4 below.

3.3 The case where ` does not divide |G|

We investigate the case when ` does not divide |G|.

As before, let V be a two-dimensional vector space over Z/`Z. The following classifica-

tion result is [14, Proposition 16].

Proposition 3.4. If H is a subgroup of PGL(V ) whose order is not divisible by `, then H

is cyclic, dihedral, or isomorphic to one of the groups A4,S4 and A5.

We claim that, if ` does not divide |G|, then G must contain a nontrivial homothety.

The rest of this subsection will be devoted to the proof of this claim. From now on, we

work under the assumption that the group G has no nontrivial homotheties. Propositions

3.4 and 3.3 will lead us into a case by case analysis and yield a contradiction for all cases.

Since G is assumed to have no homothety, its image G̃ in PGL(E[`]) is isomorphic to G.

By Proposition 3.4, there are three cases: G is cyclic, dihedral or isomorphic to one of the

groups A4,S4 and A5.
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3.3.1 G cyclic

By Lemma 3.2, G is contained in a Cartan subgroup S of GL(E[`]). And, by Proposition

3.3, G contains a semi-split Cartan subgroup C of GL(E[`]), so we have C ⊆ G ⊆ S as

subgroups of GL(E[`]).

We consider the case where S is non-split, so the order S is `2 − 1. Recall that G maps

isomorphically onto G̃. Therefore, ` − 1 divides |G̃|, hence it also divides the order of the

image S̃ of S in PGL(E[`]), which is just ` + 1. But, this is impossible unless ` = 3. When

` = 3, the group S is isomorphic to F∗
9, and its subgroup consisting of all homotheties

corresponds to F∗
3 in F∗

9. It is easy to check that every nontrivial subgroup of F∗
9 contains

F∗
3. Therefore G must also contain a nontrivial homothety.

Next, we assume that S is split. From the inclusion C ⊆ G ⊆ S, it follows that G should

be equal to C, otherwise G would have a nontrivial homothety. But C = G is also impossible

since it would violate the `-torsion freeness of E(K).

3.3.2 G dihedral

Next, we deal with the case where G is isomorphic to a dihedral group Dk of order 2k for

some k.

First, let us assume ` > 3. Again we denote by C a semi-split Cartan subgroup contained

in G, which is just a cyclic group of order ` − 1 ≥ 4. In particular, we have k ≥ 2. But, if

k = 2, then ` must be 5, and C is of order 4. However, D2 cannot have such a subgroup.

So, we have k > 2.

Lemma 3.5. Let Dk = 〈x, y |x2 = 1, yk = 1, xyix−1 = y−i for all i〉 be the dihedral group

with k > 2, generated by the elements x and y of order 2 and k respectively. If Dk contains

a cyclic group C of order > 2, then C is a subgroup of 〈y〉.

Proof. Any element of the form xyi is of order 2, so no such element can generate C.

Following the notation in the lemma, we let x, y ∈ G be the elements of order 2 and

k respectively. Then, the lemma implies that C ⊆ 〈y〉. Fix a basis for E[`] such that the

subgroup C is represented by the matrices of the form
(∗ 0
0 1

)
. Let x =

(
a b
c d

)
. Then we havea b

c d

 s 0

0 1

 =

s−1 0

0 1

 a b

c d

 ,
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for all s ∈ (Z/`Z)∗. Or equivalently

as = s−1a b = s−1b

cs = c d = d

for all s ∈ (Z/`Z)∗. Obviously, such
(
a b
c d

)
∈ GL2(Z/`Z) cannot exist.

Next, let us assume that ` = 3. Again, we fix a basis for GL(E[3]) so that the subgroup

C is represented as {
(±1 0

0 1

)
}. So, in particular, τ :=

(−1 0
0 1

)
∈ G. Then, using the conditions

that G has no homotheties and that 3 does not divide the order of G, we will prove that(±1 0
0 1

)
are the only elements in G. Then, this would be a contradiction to the assumption

that E(K) has no `-torsion points.

The table in the following page summarizes this computation. The column labelled as

“Comments” shows why G cannot contain the matrices σ, except the ones of Type 0. The

matrices shown in the table exhaust all of |GL2(Z/3Z)| = 48 possibilities.
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Type The matrices σ Comment

0

1 0

0 1

 or

−1 0

0 1

 σ ∈ C

A

−1 0

0 −1

 ,

1 0

0 −1

 σ or στ is a homothety.

B ±

 0 1

−1 0

 σ2 is of Type A.

B′ ±

0 1

1 0

 στ is of Type B.

C ±

1 1

0 1

 , ±

1 −1

0 1

 , ±

1 0

1 1

 , ±

 1 0

−1 1

 3 divides the order of σ.

C′ ±

−1 1

0 1

 , ±

1 1

0 −1

 , ±

1 0

1 −1

 , ±

−1 0

1 1

 στ or τσ is of Type C.

D ±

1 −1

1 1

 , ±

 1 1

−1 1

 σ2 is of Type B.

D′ ±

−1 1

1 1

 , ±

1 1

1 −1

 στ or τσ is of Type D.

