Selected Matches for: Items Authored by Stein, William
Return to headlines
Next Item
MR2085902
Agashe, Amod(1-TX);
Stein, William(1-HRV)
Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero.
(English. English summary)
With an appendix by J. Cremona and B. Mazur.
Math. Comp. 74 (2005),
no. 249, 455--484 (electronic).
11G40 (11G10)
{A review for this item is in process.}
[References]
Note: |
This list, extracted from the PDF form of the original paper, may
contain data conversion errors, almost all limited to the mathematical
expressions.
|
- A. Agashe, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris S'er. I Math. 328 (1999), no. 5, 369--374. MR1678131 (2000e:11083)
- A.
Agashe and W. A. Stein, Appendix to Joan-C. Lario and Ren'e Schoof:
Some compu- tations with Hecke rings and deformation rings, to appear
in J. Exp. Math. cf. MR1959271 (2004b:11072)
- A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate Groups of Abelian Varieties, to appear in J. of Number Theory (2002). cf. MR1939144 (2003h:11070)
- A. Agashe and W. A. Stein, The Manin constant, congruence primes, and the modular degree, preprint, (2004). http://modular.math.washington.edu/papers/manin-agashe/
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user lan- guage, J. Symbolic Comput. 24 (1997), no. 3-4, 235--265, Computational algebra and number theory (London, 1993). MR1484478
- B.J. Birch, Elliptic curves over Q : A progress report,
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence,
R.I., 1971, pp. 396--400. MR0314845 (47 #3395)
- S. Bosch, W. L"utkebohmert, and M. Raynaud, N\'eron models, Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034)
- J. W.S. Cassels, " Arithmetic on curves of genus 1 . III. The Tate-\v Safarevi\v c and Selmer groups'', Proc. London Math. Soc. (3) 12 (1962), 259--296. MR0163913 (29 #1212)
- J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. MR1628193 (99e:11068)
- J. E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Ex- periment. Math. 9 (2000), no. 1, 13--28. MR1758797 (2001g:11083)
- B. Conrad and W.A. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001), no. 5--6, 745--766. MR1879817 (2003f:11087)
- C. Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over Q, Experiment. Math. 10 (2001), no. 2, 191--196. MR1837670 (2003a:11065)
- F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39--133. MR1357209 (97g:11044)
- B. Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989), Birkh"auser Boston, Boston, MA, 1991, pp. 25--39. MR1085254 (92a:11066)
- M. Emerton, Optimal quotients of modular Jacobians. Preprint. cf. MR2021024
- E.V. Flynn, F. Lepr'evost, E. F. Schaefer, W. A. Stein, M. Stoll, and J. L. Wetherell, Em- pirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675--1697. MR1836926 (2002d:11072)
- J-M. Fontaine, Groupes finis commutatifs sur les vecteurs de Witt, C. R. Acad. Sci. Paris S'er. A-B 280 (1975), Ai, A1423--A1425. MR0374153 (51 #10353)
- B.H. Gross, L -functions at the central critical point, Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, pp. 527--535. MR1265543 (95a:11060)
- A. Grothendieck, Le groupe de Brauer. III. Exemples et compl\'ements, Dix Expos'es sur la Cohomologie des Sch'emas, North-Holland, Amsterdam, 1968, pp. 88--188. MR0244271 (39 #5586c)
- A. Grothendieck, Mod`eles de N\'eron et monodromie in Groupes de monodromie en g\'eom\'etrie alg\'ebrique. I,
Springer-Verlag, Berlin, 1972, S'eminaire de G'eom'etrie Alg'ebrique du
Bois-Marie 1967--1969 (SGA 7 I), Dirig'e par A. Grothendieck. Vol. 288.
