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1 Introduction

In this write-up we discuss the problem of counting points on an elliptic curve
over a finite field. Here, an elliptic curve E is the zero locus of an algebraic
equation of a special form. Over a field of characteristic 6= 2, 3, this equation
can be written as

y2 = x3 +Ax+B. (1)

This is commonly known as Weierstraß form. To be rigorous, we would have
to introduce projective coordinates to define the entire zero locus. However, in
the case of an elliptic curve, the zero locus includes all the points (x, y) satisfying
equation (1), these are known as affine points, plus exactly one additional point
P∞ “at infinity”. While there is also an extensive theory of elliptic curves over
Q and C, in this presentation, we will focus on elliptic curves E(Fq) over a finite
field Fq, where q = pk and p is a prime greater than 3.

One of the important properties of elliptic curves is the existence of a group
law

⊕ : E × E → E.

Given E as above, the addition on the curve is given as follows: For P1 = (x1, y1)
and P2 = (x2, y2), P1 ⊕ P2 = P3 = (x3, y3) where

1) If x1 6= x2 then

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1 with m =
y2 − y1
x2 − x1

.

2) If x1 = x2 but (y1 6= y2, or y1 = 0 = y2) then P3 = P∞.

3) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1 with m =
3x2

1 +A

2y1
.

4) P∞ acts as the identity element in this addition.
Among other things, this allows elliptic curves to be used in cryptography,
usually taking advantage of the difficulty of the discrete logarithm problem
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for group E(Fq). Because of this application, an important computation for
cryptographic purposes is the cardinality of E(Fq), which also happens to be
the order of the group used for encryption. If the order of the group has small
primes dividing it, then it leads to a weaker encryption scheme. Thus, if one is
going to use elliptic curves for cryptography, it is important to have an efficient
method to test the strength of the encryption scheme for a given curve E over
Fq.

While a few methods exist for computing the size of |E(Fq)| (as described
in [5]), e.g. directly counting after running through possible values of x and y
in Fq, applying the formula

|E(Fq)| = q + 1 +
∑
α∈Fq

(
x3 +Ax+B

q

)
,

Shank’s Baby Step-Giant Step Method; the fastest one for extremely large
primes is a variant of Schoof’s algorithm.

Here I will first describe Schoof’s original algorithm, as presented in [8] and
summarized in [11]. After this warm-up, we will describe an improvement of
Elkies which leads to a more efficient algorithm. There is in fact an additional
improvement from Atkin to make Schoof-Elkies-Atkin (SEA) one of the fastest
algorithm for counting the number of points on E over a large prime field, but
its description will be outside the scope of this paper. (This full algorithm has
been implemented in the computer algebra systems Magma, PARI, and SAGE.
Please see [7] for details on the PARI implementation. In SAGE, you can use
the command E.sea(p).)

To begin, we note that the size of E(Fq) is very close to q + 1. This is
not completely surprising since half of the elements of F×q are squares, and the
equation y2 = α has two solutions if α is a square, one solution if α = 0, and
zero solutions if α is not a square in F×q . Thus y2 = x would have exactly
q solutions of form (x0, y0) plus the point at infinity. Unfortunately, it is not
always true that quantity x3 +Ax+B, x ∈ Fq, is a square half the time, but we
at least expect it to be a square close to half the time. By analogous reasoning,
we get that y2 = x3 +Ax+B will have approximately q+1 solutions, including
P∞.

We now proceed to make this statement more precise.

Theorem 1 (Hasse 1934). Letting N1 denote |E(Fq)|, we obtain that

|N1 − q − 1| ≤ 2
√
q.

This is a deep theorem, and can actually be shown to be equivalent to the
Riemann Hypothesis for genus one function fields. We will give a partial proof
of this theorem in Section 2. More details are in [11]. We have now simplified our
problem by narrowing down |E(Fq)| to a finite (albeit large) set of possibilities.