E ±

1 1

1 0

 σ2 is of Type D’.

E′ ±

1 −1

1 0

 , ±

 1 1

−1 0

 στ or τσ is of Type E.

E′′ ±

−1 1

1 0

 στ is of Type E’.

F ±

0 1

1 1

 σ2 is of Type D’.

F′ ±

0 −1

1 1

 , ±

 0 1

−1 1

 στ or τσ is of Type F.

F′′ ±

0 1

1 −1

 στ is of Type F’.
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3.3.3 G is A4,S4 or A5

Here ` cannot be 3, since 3 divides the orders of A4,S4 and A5. We again denote by C

the subgroup of G which is cyclic of order ` − 1 as in Proposition 3.3. Let’s first assume

that ` > 5. Then, one of the groups A4,S4 and A5 must contain C, which is cyclic of order

≥ 6. This is impossible. We also note that 5 divides the order of A5. Therefore we have to

do the case that ` = 5 and G is isomorphic to either A4 or S4. But, the group A4 doesn’t

contain an element of order 4, that is, there is no 4-cycle in A4. The only case left is ` = 5

and G isomorphic to S4.

Choose a basis for GL(E[5]), so that C is of the form
(∗ 0
0 1

)
. Then, there are 2 generators(

2 0
0 1

)
and

(
3 0
0 1

)
of C. Since their traces are different they are not conjugate to each other.

However, the 4-cycles in S4 form a single conjugacy class, therefore S4 cannot be isomorphic

to G.

3.4 The case where ` divides |G|

Now, we study the case when ` divides |G|

Proposition 3.6. If ` divides the order of the Galois group G, then G is either isomorphic

to the full group GL(E[`]) or is contained in a Borel subgroup of GL(E[`]).

Proof. By [14, Proposition 15], either G contains SL(E[`]) or G is contained in a Borel

subgroup of GL(E[`]).

Recall that v is assumed to be unramified in K/Q. Therefore the extension K/Q is

linearly disjoint with the cyclotomic extension Q(µ`)/Q. If G contains SL(E[`]), then it

must be equal to GL(E[`]) since the determinant map

det : G −→ (Z/`Z)∗

is surjective due to Weil pairing on E[`].

We keep the assumption that G has no homothety, and we further assume that ` divides

the order of G. We will finish the proof of Theorem 3.1.

Recall that v is a fixed prime of K over ` as in Assumption (a) of 1.1 and that I = Iv

denotes a inertia group of v. In Proposition 3.3, we proved that the reduction type of E

over Kv is either ordinary or multiplicative. When E has ordinary reduction, X` ⊆ E[`]
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will denote the kernel of reduction modulo `. In the case of multiplicative reduction, E(K̄v)

is isomorphic to K̄∗
v/qZ (over some unramified extension of Kv) for some q in the ring of

integers of Kv. [15, chap V] Via this isomorphism, the group µ` of `-th roots of unity maps

into E[`]. We define X` to be the image of µ` in K̄∗
v/qZ. In both cases, X` is 1-dimensional

Z/`Z-subspace of E[`]. The following proposition is a simple consequence of Corollaire to

Proposition 11 and Corollaire to Proposition 13 in [14].

Proposition 3.7. Fix a nonzero x ∈ X` and x′ 6∈ X`. With respect to the basis {x, x′} for

E[`], we have the following.

(a) If the wild part of I acts on E[`] nontrivially, then ρK(I) is equal to
a b

0 1

 ∣∣∣ a ∈ (Z/`Z)∗ and b ∈ Z/`Z

 .

(b) If the wild part of I acts on E[`] trivially, then ρK(I) is equal to
a 0

0 1

 ∣∣∣ a ∈ (Z/`Z)∗

 .

From Proposition 3.6, there is a Borel subgroup B of GL(E[`]) containing G. If there is

another Borel subgroup B′ of GL(E[`]) containing G, then G will leave stable two distinct

1-dimensional Z/`Z subspaces of E[`] defined by B and B′. Therefore G will be contained in

a split Cartan subgroup, which is a contradiction to the assumption that ` divides |G|. So,

B is the unique Borel subgroup containing G. We denote by V1 the unique 1-dimensional

subspace which is stable under the action of B.

We now claim that V1 = X`. Assume the contrary V1 6= X`. Then we can take {x, v}

as a basis for E[`] with x ∈ X` and v ∈ V1. We will write the elements of GL(E[`]) as 2× 2

matrices with coefficients in Z/`Z with respect to this basis.

Since V1 is stable under the action of G, any element in G is lower triangular. We let

α, δ : Gal(K̄/K) −→ (Z/`Z)∗

be the group homomorphisms and

γ : Gal(K̄/K) −→ Z/`Z

14



be the function (not necessarily a homomorphism) such that

ρK(s) =

α(s) 0

γ(s) δ(s)


for all s ∈ Gal(K̄/K).

Fix an element t ∈ Gal(K̄/K) with δ(t) 6= 1. Such an element exists, otherwise E(K)

would contain a nonzero `-torsion element.