MR0354656 (50 #7134)
- B. Gross and D. Zagier, Heegner points and derivatives of L -series, Invent. Math. 84 (1986), no. 2, 225--320. MR0833192 (87j:11057)
- N.M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481--502. MR0604840 (82d:14025)
- V.A. Kolyvagin and D.Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171--196. MR1036843 (91c:11032)
- V.A. Kolyvagin and D.Y. Logachev, Finiteness ofover totally real fields, Math. USSR Izvestiya 39 (1992), no. 1, 829--853. MR1137589 (93d:11063)
- D.R. Kohel and W. A. Stein, Component Groups of Quotients of J0( N), Proceedings of the 4th International Symposium (ANTS-IV), Leiden, Netherlands, July 2--7, 2000 (Berlin), Springer, 2000. MR1850621 (2002h:11051)
- S. Lang, Number theory. III, Springer-Verlag, Berlin, 1991, Diophantine geometry. MR1112552 (93a:11048)
- H. W. Lenstra, Jr. and F. Oort, Abelian varieties having purely additive reduction, J. Pure Appl. Algebra 36 (1985), no. 3, 281--298. MR0790619 (86e:14020)
- Joan-C. Lario and Ren'e Schoof, Some computations with Hecke rings and deformation rings, Experiment. Math. 11 (2002), no. 2, 303--311, with an appendix by Amod Agashe and William Stein. MR1959271 (2004b:11072)
- B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183--266. MR0444670 (56 #3020)
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes'Etudes Sci. Publ. Math. (1977), no. 47, 33--186 (1978). MR0488287 (80c:14015)
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129--162. MR0482230 (80h:14022)
- B. Mazur and J. Tate, Points of order 13 on elliptic curves, Invent. Math. 22 (1973/74), 41--49. MR0347826 (50 #327)
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103--150. MR0861974
- A. P. Ogg, Rational points on certain elliptic modular curves,
Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis
Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973,
pp. 221--231. MR0337974 (49 #2743)
- B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109--1149. MR1740984 (2000m:11048)
- G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), no. 3, 523--544. MR0318162 (47 #6709)
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Prince- ton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1. MR1291394 (95e:11048)
- G. Stevens, Arithmetic on modular curves, Birkh"auser Boston Inc., Boston, Mass., 1982. MR0670070 (87b:11050)
- W. A. Stein, Explicit approaches to modular abelian varieties, Ph.D. thesis, University of California, Berkeley (2000).
- W. A. Stein, An introduction to computing modular forms using modular symbols, to appear in an MSRI Proceedings (2002).
- W. A. Stein, Shafarevich-Tate groups of nonsquare order, Proceedings of MCAV 2002, Progress of Mathematics (to appear). cf. MR2058655
- J. Sturm, On the congruence of modular forms, Number theory (New York, 1984--1985), Springer, Berlin, 1987, pp. 275--280. MR0894516 (88h:11031)
- J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Inter- nat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288--295. MR0175892 (31 #168)
- J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, S'eminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1966 (reprinted in 1995), Exp. No. 306, 415--440. MR1610977
Next Item
MR2023296
Coleman, Robert F.(1-CA);
Stein, William A.(1-HRV)
Approximation of eigenforms of infinite slope by eigenforms of finite slope.
Geometric aspects of Dwork theory. Vol. I, II,
437--449,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
11F33
References: 0 | Reference Citations: 0 | Review Citations: 0 |
{A review for this item is in process.}
Previous Item
Next Item
MR2058655 (2005c:11072)
Stein, William A.(1-HRV)
Shafarevich-Tate groups of nonsquare order.
(English. English summary)
Modular curves and abelian varieties,
277--289,
Progr. Math., 224,
Birkh�user, Basel, 2004.
11G10
In an unguarded moment, P. Swinnerton-Dyer \ref[in
Proc. Conf. Local
Fields (Driebergen, 1966), 132--157, Springer, Berlin, 1967;
MR0230727 (37 \#6287)] wrote
that if the group
${\cyr Sh}(A)$ (of everywhere locally trivial $K$-torsors
under an abelian variety $A$ over a number field $K$) is finite---as
it is widely conjectured to be---then a theorem of Tate would
imply that its order ${\cyr sh}(A)$ is a square, i.e. for every prime $p$,
the exponent $v_p({\cyr sh}(A))$ of $p$ in ${\cyr sh}(A)$ is even.