Rene Schoof’s insight was exploiting the fact we know that there is a finite
range of possible values for the cardinality of E(Fq). Hence, if we had some
way of computing the size of E(Fq) modulo N where N > 4

√
q, that would
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be sufficient for determining |E(Fq)|. There is not an efficient way to compute
|E(Fq)| mod N directly for general N , however there is an efficient way to
compute |E(Fq)| mod l for l prime.

Hence, we will compute |E(Fq)| mod l for l in a set S of primes such that∏
l∈S l = N > 4

√
q. The Chinese Remainder Theorem, found described in

numerous sources including [3], allows us to compute |E(Fq)| mod N given
|E(Fq)| mod l for all l ∈ S.

We now proceed to describe how to efficiently compute |E(Fq)| mod l for
a prime l 6=p. Note that requiring p 6∈ S is no loss since we can pick a bigger
prime to take its place to ensure the product is big enough.

To efficiently compute |E(Fq)| mod l, we will acutally find it easier to com-
pute the values

tl ≡ q + 1− |E(Fq)| (mod l).

This computation will require a digression into the theory of the Frobenius map
and Division Polynomials so we provide those now.

2 The Characteristic Equation for the Frobe-
nius Endomorphism

Given an elliptic curve E(Fq) we consider E to be the curve with same defining
equation as E, but now allowing points with coordinates in Fq, the algebraic
closure of Fq. Given curve E, there exists a map, in fact its an endomorphism
back onto E, defined as

π : (x, y) 7→ (xq, yq).

This map has several useful properties:
• For P ∈ E, π(P ) ∈ E, thus it is in fact an endomorphism of E as claimed.
• For P ∈ E, π(P ) = P if and only if P ∈ E(Fq). In particular π(P∞) = P∞.
• For P,Q ∈ E, π(P ⊕ Q) = π(P ) ⊕ π(Q), thus π is compatible with the

addition on the curve and in fact we can think of acting by π as multiplication
in our endomorphism ring since the distributive law holds.

On E(Fq), the Frobenius map satisfies the characteristic equation π−1 = 0.
This begs the question of what kind of characteristic equation π satisfies on all
of E. In fact in satisfies a quadratic equation.

Theorem 2. Frobenius map π satisfies the characteristic equation

π2 − tπ + q = 0 (2)

where t = q + 1− |E(Fq)|.

The proof of Theorem 2 is outside the scope of this presentation, although please
see [11] for details. Nonetheless, we can use Theorem 2 to give a sketch of the
proof of Theorem 1.
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Proof. (Sketch) It can be shown that not only is x2 − tx+ q the characteristic
equation for the Frobenius map π, but furthermore, for all rational numbers
r/s ∈ Q,

(r/s)2 − t(r/s) + q ≥ 0. (3)

This of course implies that x2− tx+ q ≥ 0 for all real numbers x ∈ R. One way
to show inequality (3) is by using π’s characteristic equation to prove that for
all r, s ∈ Z, the quantity r2 − trs+ qs2 equals deg (r − sπ), which is in Z≥0 by
definition of degree. Once we have x2 − tx+ q ≥ 0 for all real numbers x ∈ R,
Theorem 1 quickly follows by noting that the discriminant cannot be positive,
hence

t2 − 4q ≤ 0 ⇒ |t| ≤ 2
√
q.

Theorem 2 also immediately implies the following identity on the curve E:

For all P = (x, y) ∈ E, (xq2
, yq2

)⊕ q(x, y) = t(xq, yq)

where scalar multiplication by t (or q) signifies adding a point to itself t (or q)
times. We now spend the rest of this section, as well as the next two, on the
problem of determining tl, defined as t mod l, for a given prime l 6= 2, p. We
therefore, refer to l as if it’s been fixed, unless otherwise specified.