• Case 1: α(t) = δ(t) and γ(t) = 0.

The element ρK(t) is a nontrivial homothety in G, so it is a contradiction.

• Case 2: γ(t) = 0 but α(t) 6= δ(t).

In view of our choice of the basis {x, v}, we see that γ|I = 0 and δ|I = 1 by Lemma

3.7. It also follows that the wild part of I acts trivially on X` and α|I : I → (Z/`Z)∗

is surjective. So, we can find an element t′ ∈ I with α(t′) = α(t)−1δ(t). Then,

ρK(t′)ρK(t) =

α(t)−1δ(t) 0

0 1

 α(t) 0

0 δ(t)

 =

δ(t) 0

0 δ(t)


will be an element in G. But this element is a nontrivial homothety.

• Case 3: γ(t) 6= 0.

We fix u ∈ Gal(K̄/K) with ρK(u) =
(
1 0
1 1

)
, which is an element of order ` in G. (Recall

that we assume that ` divides the order of G.) Let k = −γ(t)α(t)−1. Then,

ρK(uk)ρK(t) =

1 0

k 1

 α(t) 0

γ(t) δ(t)

 =

α(t) 0

0 δ(t)

 .

So, we can replace our t with ukt and go back to Case 1 or Case 2. Again we obtain

a contradiction. This finishes the proof of the claim that V1 = X`.

From now on, we fix a basis {x, y} for E[`] with x ∈ X` and y 6∈ X`. Since the subspace

X` = V1 is stable under the action of G, all the elements in G are upper triangular with

respect to this basis.

Now, We can complete the proof of Theorem 3.1. It will be an immediate corollary to

the following group theoretic lemma.
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Lemma 3.8. Let G be a subgroup in GL2(Z/`Z) which is upper triangular. Assume that

G satisfies

(a) ` divides |G|.

(b) G contains no nontrivial homothety.

(c) The subgroup 
a 0

0 1

 ∣∣∣ a ∈ (Z/`Z)∗


is contained in G.

Then G is equal to the group

C =


a b

0 1

 ∣∣∣ a ∈ (Z/`Z)∗ b ∈ Z/`Z

 .

Proof. By (a), the matrix
(
1 1
0 1

)
is in G. The condition (c) then says that C is contained in G.

Consider the projection GL2(Z/`Z) → PGL2(Z/`Z). Both G and C maps isomorphically

onto their respective images in PGL2(Z/`Z) since they don’t have any homotheties. But,

it is easy to see that the image of C covers the image of all upper triangular matrices, in

which G is contained. So, we have C = G.

Taking {x, y} as a basis for E[`] as above, it is clear that G satisfies all the conditions

in the lemma. The proof of Theorem 3.1 is completed.
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4 The exceptional case

We prove the vanishing of H1(Gi, E[`i]) when G ' Gexcept. In this section, we assume that

` 6= 3. This is necessary in proving the vanishing of H1(Gi, E[`i]). However, the proof works

well for ` = 3 in some cases. See Remark 4.7.

and prove the vanishing.

4.1 Vanishing of H1(Gi, E[`i])

We will work with a fixed system of compatible basis for E[`i] for all i ≥ 1, or equivalently,

a fixed basis for the Tate module T`(E) of E. This enables us to identify Gi with a subgroup

of GL2(Z/`iZ). In particular, we have the identification G = Gexcept at the first level i = 1.

We recall the following notations from §2; we let Gi act on A = M2(Z/`Z) by conjuga-

tion. The group Gal(Li+1/Li) is identified with a Gi-submodule Ci of A via the identification

I2 + `iA 7−→ A mod `. (8)

From all this, we have that

H1(Gal(Li+1/Li), E[`i])Gi ' HomG(Ci, E[`]). (9)

One can classify all the possible G-submodules of A0 ⊆ A, where A0 is defined by

A0 = {A ∈ A|TrA = 0}. Let w =
(
0 1
0 0

)
, u =

(
1 0
0−1

)
and v =

(
0 0
1 0

)
be elements of A0. And

also let W = 〈w〉 and U = 〈w, u〉 be subspaces of A0.

Note that G is generated by τ :=
(
1 1
0 1

)
and σa :=

(
a 0
0 1

)
for all a ∈ (Z/`Z)∗.

Proposition 4.1. The subspaces {0},W,U and A0 are the only G-submodules of A0.

Proof. One checks easily that W and U are invariant under the action of G.

Take {w, u, v} as a basis of A0. Then an elementary computation shows that the matrix
1 −2 −1

0 1 1

0 0 1


represents the action of τ ∈ G on A0. So, the only subspaces invariant under the action of

τ are {0},W,U and A0.
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Proposition 4.2. We have the following

(a) HomG(A0, E[`]) = 0.

(b) HomG(U , E[`]) ' Z/`Z.

(c) HomG(W, E[`]) ' Z/`Z.

Proof. With respect to the basis {w, u, v}, the action of σa =
(
a 0
0 1

)
∈ G on A0 is represented

by 
a 0 0

0 1 0

0 0 a−1

 .