What the results of J. Tate \ref[in Proc. Internat. Congr. Mathematicians
(Stockholm, 1962), 288--295, Inst. Mittag-Leffler, Djursholm, 1963; MR0175892 (31 \#168)] and M. Flach \ref[J. Reine Angew. Math.
412 (1990), 113--127; MR1079004 (92b:11037)] do imply is that
$v_p({\cyr sh}(A))$ is even, if $A$ admits
a suitable polarisation (cf. Theorem 1.2). Admitting a principal
polarisation is sufficient for the odd part of ${\cyr sh}(A)$ to have
square order.
And indeed, B. Poonen and M. Stoll \ref[Ann. of Math. (2) 150 (1999),
no. 3, 1109--1149; MR1740984 (2000m:11048)] came up with an
explicit Jacobian surface $A$ over $\bold Q$ such that
${\cyr sh}(A)=2$; they also gave a criterion for the Jacobian variety $A$ of
a (smooth, projective, absolutely connected) curve $X$ of genus
$g\ge2$ over $K$ to have odd $v_2({\cyr sh}(A))$: such is the case if
the (finite) number of places of $K$ where $X$ fails to have a
$0$-cycle of degree $g-1$ is odd. Numerous further examples have been
found by B. W. Jordan and R. A. Livn� \ref[Bull. London Math. Soc. 31
(1999), no. 6, 681--685; MR1711026 (2000j:11090)] and by
S. Baba \ref[J. Number Theory 87 (2001), no. 1, 96--108; MR1816038 (2002b:11085)].
The author gives the first examples of odd $v_p({\cyr sh}(A))$ for an
odd prime $p$. His main result implies that for every $p<25000$ (with
$p\neq37$), there is a twist $A$ of the power $E^{p-1}$ of the
abelian curve $E\colon y^2+y=x^3-x$ (the curve 37A) such that
$v_p({\cyr sh}(A))$ is odd (Theorem 3.1). To get an example where
$v_{37}({\cyr sh}(A))$ is odd, use the curve 43A instead.
The restriction $p<25000$ (cf. Proposition 2.3) comes from the fact
that for these primes his tireless computer has been able to find a
certain auxiliary prime $l$ (cf. Conjecture 2.1) needed for
constructing $A$. A sample of his instructions to the computer is
included.
The main result (Theorem 2.14) establishes an exact sequence
$$0\rightarrow E(\bold Q)/pE(\bold Q)\rightarrow
{}_{p^\infty}{\cyr Sh}(A)\rightarrow
{}_{p^\infty}{\cyr Sh}(E_L)\rightarrow
{}_{p^\infty}{\cyr Sh}(E)\rightarrow 0
$$
for an abelian curve $E$ over $\bold Q$ and an odd prime $p$ which does
not divide any of the Tamagawa numbers of $E$ and for which
$\rho_{E,p}\colon {\rm Gal}(\overline{\bold Q}|\bold Q)\rightarrow{\rm Aut}({}_p
E(\overline{\bold Q}))$
is
surjective. The auxiliary prime $l$ should be $\equiv1\pmod p$,
it should not divide the conductor of $E$, the function $L(E,\chi,s)$
should not vanish at $s=1$ for some---and hence for all
$p-1$---character(s) $\chi\colon
(\bold Z/l\bold Z)^\times\rightarrow{}_p\bold C^\times$ of
level $l$ and order $p$, and, finally, $p$ should not divide ${\rm Card}\,
E(\bold F_l)$. The degree-$p$ cyclic extension $L$ is contained in the
field of $l$th roots of $1$, and $A$ is the kernel of the trace
map $\roman{Res}_{L|\bold Q}E_L\rightarrow E$; it turns out to be a twist of
$E^{p-1}$ (Proposition 2.4).