If point (x, y) is in the torsion subgroup E[l], meaning that l(x, y) = P∞,
then the point qP = qP where q signifies q mod l, choosing q so that |q| < l/2.
Since π(P∞) = P∞, and r ∈ Z implies r · π(P ) = π(rP ) by repeated use of the
distributive law, π(P ) will have the same order as P . Thus for (x, y) ∈ E[l], we
also have t(xq, yq) = t(xq, yq) where t is t mod l. Hence we have reduced our
problem to solving the equation

(xq2
, yq2

)⊕ q(x, y) ≡ t(xq, yq) (mod l) (4)

for t (mod l).
The idea now is to explicitly compute (xq2

, yq2
)⊕q(x, y) as a pair of rational

functions (x′, y′) in terms of x and y. One method for finding tl would involve
plugging in t = 0, 1, 2, . . . , l−1 and find t such that the pair of rational functions
given by t(xq, yq) are the same as the pair of rational functions on the left-hand-
side, thus determining tl. However, to do this more efficiently, we use division
polynomials to allow us to compute multiples of a point P , and work with
polynomials with bounded degrees instead of rational functions.
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3 Division Polynomials

We define a sequence of polynomials in Z[x, y,A,B] via the following initial
conditions and recurrence equations:

ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)
· · ·

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m = (
ψm

2y
) · (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 2

The polynomial ψn is known as the nth Division Polynomial [6, 11]. These
polynomials turn out to have the remarkable property that all of the finite n-
torsion points (x0, y0), i.e. elements of E[n] \ {P∞}, satisfy ψ2

n(x0, y0) = 0.
(Note that it can be shown using a variant of the characteristic equation (2)
that the number of finite torsion points is exactly n2 − 1.)

Additionally, we can define the multiple of a point, r · (x, y), as a pair of
rational functions in terms of x and y using the ψn’s. In particular, we have the
following:

Proposition 1. Let P = (x, y) be a point on the elliptic curve y2 = x3+Ax+B
over some field of characteristic 6= 2. Then for any positive integer n, nP =
P ⊕ P ⊕ P ⊕ · · · ⊕ P is given by

nP =
(
φn(x)
ψ2

n(x)
,
ωn(x, y)
ψ3

n(x, y)

)
=

(
x− ψn−1ψn+1

ψ2
n(x)

,
ψ2n(x, y)
2ψ4

n(x)

)
.

−nP =
(
φn(x)
ψ2

n(x)
, − ωn(x, y)

ψ3
n(x, y)

)
=

(
x− ψn−1ψn+1

ψ2
n(x)

, − ψ2n(x, y)
2ψ4

n(x)

)
where the polynomials φn and ωn are defined as

φm = xψ2
m − ψm+1ψm−1

ωm =
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4y
.

Note that using the equivalence relation y2 ≡ x3+Ax+B and the recurrence
relations for ψ2m and ψ2m+1, we can inductively prove that

ψ2
n,

ψ2n

y
, ψ2n+1, and φn are all functions in terms of x.
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As a corollary, the x-coordinate of nP is a rational function strictly in terms
of x, and the y-coordinate has the form y · Θ(x). Proposition 1 is commonly
proved using the theory of the Weirestraß P-function, as given in [6] and [11,
Chapter 9].

We can summarize these results as follows: ψ2 is a function in x alone and
has degree n2−1, which equals the number of finite n-torsion points. The degree
of ψ2 is easily verified via the above recurrence relations. Furthermore, if n is
odd and (x0, y0) ∈ E \ {P∞}, then

ψn(x0) = 0 if and only if (x0, y0) ∈ E[n]. (5)

If n is even, E defined by equation y2 = (x − α1)(x − α2)(x − α3) over Fq,
and (x0, y0) ∈ E \ {P∞, (α1, 0), (α2, 0), (α3, 0)}, then

ψn

y
(x0) = 0 if and only if (x0, y0) ∈ E[n]. (6)

4 The Remainder of the Original Algorithm

With preliminaries out of the way, we proceed to present Schoof’s algorithm for
computing tl, which is defined as q+1−|E(Fq)| (mod l), for l 6= 2, p. We recall
our definition of q as a specific integer satisfying q ≡ q (mod l) and |q| < l/2.
First we use division polynomials to rewrite q(x, y) as a pair of rational functions
in x and y:

(xq, yq) = q(x, y) =
(
x− ψq−1ψq+1

ψ2
q (x)

,
ψ2q(x, y)
ψ4

q (x)

)
.