Any map f ∈ Hom(A0, E[`]) will be written as the matrix

f =

a11 a12 a13

a21 a22 a23


with coefficients in Z/`Z. Then, f is G-equivariant if and only if

a11 a12 a13

a21 a22 a23




1 −2 −1

0 1 1

0 0 1

 =

1 1

0 1

 a11 a12 a13

a21 a22 a23

 and

a11 a12 a13

a21 a22 a23




a 0 0

0 1 0

0 0 a−1

 =

a 0

0 1

 a11 a12 a13

a21 a22 a23


for all a ∈ (Z/`Z)∗. Solving these linear conditions on aij , we get aij = 0 for all i and j,

therefore, f = 0. We proved (a).

Similarly, the actions of τ and σa on U , with respect to the basis {w, u}, are represented

by the matrices 1 −2

0 1

 and

a 0

0 1


respectively. Again, we write f ∈ Hom(U , E[`]) as

f =

a11 a12

a21 a22

 .
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In this case, the same computation as above says that f is G-equivariant when

f = a11

1 0

0 −2

 .

In particular, HomG(U , E[`]) is isomorphic to Z/`Z and is generated by the map which

sends w and u to P1 and −2Q1 respectively.

For (c), the same argument is used. We omit the details, but we note that a generator

of HomG(W, E[`]) ' Z/`Z can be chosen so as to send w to P1.

Corollary 4.3. Let S be a G-submodule of A0, and let f ∈ HomG(S, E[`]). The function

f is nonzero if and only if w is in S and f(w) 6= 0.

Proof. In the two previous propositions, we computed HomG(S, E[`]) for any G-submodules

S of A0. The corollary now follows from the description of generators of HomG(S, E[`]).

A similar result is needed for G-submodules of A, rather than those of A0. Let H =

{
(
a 0
0 a

)
∈ A | a ∈ Z/`Z}. Then, G acts onH trivially and there is a decomposition A = A0⊕H

as G modules. Since E[`] has no G-invariant elements we have that HomG(H, E[`]) = 0.

Proposition 4.4. Let X be a G-submodule of A and let f ∈ HomG(X , E[`]). The function

f is nonzero if and only if w is in X and f(w) 6= 0.

Proof. If H ⊆ X , then H occurs as a direct summand of X as G-modules, i.e. X = X0 ⊕H

with X0 = X ∩A0. Then

HomG(X , E[`]) = HomG(X0, E[`])⊕HomG(H, E[`]) = HomG(X0, E[`]),

hence Corollary 4.3 gives the desired result.

When H 6⊆ X and X 6= 0, we note that the map

i : X ↪→ A→ A/H ' A0

is injective. Therefore, i(X ) is isomorphic to W,U or A0 by Proposition 4.1. In particular,

X must contain an element of the form x = w+h for some h ∈ H. Then for any a ∈ (Z/`Z)∗,

σax − x = (a − 1)w ∈ X , or w ∈ X . Since HomG(X , E[`]) = HomG(i(X ), E[`]) the proof

again follows from Corollary 4.3.

We are now ready to prove
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Theorem 4.5. In the exceptional case G = Gexcept, we have H1(Gi, E[`i]) = 0 for all i ≥ 1.

Proof. First, we deal with the case i = 1. As before, let τ :=
(
1 1
0 1

)
and σa =

(
a 0
0 1

)
be in G

for some a ∈ (Z/`Z)∗. Consider the inflation-restriction sequence

0 −→ H1(G/〈τ〉, E[`]〈τ〉) −→ H1(G, E[`]) −→ H1(〈τ〉, E[`])G/〈τ〉.

The group H1(G/〈τ〉, E[`]〈τ〉) is zero since |G/〈τ〉| is prime to `. It remains to show the

vanishing of H1(〈τ〉, E[`])G/〈τ〉.

Let P =
(
1
0

)
and Q =

(
0
1

)
be the chosen basis of E[`]. If f : 〈τ 〉 −→ E[`] is a cocycle,

representing a cohomology class [f ] in H1(〈τ〉, E[`]), the association [f ] 7→ f(τ) defines an

isomorphism

H1(〈τ〉, E[`]) ' {X ∈ E[`] | (1 + τ + · · ·+ τ `−1)X = O}
(1− τ)E[`]

.

Since 1 + τ + · · ·+ τ `−1 =
(
0 0
0 0

)
and (1− τ)E[`] = 〈P 〉, we have

H1(〈τ〉, E[`]) ' E[`]/〈P 〉 ' 〈Q〉.

Now it is sufficient to prove that the cohomology class φ represented by the cocycle f : τ 7→ Q

is not fixed by the action of σa for some a ∈ (Z/`Z)∗.

Note that (σa)−1τσa = τ ā for some ā ∈ (Z/`Z)∗ with aā = 1. The cohomlogy class φσa

is represented by the cocycle fσa , which sends τ to

fσa(τ) = σaf(τ ā) = σa(1 + τ + · · ·+ τ ā−1)f(τ)

=

a 0

0 1

 ā ā(ā− 1)/2

0 ā

 f(τ)

=

1 (ā− 1)/2

0 ā

 f(τ)

=
ā− 1

2
P + āQ ≡ āQ mod 〈P 〉.

Therefore, φ 6= φσa if a 6= 1. We proved H1(〈τ〉, E[`])G/〈τ〉 = 0.