If ${}_{p^\infty}{\cyr Sh}(E)$ is finite, then so are the other
two ${\cyr Sh}$ by a deep theorem of Kazuya Kato, applicable by the
choice of $l$. In that case ${\rm rk}\,E(\bold Q)$ and $v_p({\cyr
sh}(A))$ have the same parity, in view of the surjectivity of
$\rho_{E,p}$ and the fact that the last two groups in the displayed
exact sequence are of square order. The author gets the desired
examples of odd $v_p({\cyr sh}(A))$ by choosing an $E$ for which ${\rm
rk}\,E(\bold Q)$ is odd---such as the rank-1 curve 37A. For this
curve he also verifies, for good measure, that ${\cyr Sh}=\{0\}$,
using the results of Kolyvagin and the programmes of Cremona.
However, $v_q({\cyr sh}(A))$ is even for every prime $q\neq p$, if
${}_{q^\infty}{\cyr Sh}(E)$ is finite (Proposition 2.16).
REVISED (January, 2005)
Current version of review. Go to earlier version.
Reviewed by Chandan Singh Dalawat
Previous Item
Next Item
MR2052021 (2005c:11070)
Stein, William(1-HRV);
Watkins, Mark(1-PAS)
Modular parametrizations of Neumann-Setzer elliptic curves.
Int. Math. Res. Not. 2004, no. 27, 1395--1405.
11G05 (11G18)
Let $E/\bold Q$ be an elliptic curve of conductor $N$. G. Stevens \ref[Invent.
Math.
98 (1989), no. 1, 75--106;
MR1010156 (90m:11089)]
conjectured that the optimal quotient of $X_1(N)$ in the
isogeny class of $E$ is the curve in this isogeny class with minimal
Faltings height. In this paper the authors verify Stevens'
conjecture in the case where $N$ is prime. To do so, first recall that in
\ref[J.-F. Mestre and J. Oesterl�, J. Reine Angew. Math.
400 (1989),
173--184;
MR1013729 (90g:11078)] the isogeny class of an
elliptic curve $E/\bold Q$ of
prime conductor $p>37$ contains exactly one curve, unless $p=u^2+64$
and $E$ is one of the two Neumann-Setzer curves \ref[O. Neumann, Math. Nachr.
49 (1971), 107--123;
MR0337999 (49 \#2767a); B.
Setzer, J. London Math. Soc. (2)
10 (1975), 367--378;
MR0371904 (51 \#8121)]:
$$
E_0\colon y^2 + xy = x^3 - \frac{u+1}{4} x^2 + 4x - u,$$
$$
E_1\colon y^2 + xy = x^3 - \frac{u+1}{4} x^2 - u.
$$
To study Stevens' conjecture it then suffices to consider the second
case. The Faltings height of $E_1$ is smaller than that of $E_0$; this
follows by exhibiting an isogeny $ E_1 \rightarrow E_0 $ that extends
to an �tale morphism of the respective N�ron models. Analyze the
kernel of this isogeny and of the natural map from the Jacobian of
$X_0(p)$ to that of $X_1(p)$, coupled with the fact that $E_0$ is
$X_0(p)$-optimal \ref[J.-F. Mestre and J. Oesterl�, op. cit.], and it follows
that $E_1$ is $
X_1(p)$-optimal.
By an intricate analysis of the Eisenstein ideals \ref[B. Mazur, Inst. Hautes
�tudes Sci. Publ. Math. No. 47 (1977), 33--186 (1978);
MR0488287 (80c:14015)], the
authors also show that the modular degree of $E_0$ is odd if and only
if $ u\equiv 3 \pmod 8 $, and they post various conjectures concerning the
parity of the modular degree of elliptic curves over $\bold Q$ (sample
Conjecture 4.2: there are infinitely many elliptic curves over
$\bold Q$ with odd modular degree). The paper ends with numerical
data for the frequency of nontrivial $p$-{\cyr Sh} (presumably
computed under the Birch-Swinnerton-Dyer conjecture) for the
Neumann-Setzer curves.