We then encounter an obstacle because the formula for computing

(xq2
, yq2

)⊕ q(x, y),

given rational function representations of each of (xq2
, yq2

) and (xq, yq) = q(x, y),
will depend on which of three cases, (e.g. are the points distinct, do they share
the same x-coordinate), we are in. There is not an efficient enough way to de-
termine which case we are to justify taking the time to check whether or not
we happen to fall into the two uncommon special cases. Thus we might as
well assume we happen to be in the case (xq2

, yq2
) 6= ±q(x, y). If our guess is

correct, which it will be most of the time, the proceeding algorithm will find
tl for us. If our guess is incorrect, our algorithm will find that no such t that
will satisfy (4), hence alerting us that we are in the case (xq2

, yq2
) = q(x, y) or

(xq2
, yq2

) = −q(x, y). We will prove the above assertions, and give the algorithm
for these two cases in Section 4.1.

Thus, as prescribed, we now assume that (xq2
, yq2

) 6= ±q(x, y) for some
(x, y) ∈ E[l] \ {P∞}. Hence, if we wish to compute

(x′, y′) = (xq2
, yq2

)⊕ q(x, y),
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we can use the usual addition formula and obtain

x′ =
(
yq2 − yq

xq2 − xq

)2

− xq2
− xq.

We get an analogous formula for y′, but it is more computationally efficient to
first use the x-coordinate to narrow down the choice of t to two possibilities.
We must then determine which square-root of

±
√
x′3 +Ax′ +B

to use.
We recall from Section 3 that the y-coordinate of q(x, y), which we denote

as yq, equals yΘ(x) and factor

(yq2
−yΘ(x))2 = y2(yq2−1−Θ(x))2 = (x3+Ax+B)

(
(x3+Ax+B)

q2−1
2 −Θ(x)

)2

to discover that x′ is a rational function in variable x alone.
We will soon use the following fact: If x′ = xq

t
for one point P in E[l]\{P∞},

then t satisfies
π2(P )	 tπ(P )⊕ qP = P∞.

But since t in the characteristic equation is fixed, we obtain that this choice of
t must indeed be tl and we have proven x′ = xq

t
for all points P in E[l] \ {P∞}.

We recall that our goal is to solve (4) for t. Taking x-coordinates of both
sides, we obtain that the left-hand-side of (4) is x′ and the right-hand-side is
xq

t
. We use our fact that for odd prime l, point (x0, y0) ∈ E[l] \ {P∞} if and

only if ψl(x0) = 0. Furthermore, the roots of ψl are simple by an easy counting
argument. In particular, the degree of ψ2

l is exactly the number of finite l-torsion
points.

Thus the equality x′0 = xq
0t

at all points (x0, y0) ∈ E[l] \ {P∞} is equivalent
to the statement

ψl(x)
∣∣∣∣(x′ − xq

t
)

as a polynomial in x, modulo l. In conclusion, to solve (4) for t, we need only
solve

x′ − xq

t
≡ 0 (mod ψl) (7)

for t.
This computation can be done efficiently for given t ∈ {1, 2, . . . , l−1

2 } by
computing the power xq

t
by successive squaring. (Note that we can stop

checking t at l−1
2 since we are only currently determining tl up to additive

inverse modulo l.) We create a table of

x2i

t (mod ψl) for i = 0, 1, 2, . . . , log2 q,
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each of which will be a polynomial of degree less than l2−1
2 = deg ψl. We then

can compute xq

t
≡ x2i1

t
· · ·x2ik

t
(mod ψl) where q = 2i1 + · · ·+ 2ik is the binary

expansion of q.
Once we find t such that (7) is satisfied, we have found t such that

(xq2
, yq2

)⊕ q(x, y) = ±t(xq, yq) (mod l).