Now, let i ≥ 1. Consider the restriction map

Res : H1(Gi+1, E[`i]) −→ H1(Gal(Li+1/Li), E[`i])Gi ' HomG(Ci, E[`])

which appeared in the exact sequence (5). We claim that this map is trivial. Once this

claim is verified, the theorem will follow from Lemma 2.2.
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Now, let g be a cocycle, representing a cohomology class in H1(Gi+1, E[`i]) and let

f = Res(g) ∈ HomG(Ci, E[`]). By Proposition 4.4, we only need to show that f(w) = 0.

Via the identification (8), the element w corresponds to the matrix1 `i

0 1

 .

Let Ii :=
(
1 0
0 1

)
be the (multiplicative) identity element in the ring M2(Z/`i+1Z) of 2 × 2

matrices with coefficients in Z/`i+1Z. We will show in Lemma 4.6 that there exists A ∈ Gi+1

such that A`i
=

(
1 `i

0 1

)
and that

Ii + A + A2 + · · ·A`i−1 = `i ·M

for some M ∈ M2(Z/`i+1Z). Using this lemma, we compute

g

1 `i

0 1

 = g
(
A`i

)
= (Ii + A + A2 + · · ·A`i−1)g(A)

= `i ·M g(A)

But, the cocycle g takes values in E[`i], so g
(
1 `i

0 1

)
= 0, and hence f(w) = 0.

Lemma 4.6. For each i ≥ 1, there exists A ∈ Gi+1 such that

(a) A`i
=

(
1 `i

0 1

)
.

(b) Let Ii :=
(
1 0
0 1

)
be in the ring M2(Z/`i+1Z) of 2 × 2 matrices with coefficients in

Z/`i+1Z. Then, in M2(Z/`i+1Z), we have

Ii + A + A2 + · · ·A`i−1 = `i ·M

for some M ∈ M2(Z/`i+1Z).

Proof. When i = 1, we let

A =

1 + `p 1 + `q

`r 1 + `s

 =

1 1

0 1

 + ` ·

p q

r s


in G2 ⊆ GL2(Z/`2Z) be any lift of τ for some integers p, q, r and s.
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We will prove that, for any n ≥ 1,

An =

1 n

0 1

 + ` ·

np + n(n−1)
2 r anp + bnq + cnr + dns

nr n(n−1)
2 r + ns

 (10)

where the sequences an, bn, cn and dn are defined as

an = n(n− 1)/2 bn = n

cn = n(n− 1)(n− 2)/6 dn = n(n− 1)/2.

This formula is clear for n = 1. Now, we prove this for n ≥ 1. Note that the following

computation is in G2, so any multiple of `2 is replaced by 0.
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An ·A =


1 n

0 1

 + ` ·

np + n(n−1)
2 r anp + bnq + cnr + dns

nr n(n−1)
2 r + ns


×


1 1

0 1

 + ` ·

p q

r s


=

1 n + 1

0 1

 + `

1 n

0 1

 p q

r s


+ `

np + n(n−1)
2 r anp + bnq + cnr + dns

nr n(n−1)
2 r + ns

 1 1

0 1


=

1 n + 1

0 1

 + `

p + nr q + ns

r s


+ `

np + n(n−1)
2 r (np + n(n−1)

2 r) + (anp + bnq + cnr + dns)

nr nr + n(n−1)
2 r + ns


=

1 n + 1

0 1


+ `

(n + 1)p + n(n+1)
2 r (np + q + n(n−1)

2 r + ns) + (anp + bnq + cnr + dns)

(n + 1)r n(n+1)
2 r + (n + 1)s

 .

So, the equation (10) is proved if the sequences an, bn, cn and dn satisfy

an+1 = n + an, bn+1 = 1 + bn

cn+1 =
n(n− 1)

2
+ cn dn+1 = n + dn.

This is immediate from the definitions, and (10) follows.

In particular, when n = `, all of a`, b`, c` and d` are divisible by `. (We note here that

this is the only place where the assumption ` 6= 3 is needed.) Hence, from (10),

A` =

1 `

0 1


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in G2. For (b), we use (10) to compute

I0 + A + · · ·+ A`−1 =

1 0

0 1

 +

1 1

0 1

 · · ·+

1 `− 1

0 1

 + `M

= `

1 (`− 1)/2

0 1

 + `M

for some M ∈ M2(Z/`2Z). We proved (b) for i = 1.

Assume that i ≥ 2. Let A ∈ Gi be such that

A`i−1
=

1 `i−1

0 1


in Gi, and such that

Ii−1 + A + · · ·+ A`i−1−1 = `i−1M

in M2(Z/`iZ) for some M ∈ M2(Z/`iZ).