Reviewed by Siman Wong
Previous Item
[References]
- A. Abbes and E. Ullmo, \`A propos de la conjecture de Manin pour les courbes elliptiques modulaires [ The Manin conjecture for modular elliptic curves], Compositio Math. 103 (1996), no. 3, 269--286 (French). MR1414591 (97f:11038)
- A. Brumer and O. McGuinness, The behavior of the Mordell-Weil group of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 375--382, http://www.oisinmc.com/math/310716/. MR1044170 (91b:11076)
- F. Calegari and W. Stein, Conjectures about discriminants of Hecke algebras of prime level,
to appear in ANTS VI proceedings, Springer-Verlag Lecture Notes in
Computer Science Series, http://web.ew.usna.edu/$\sim$ants/.
- J. E. Cremona, Elliptic curves of conductor $\leq 20000$, http://www.maths.nott.ac.uk/personal/jec/ftp/data.
- C. Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over $\Bbb{Q}$ Experiment. Math. 10 (2001), no. 2, 191--196. MR1837670 (2003a:11065)
- P. Deligne, Preuve des conjectures de Tate et de Shafarevitch (d'apr\`es G. Faltings) [ Proof of the Tate and Shafarevich conjectures (after G. Faltings)], Ast�risque (1985), no. 121--122, 25--41 (French), Seminaire Bourbaki, Vol. 1983/84. MR0768952 (87c:11026)
- F. Diamond and J. Im, Modular forms and modular curves,
Seminar on Fermat's Last Theorem (Toronto, Ontario, 1993--1994), CMS
Conf. Proc., vol. 17, American Mathematical Society, Rhode Island,
1995, pp. 39--133. MR1357209 (97g:11044)
- M. Emerton, Optimal quotients of modular Jacobians, preprint, 2001. cf. MR2021024
- G. Frey, Links between solutions of ${\rm A} - {\rm B} = {\rm C}$ and elliptic curves,
Number Theory (Ulm, 1987) (H. P. Schlickewei and E. Wirsing, eds.),
Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp.
31--62. MR1009792 (90g:11069)
- R. K. Guy, Unsolved Problems in Number Theory, Problem Books in Mathematics, Springer-Verlag, New York, 1994. MR1299330 (96e:11002)
- G. H. Hardy and J. E. Littlewood, Some problems of "Partitio numerorum": III. On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1--70.
- S. Ling and J. Oesterl�, The Shimura subgroup of ${\rm J}_0 ({\rm N})$, Ast�risque (1991), no. 196--197, 171--203 (1992). MR1141458 (93b:14038)
- B. Mazur, Three lectures about the arithmetic of elliptic curves, http://swc.math.arizona.edu/notes/files/98MazurLN.pdf.
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes �tudes Sci. Publ. Math. (1977), no. 47, 33--186. MR0488287 (80c:14015)
- L. Merel, L'accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de ${\rm J}_0 ({\rm p})$ [ Weil pairing of the Shimura subgroup and the cuspidal subgroup of ${\rm J}_0 ({\rm p})$], J. reine angew. Math. 477 (1996), 71--115 (French). MR1405312 (97f:11045)
- J.-F. Mestre and J. Oesterl�, Courbes de Weil semi-stables de discriminant une puissance ${\rm m}$- i\`eme [ Semistable Weil curves with discriminant an ${\rm m}$ th power], J. reine angew. Math. 400 (1989), 173--184 (French). MR1013729 (90g:11078)
- D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, no. 5, Oxford University Press, London, 1970. MR0282985 (44 #219)
- O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I, Math. Nachr. 49 (1971), 107--123 (German). MR0337999 (49 #2767a)
- O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. II, Math. Nachr. 56 (1973), 269--280 (German). MR0338000 (49 #2767b)
- A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449--462. MR0364259 (51 #514)
- K. A. Ribet and W. A. Stein, Lectures on Serre's conjectures,
Arithmetic Algebraic Geometry (Park City, Utah, 1999), IAS/Park City
Math. Ser., vol. 9, American Mathematical Society, Rhode Island, 2001,
pp. 143--232. MR1860042 (2002h:11047)
- B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367--378. MR0371904 (51 #8121)
- W. A. Stein and M. Watkins, A database of elliptic curves---first report,
Algorithmic Number Theory (Sydney 2002) (C. Fieker and D. Kohel, eds.),
Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp.