In particular −(xq, yq) = (xq,−yq) thus the x-coordinate can only narrow down
the possibilities of tl to two.

To find whether tl is +t or −t we check whether or not

(y′ − yq

t
)/y ≡ 0 (mod ψl). (8)

If so, then we choose +t, otherwise tl = −t. This is sufficient for exactly the
same reason as the sufficiency of (7).

4.1 The Cases (xq2
, yq2

) = ±q(x, y)

Our first important assertion is that if we falsely assumed points (xq2
, yq2

) and
q(x, y) = (xq, yq) had different x-coordinates, then the above procedure would
not have found t such that (4) was satisfied.

Suppose on the contrary, that t ∈ {1, 2, . . . , l−1
2 } has satisfied (7) but that

we have (xq2
, yq2

) = ±q(x, y). Then

t(xq, yq)	 (xq2
, yq2

)

would be the same point as q(x, y) = ±(xq2
, yq2

), modulo l. But, this will lead
to an immediate contradiction in the addition law.

So once we have failed to find a t we know that we have (xq2
, yq2

) = q(x, y)
or (xq2

, yq2
) = −q(x, y). So now assume we are in this case. Let us assume

further that we have

(xq2
, yq2

) = +q(x, y). (9)

Like before, our guess might be incorrect, but we will soon find out so. For
P = (x, y) ∈ E[l]\{P∞} satisfying (9), we obtain via the characteristic equation
(2) modulo l that

tπ(P ) = 2qP.

By (9), we also have
t2qP = t2π2(P ) = tπ(tπ(P ))

which equals (2q)2P . Consequently,

t
2
qP ≡ (2q)2P (mod l)

and thus q is a square modulo l unless t ≡ 0 (mod l). However, that would
imply 2qP = P∞, which is a contridiction since P ∈ E[l] and gcd(q, l) assumed
to be 1.
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Once we know q is a square, the rest follows easily. We find q’s square-roots
over Fl efficiently by using gcd(x2 − q, xl − x) or otherwise. If q ≡ w2 (mod l),
we find tl will be ±2w mod l depending on the y-coordinate, i.e. the rational
function yw.

(X ± w)(X ± w) = X2 ± 2wX + q. (10)

If yw matches yq, then tl = 2w, otherwise tl = −2w.
If q happened not to be a square, then our second assumption was also false,

meaning we were in the third case

(xq2
, yq2

) = −q(x, y).

Once we know we are in this csae, it is also easy since we immediately find

(xq2
, yq2

)⊕ q(x, y) = P∞

since they were additive inverses. Hence, tl ≡ 0 in this case.
However, we still have to worry about the case of a false positive, i.e. it is

possible for q to be a square mod l but (xq2
, yq2

) = −q(x, y) nonetheless. It is
sufficient to check whether or not either square root ±w satisfies π(P ) = ±wP ,
for P ∈ E[l] \ {P∞}, hence leading to the factorization of the characteristic
equation for π as in (10).

The simple calculation of

gcd(numerator(xq − xw), φl)

and the test of whether or not it is 1 suffices. We have π(P ) = ±wP for some
P ∈ E[l] \ {P∞} if and only if the gcd 6= 1.

4.2 Case of l=2

Note that the above description actually works only for odd l 6= p. However, we
can also run an analogous procedure for l = 2. This allows us to choose set S
to contain slightly smaller primes. Since we assume q odd,

q + 1− t ≡ t(mod 2)

and in particular, t2 ≡ 0 (mod 2) if and only if E(Fq) has an element of order
2. By definition of ⊕, any element of order 2 must be of the form (x0, 0). Thus
t2 ≡ 0 (mod 2) if and only if x3 + Ax + B has a root in Fq. An efficient way
to check this is by taking the gcd(xq − x, x3 + Ax + B). Here we compute xq

efficiently by taking successive squares modulo x3 +Ax+B. In summary t2 ≡ 0
if and only if gcd(xq − x, x3 +Ax+B) 6= 1.
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4.3 Summary

We can summarize the procedure as follows:
1) Choose a set of primes S, with p 6∈ S such that

∏
l∈S l > 4

√
q.