Choose any lift Â ∈ Gi+1 of A. Let T := (Â)`i−1
in Gi+1. Then, the projection of T in

Gi is equal to A`i−1
. Therefore, we have

T =

1 `i−1

0 1

 + `i

p q

r s


for some integers p, q, r and s. For n ≥ 1, we will prove the following formula inductively.

Tn =

1 n`i−1

0 1

 + `i · n

p q

r s

 (11)

The case n = 1 is clear. In the following computation, we note that any multiple of `2i−1

can be replaced by zero, because the computation is in Gi+1.

Tn · T =


1 n`i−1

0 1

 + `i · n

p q

r s




1 `i−1

0 1

 + `i

p q

r s


=

1 (n + 1)`i−1

0 1

 + `i · n

p q

r s

 1 `i−1

0 1

 + `i

1 n`i−1

0 1

 p q

r s


=

1 (n + 1)`i−1

0 1

 + `i

n

p q

r s

 +

p q

r s


=

1 (n + 1)`i−1

0 1

 + `i · (n + 1)

p q

r s

 .
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The equation (11) is proved.

Now, take n = `. Then, we have

(Â)`i
= T ` =

1 `i

0 1


in Gi+1. The part (a) is proved.

It remains to prove (b). First, we note that

Ii + Â + (Â)2 + · · ·+ (Â)`i−1−1 = `i−1M̂

for some M̂ ∈ M2(Z/`i+1Z). From (11), we have

Ii + T + T 2 + · · ·T `−1 =

1 0

0 1

 +

1 `i−1

0 1

 + · · ·+

1 (`− 1)`i−1

0 1

 + `N̂

= `

1 `i−1(`− 1)/2

0 1

 + `N̂

= `N̂ ′

for some N̂ , N̂ ′ ∈ M2(Z/`i+1Z). Therefore,

Ii + Â + (Â)2 + · · ·+ (Â)`i−1 = (Ii + T + T 2 + · · ·T `−1)(Ii + Â + (Â)2 + · · ·+ (Â)`i−1−1)

= (`N̂ ′)(`i−1M̂) = `i(N̂ ′M̂ ′).

The lemma is proved.

Remark 4.7. The assumption ` 6= 3 is needed only in the proof of Lemma 4.6. We

investigate the case ` = 3 more closely here.

As in the proof, let A ∈ G2 be a lift of τ with

A =

1 1

0 1

 + ` ·

p q

r s

 .

When ` = 3, we have a3 = 3, b3 = 3, c3 = 1 and d3 = 3. So, from the equation (10),

A3 =

1 3

0 1

 + 3 ·

0 r

0 0

 .

If r ≡ 0 mod 3, the proof in the lemma works without any change. If r ≡ 1 mod 3, then we

can replace A by A−1 and the rest of the proof works again. If all the lifts A of τ in G2 are

such that r ≡ −1 mod 3, then the proof does not work. And, this is the only case that we

don’t have the vanishing of H1(Gi, E[`i]).
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4.2 An example

Let A and B be the elliptic curves defined by the equations

A : y2 + y = x3 − x2 − 10x− 20

B : y2 + y = x3 − x2 − 7820x− 263580

and fix ` = 5. These curves are denoted by 11A1 and 11A2 respectively in Cremona’s table

[1]. They are also studied by Vélu in [16].

The group of rational torsion points A(Q)tors of the curve A is isomorphic to Z/5Z,

generated by the point P = (5, 5). And, the curve B has no rational torsion. There is an

isogeny over Q

f : A −→ B

of degree 5, whose kernel is generated by the point P .

Crucial is the fact that the Galois group Gal(Q(A[`])/Q) can be expressed in matrix

form as 1 0

0 ∗

 (12)

with respect to the basis {P,Q} with some non-rational `-torsion point Q of A [14, §§5.5.2].

Take R = f(Q) ∈ B[`] and complete a basis for B[`] by adding another point S ∈ B[`]. We

prove that G = Gal(Q(B[`])/Q) is isomorphic to Gexcept with respect to the basis {R,S}.

The character which fills in the lower right coefficient in (12) is nothing but the mod

` cyclotomic character χ` because of Weil pairing. Also, note that the point R spans a

proper G-submodule of B[`]. Therefore, G will be upper-triangular. With respect to the

basis {R, S}, The group G is represented asχ` β

0 1

 .

The lower-right 1 is again due to Weil pairing. Further, β is nontrivial, otherwise B would

have some rational `-torsion points. So, G is isomorphic to Gexcept.
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5 Application

For this section, our elliptic curve E is assumed to have no complex multiplication, unless

stated otherwise.

5.1 Extension of Kolyvagin’s result on X(E/K)

Let K = Q(
√

D) be an imaginary quadratic extension with fundamental discriminant D 6=

−3,−4 where all prime divisors of N split. The point yK ∈ E(K) will denote the Heegner

point associated with the maximal order in K. When yK is of infinite order, m is defined

to be the largest integer such that yK ∈ `mE(K) modulo `-torsion points.

By means of our Main Theorem obtained in §2–§4, we will prove Theorem 1.2 under the

weaker assumption “ρQ irreducible”, instead of “ρQ surjective”.