267--275. MR2041090
- G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75--106. MR1010156 (90m:11089)
- S.-L. Tang, Congruences between modular forms, cyclic isogenies of modular elliptic curves and integrality of ${\rm p}$- adic ${\rm L}$- functions, Trans. Amer. Math. Soc. 349 (1997), no. 2, 837--856. MR1376558 (98b:11056)
- V. Vatsal, Multiplicative subgroups of ${\rm J}_0 ({\rm N})$ and applications to elliptic curves, preprint, 2003, http://www.math.ubc.ca/$\sim$vatsal/page.html.
- M. Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), no. 4, 487--502. MR1969641 (2004c:11091)
- A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443--551. MR1333035 (96d:11071)
Next Item
MR2053457
Dummigan, Neil(4-SHEF-PM);
Stein, William(1-HRV);
Watkins, Mark(1-PAS)
Constructing elements in Shafarevich-Tate groups of modular motives.
(English. English summary)
Number theory and algebraic geometry,
91--118,
London Math. Soc. Lecture Note Ser., 303,
Cambridge Univ. Press, Cambridge, 2003.
11F33 (11F67 11F80 11G18)
{A review for this item is in process.}
Previous Item
Next Item
MR2029169 (2004k:11094)
Conrad, Brian(1-MI);
Edixhoven, Bas(NL-LEID-MI);
Stein, William(1-HRV)
$J\sb 1(p)$ has connected fibers.
(English. English summary)
Doc. Math. 8 (2003), 331--408 (electronic).
11G18 (11F11 14H40)
Let $p$ be a prime number and $J_1(p)$
the Jacobian of the moduli curve $X_1(p)$ over $
Q$
that parametrizes pairs $(E,P)$ where $E$ is an elliptic curve and
$P$ is a point of $E$ of order $p$.
One of the main results of the paper is that
$ J_1(p)$ has trivial component group at $p$.
The proof involves the study of the component groups at $p$ of
Jacobians of intermediate curves between $X_1(p)$ and $X_0(p)$. (The
case of $X_0(p)$ was treated by Mazur-Rapoport.) More precisely, for
any subgroup $H$ of $(Z/pZ)^\times/\{�1\}$ the authors
consider the curve $X_H(p)=X_1(p)/H$ and its Jacobian $J_H(p)$. They
prove that the natural surjective map $J_H(p)\to J_0(p)$ induces an
injection $\Phi(J_H(p))\to \Phi(J_0(p))$ between the component groups
of mod $p$ fibers and that $\Phi(J_H(p)) $ is cyclic of order
$|H|/\gcd(|H|,6)$ over $\overlineF_p$. Furthermore, viewing
$\Phi(J_0(p))$ as a quotient of $(Z/pZ)^\times/\{�1\}$,
the image of $\Phi(J_H(p))$ coincides with the image of $H$. In
particular, $\Phi(J_H(p))$ is always Eisenstein in the sense of Mazur
and Ribet and $\Phi(J_1(p))$ is trivial. In order to reach these
results they compute a regular proper model of $X_H(p)$ over $
Z_{(p)}$, adapting the classical Jung-Hirzebruch method for complex
sufaces. This method enables them to resolve tame cyclic quotient
singularities on curves over a discrete valuation ring.
The last part of the paper is devoted to computer computations
concerning the arithmetic of $J_1(p)$. The authors give a conjectural
formula for the order of the torsion subgroup of $J_1(p)(Q)$.
Reviewed by Alessandra Bertapelle
Previous Item
[References]
- A. Agash�, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris S�r. I Math. 328 (1999), no. 5, 369--374. MR1678131 (2000e:11083)
- A. Agashe and W. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171--185. MR1939144 (2003h:11070)
- A. Agashe and W. Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank 0, to appear in Math. Comp. cf. MR2085902
- A. Agashe and W. Stein, The Manin constant, congruence primes, and the modular degree, in progress.