2) For l = 2, we find tl ≡ 0 if and only if gcd(xq − x, x3 +Ax+B) 6= 1.
3) For l ∈ S \ {2}, do the following:

a) Let q be the unique integer satisfying q ≡ q (mod l) and |q| < l
2 .

b) Compute univariate rational function x′ as defined above. We can
even work modulo ψl so we can use polynomials of bounded degree instead.

c) For t ∈ {1, 2, . . . , l−1
2 } do:

i) Check if x′−xq

t
≡ 0 modulo ψl. If so, go to step (ii). Otherwise,

try the next value of t. If you have unsuccessfully tried l−1
2 , go to step (d)

instead.
ii) Check whether or not (y′ − yq

t
)/y ≡ 0 modulo ψl. If so, then

tl ≡ t. Otherwise, tl ≡ −t.
d) Find q’s square roots modulo l, if they exist. If they don’t exist then

tl ≡ 0. Otherwise write q ≡ w2 (mod l).
e) Check whether or not gcd(numerator(xq−xw), ψl) = 1. If so, tl ≡ 0.

Otherwise go to step (f).
f) Check whether or not gcd(numerator((yq − yw)/y), ψl) = 1. If this

gcd is 1, then tl ≡ −2w. Otherwise, tl ≡ 2w.
4) We now have computed tl for all l ∈ S. Thus we know |E(Fq)| ≡ 1 + q −

tl (mod l) for every l in S. Using the Chinese Remainder Theorem, we obtain
|E(Fq)| modulo N , where N =

∏
l∈S l. Since set S was chosen so that N > 4

√
q,

by Hasse’s theorem, we in fact know |E(Fq)| precisely.

As described in the introduction, Schoof’s algorithm was a huge improvement
over previous methods, having an asymptotic running times of (log q)8. In the
1990’s Noam Elkies discovered an improvement to this algorithm that yields
a faster running time. The trick is to restrict set S to primes of a certain
type, now known as Elkies primes, and to use modular polynomials instead of
division polynomials. Before describing this improvement, we will first introduce
modular polynomials.

5 Modular Polynomials

Modular Polynomials come from the theory of modular forms and an interpre-
tation of elliptic curves over C as lattices. Being a lattice, the matrix group
SL2(Z) naturally acts on C/(Z + Zτ). Two lattices are considered to be equiv-
alent if there is a natural way to re-scale and rotate one to get the other. It
turns out that two elliptic curves are isomorphic as groups if their associated
C-lattices are equivalent. Thus a certain invariant, known as the j-invariant,
of lattice theory is in fact an invariant of isomorphic elliptic curves as well. For
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E given in Weierstraß form (1), we have

j(E) = 1728
4A3

4A3 + 27B2
.

5.1 Thinking in terms of cosets

We will now go back and forth between j(E) and j(z), where we use j(z) to
refer to the j-invariant of a lattice with basis {ω1, ω2} such that z = ω1

ω2
∈ C.

The matrix groups GL2(Z) and SL2(Z) naturally act on C so it makes sense to
use notation such as j(M · z) for M ∈ GL2(Z) or SL2(Z).

Proposition 2. [10] If M is a 2 × 2 integer matrix with detM = m ∈ Z>0

then j(M · z) and j(z) are algebraically related, meaning there exists a bivariate

polynomial Φm(x, y) ∈ Z[x, y] such that Φm

(
j(M · z), j(z)

)
= 0.