Theorem 5.1. Suppose that yK is of infinite order. Assume that ` does not divide D and

that E has a good or multiplicative reduction at `. If the Galois representation

ρQ : Gal(Q̄/Q) −→ Aut(E[`])

is irreducible over Z/`Z, then

ord` |X(E/K)| ≤ 2m.

Proof. The prime ` is unramified in K/Q. Therefore, a ramification argument shows that

K/Q is linearly disjoint with Q(E[`])/Q. Hence ρQ is irreducible, (resp. surjective) if and

only if ρK is irreducible (resp. surjective). Note that the irreducibility of ρQ implies that

E(K) has no `-torsion points. So, Assumption 1.1 is satisfied with the prime ` and K.

In [8], the surjectivity assumption is needed only for the proof of Proposition 2 in loc. cit.

Therefore, it suffices to prove Proposition 2 only under the irreducibility assumption.

We will follow the notations in [8]. For any natural number n,

[ , ]n : E[`n]× E[`n] −→ µ`n

is the Weil pairing on level `n with values in the group µ`n of `n-th roots of unity. The

group E[`n] admits the decomposition

E[`n] = E[`n]+ ⊕ E[`n]−
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with respect to the action of a complex conjugation. We may and will choose the generators

e+
n and e−n of E[`n]+ and E[`n]− respectively in a compatible manner for all n ≥ 1. That

is, ` · e+
n = e+

n−1 and ` · e−n = e−n−1.

Fix n′ > n, and let V = K(E[`n′ ]). For any g ∈ Gal(V/Q), we let α(g) = 1 if g restricts

to the identity on K, and α(g) = −1 otherwise. Note that any g acts on E[`n] via its

restriction to Q(E[`n]).

Lemma 5.2. Let P and Q be in E[`n]. If [P, ge−n ]n = [Q, ge+
n ]−α(g)

n for all g ∈ Gal(V/Q),

then P = Q = O.

Proof of Lemma 5.2. Induction on n. When n = 1, we have

[P, ge−1 ]1 = [Q, ge+
1 ]−α(g)

1 (13)

for all g ∈ Gal(V/Q). Recall that the extensions K/Q and Q(E[`])/Q are linearly disjoint.

Therefore, each σ ∈ Gal(Q(E[`])/Q) can lift to g̃1 and g̃2 in Gal(K(E[`])/Q) in such a way

that g̃1 restricts to the identity on K and g̃2 restricts to the unique nontrivial element in

Gal(K/Q). Further, g̃1 and g̃2 can be lifted to g1 and g2 in Gal(V/Q). By construction,

α(g1) = 1 and α(g2) = −1. Applying g1 and g2 in (13), we get

[P, σe−1 ]1 = [Q, σe+
1 ]1 = 1.

By the irreducibility assumption, it follows that {σe−1 }σ∈Gal(Q(E[`])/Q) generates E[`], hence

P = O. Similarly, Q = O.

Let n > 1. By raising the equation [P, ge−n ]n = [Q, ge+
n ]−α(g)

n to its `-th power, we get

[`P, g(`e−n )]n−1 = [`Q, g(`e+
n )]−α(g)

n−1 . Equivalently, we have

[`P, ge−n−1]n−1 = [`Q, ge+
n−1]

−α(g)
n−1

for all g ∈ Gal(V/Q). By the induction hypothesis, `P = `Q = O. Therefore P and Q are

in E[`] ⊆ E[`n]. From the compatibility of Weil pairing, we have [P, ge−n ]n = [P, ge−1 ]1 and

[Q, ge+
n ]n = [Q, ge+

1 ]1. We are reduced to the case n = 1, hence the lemma follows.

We proceed to prove Proposition 2 in [8], keeping the same notations. The homomor-

phism f : H1(K, E[`n]) −→ H1(V, µ`n) in [8] is defined by, for all z ∈ Gal(Q̄/V ),

f(h) : z 7−→ [h+(z), e−n ]2n[h−(z), e+
n ]2n
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where h = h+ + h− ∈ H1(K, E[`n]) is the decomposition with respect to the complex

conjugation. In the proof of Proposition 2 in loc. cit. , the surjectivity assumption is needed

(and nowhere else) to prove that f is injective.

The equation (18) in loc. cit. says that

[h+(z), ge−n ]n = [h−(z), ge+
n ]−α(g)

n

for all g ∈ Gal(V/Q). From Lemma 5.2, it follows that h+(z) = h−(z) = 0 for all z ∈

Gal(Q̄/V ). Therefore h is in the kernel of the restriction map

H1(K, E[`n]) −→ H1(V,E[`n]).

However, the kernel is equal to the cohomology group H1(Gn′ , E[`n]). The following lemma

is an easy corollary of our Main Theorem, and it will finish the proof of Theorem 5.1.

Lemma 5.3. H1(Gn′ , E[`n]) = 0 for all n′ > n.