Proof. (Sketch)
If we consider the group Mm of all matrices of determinant m, we obtain

that Mm has a left-coset decomposition as

Mm =
⋃

a,b,d

SL2(Z) ·
(
a b
0 d

)
where we add the restrictions a > 0, d > 0, ad = m, and 0 ≤ b < d.

Since the set of j-invariants{
j(B · z) : B ∈Mm

}
=

{
j(BA · z) : B ∈Mm

}
for A ∈ SL2(Z),

we find that

Φm(x, j(z)) =
∏

M∈Mm

(
x− j(M · z)

)
=

(
x− j

(
az + c

d

))
satisfies the desired properties. Note that it can be shown that this polynomial
is integral.

6 Sketch of Elkies’ Improvement

Given the characteristic equation for the Frobenius map,

π2 − tπ + q = 0,

we define a prime l to be an Elkies prime if this equation splits over Fl. This
is equivalent to whether or not the discriminant t2 − 4q is a square modulo l.
We define l to be an Atkin prime if it is not an Elkies prime.
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Remark 1. Note that the condition of being an Elkies or Atkin prime is con-
tingent on the choice of curve E and field Fq which determine a specific char-
acteristic equation for π. Since we have assumed a fixed choice of E and Fq

all along, we will from here on out simply refer to primes l as Elkies or Atkin
primes, without further specification, for the sake of expository convenience.

Since our goal is to compute t, which is required to test what type a given
prime is, this definition has yet to improve the algorithm; however this is where
the modular polynomial Φl for prime l plays a role. The following deep result
plays a key role. We omit its proof but please see [1] or [2] for details.

Proposition 3. A prime l is an Elkies prime for curve E over Fq if and only
if Φl(x, j(E)) has a root for x ∈ Fq, where j(E) is the j-invariant for curve E.

It is efficient to test whether or not prime l is an Elkies prime or not: we
take the gcd of Φl(x, j(E)) with xq − x as in Section 4.2. If l is not an Elkies
prime, we do not include it in our set S. Furthermore, roughly half the primes
are Elkies primes (a non-trivial but known fact), so this will not increase the
size of the primes in S too significantly. (In all this, we always assume that
l 6= 2, p where p is the characteristic of Fq.) The added efficiency for computing
t (mod l) for only Elkies primes l will dominate the reduced efficiency for using
larger primes l.

In particular, when l is an Elkies prime, we will be able to solve the equation
π(x, y) = (xq, yq) = λ(x, y) for λ using a degree l−1

2 factor of the degree l2−1
2

division polynomial ψl. By virtue of being an Elkies prime, the characteristic
equation for π splits modulo l, and it follows that

π2 − tπ + q = (π − λt)(π − λt)

such that λλ = q. Consequently,

tl ≡ λ+
q

λ
(mod l).

Thus to compute tl, it is sufficient to compute an eigenvalue λ ∈ {1, 2, . . . , l−
1} of the Frobenius map, and hence that is now our current goal. For this
purpose, we consider a cyclic subgroup of E(Fq), which we denote by C which
is fixed by the action of the Frobenius map. Thus the polynomial

Fl(x) =
∏

±Pi∈C\{P∞}

(x− (Pi)X)

has integral coefficients, hence is defined over Fq. Here this product is meant
to only include one out of each of the pairs ±Pi, since both have the same x-
coordinate. The notation (Pi)X signifies the x-coordinate of point Pi. Note that
there are efficient methods for explicitly computing Fl(x), we refer the reader
to Section VIII.4 of [1].
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We now can work modulo Fl(x) instead of modulo ψl which has smaller
degree, l−1

2 , hence is more efficient; i.e. instead of needing to solve equation (7),
it suffices to solve

x′ − xq
λ ≡ 0 (mod Fl) (11)

for λ.
We end with the note that Atkin’s improvement involves the efficient extrac-

tion of information about tl even for l a non-Elkies prime, i.e. an Atkin prime.
However the description of this algorithm is a topic for another day. Please see
[1] or [9] for details.
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