Proof of Lemma 5.3. The short exact sequence

0 −→ E[`n] −→ E[`n′ ] ×`n

−→ E[`n′−n] −→ 0

yields the long exact Gn′-cohomology sequence, part of which is

E[`n′−n]Gn′ −→ H1(Gn′ , E[`n]) −→ H1(Gn′ , E[`n′ ]).

The irreducibility assumption implies that E(K) has no `-torsion points. Therefore, we

have E[`n′−n]Gn′ = 0. And our Main Theorem tells us that H1(Gn′ , E[`n′ ]) = 0.

Corollary 5.4. Suppose that yK , D and ` are as in Theorem 5.1. If ` > 37 then

ord` |X(E/K)| ≤ 2m.

Proof. It is known by the work of Mazur [11] that, for an elliptic curve E over Q with no

CM, the Galois representation ρQ is always irreducible for all ` > 37.

Remark 5.5. In [8], Kolyvagin not only finds the bound of ord` |X(E/K)| but also de-

termines the complete group structure of the `-part of X(E/K) in terms of the (higher)

Heegner points of E. This result also carries over mutatis mutandis only if we assume the

irreducibility of ρQ.
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5.2 Irreducible vs surjective

For a fixed elliptic curve E over Q, the set of primes ` where the mod ` Galois representation

ρQ is not surjective is usually small, (see [14] and [9]) and, in many cases, this set is empty

[2], [3]. However, if we vary E, there is no universal bound for ` known yet for which ρE,` is

surjective for all E. Corollary 5.4 can therefore be regarded as an improvement of Theorem

1.2 from a computational point of view.

A natural question is then to look for those E and `’s such that the associated repre-

sentation

ρE,` : Gal(Q̄/Q) −→ GL2(Z/`Z)

is irreducible, but not surjective. The rest of the section will be devoted to how one can

hope to find such examples.

5.2.1 ` = 3

Following Serre [14, §5.3], we study the case ` = 3 closely. Let

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

be the minimal Weierstrass equation of E over Z. Define, as usual, the following constants;

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a4a4 + 4a2a6 + a2a

2
3 − a2

4 = (b2b6 − b2
4)/4

c4 = b2
2 − 24b4, c6 = 36b2b4 − b3

2 − 216b6,

∆ = b3
4 − 27b2

6 + b8(36b4 − b2
2) = (c3

4 − c2
6)/1728, j = c3

4/∆

Let xi(i = 1, 2, 3, 4) be the x−coordinates of the nonzero 3-torsion points ±Pi(i = 1, 2, 3, 4)

respectively. They form the zeroes of the polynomial

f(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8.

Proposition 5.6. Suppose that ∆ is a cube in Q∗. If f(x) has at most one rational zero,

then ρE,` is irreducible but not surjective.

Proof. One knows (see [14, §5.3]) that the order of G3 := ρE,3(Gal(Q̄/Q)) is not divisible

by 3 if and only if ∆ is a cube in Q∗. When this happens, the group G3 is contained in
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a normalizer of a Cartan subgroup C of GL2(Z/3Z). If C is non-split, G3 is necessarily

irreducible and not surjective. In the case that C is split, G3 is equal to C or its normalizer.

In the former case, we see that G3 is isomorphic to one of the two groups±1 0

0 ±1

 or

±1 0

0 1

 .

Both of these groups project onto the same image in GL2(Z/3Z)/{±1} ' S4. It is a cyclic

group of order 2, leaving two elements fixed and switching the other two. This implies that

G3 fixes two roots of f(x) = 0. Hence f(x) has two rational zeroes.

When G3 is equal to a normalizer of C, one can find an element from the normalizer

which exchanges the two subspaces which are stable under the action of C. [14, §2.2] In

particular, this shows that ρE,3 is irreducible.

Example 5.7. The hypothesis in the proposition above can be checked easily. For example,

take

y2 + y = x3 − 7x + 12.

This is the curve 245A1 in Cremona’s table. The discriminant ∆ = −42875 = −5373 and

the polynomial f(x) is

f(x) = 3x4 + 0x3 + 3(−14)x2 + 3 · 49x + (−49) = 3x4 − 42x2 + 147x− 49.

One easily sees that f(x) is irreducible over Q, so the above proposition applies.

5.2.2 ` = 3 or 5

If one has a single example of E with an irreducible, non-surjective representation ρE,`

with ` = 3 or 5, we can generate many other examples of such representations using the

parametrization given by Rubin and Silverberg [13]. The parametrization gives (isomor-

phism classes of) elliptic curve Et, indexed by almost all rational number t, with Et[`] ' E[`]

as Gal(Q̄/Q) modules. Note that a CM curve will always provide with such an example.

5.2.3 ` > 5

The strategy in the previous paragraph – to start with one example E and then to construct

other curves E′ with E′[`] ' E[`] as Gal(Q̄/Q) modules – fails when ` is larger than 5;
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indeed it was a question of Mazur (cf. [11], p133) to determine all such E′. See [5] for the

case ` = 7. Of course, the larger ` is, the harder to find a non surjective ρE,`.
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[16] J. Vélu. Courbes elliptiques sur q ayant bonne réduction en dehors de {11}. C. R.
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