- M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36 (1969), 23--58. MR0268188 (42 #3087)
- L. B�gueri, Dualit\'e sur un corps local \`a corps r\'esiduel alg\'ebriquement clos, M�m. Soc. Math. France (1980/81), no. 4. MR0615883 (82k:12019)
- A. Bertapelle, On perfectness of Grothendieck's pairing for the $\ell$- parts of component groups, J. Reine Angew. Math., 538 (2001), 223--236. MR1855757 (2002k:14072)
- A. Bertapelle and S. Bosch, Weil restriction and Grothendieck's duality conjecture, Journal of algebraic geometry, 9 (2000), 155--164. MR1713523 (2000i:14065)
- S. Bosch, W. L�tkebohmert, and M. Raynaud, N\'eron models, Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034)
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3--4, 235--265, Computational algebra and number theory (London, 1993). MR1484478
- J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, Cambridge University Press, Cambridge, 1996. MR1406090 (97i:11071)
- J. W. S. Cassels, A. Fr�hlich, Algebraic Number Theory, Academic Press, London, 1967. MR0215665 (35 #6500)
- T. Chinburg "Minimal models of curves over Dedekind rings" in Arithmetic Geometry (Cornell/Silverman ed.), Springer-Verlag, Berlin, 1986. MR0861982
- J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997. MR1628193 (99e:11068)
- P. Deligne and M. Rapoport, "Les sch�mas de modules de courbes elliptiques" in Modular Functions of One Variables II, Lecture Notes in Mathematics 349, Springer-Verlag, Berlin, 1973. MR0337993 (49 #2762)
- F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39--133. MR1357209 (97g:11044)
- A. Edelman, The mathematics of the Pentium division bug, SIAM Rev. 39 (1997), no. 1, 54--67. MR1439485 (98a:68009)
- S. J. Edixhoven, L'action de l'alg\`ebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est "Eisenstein", Ast�risque (1991), no. 196--197, 7--8, 159--170 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR1141457 (92k:11059)
- S. J. Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989), Birkh�user Boston, Boston, MA, 1991, pp. 25--39. MR1085254 (92a:11066)
- S. J. Edixhoven, N\'eron models and tame ramification, Compositio Math., 81 (1992), 291--306. MR1149171 (93a:14041)
- S. J. Edixhoven, Modular parameterizations at primes of bad reduction, in preparation.
- S. J. Edixhoven, Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms $mod 2$ of weight one, preprint.
- M. Emerton, Optimal Quotients of Modular Jacobians, to appear in Math. Ann. cf. MR2021024
- E. Freitag and R. Kiehl, \'Etale cohomology and the Weil conjectures, Springer-Verlag, Berlin, 1988. MR0926276 (89f:14017)
- W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, 1993. MR1234037 (94g:14028)
- J. Gonz�lez and J.-C. Lario, $Q$- curves and their Manin ideals, Amer. J. Math. 123 (2001), no. 3, 475--503. MR1833149 (2002e:11070)
- A. Grothendieck, \'El\'ements de g\'eom\'etrie alg\'ebrique. ${\rm IV}_4$. �tude locale des sch�mas et des morphismes de sch�mas, Inst. Hautes �tudes Sci. Publ. Math. (1966), no. 28. MR0217086 (36 #178)
- A. Grothendieck, Groupes de monodromie en g\'eom\'etrie alg\'ebrique. I,
Springer-Verlag, Berlin, 1973, S�minaire de G�om�trie Alg�brique du
Bois-Marie 1967--1969 (SGA 7 I), Lecture Notes in Mathematics, Vol.
288. MR0354656 (50 #7134)
- A. Grothendieck, Groupes de monodromie en g\'eom\'etrie alg\'ebrique. II,
Springer-Verlag, Berlin, 1973, S�minaire de G�om�trie Alg�brique du
Bois-Marie 1967--1969 (SGA 7 II), Dirig� par P. Deligne et N. Katz,
Lecture Notes in Mathematics, Vol. 340. MR0354657 (50 #7135)
- B. H. Gross, A tameness criterion for Galois representations associated to modular forms $(mod p)$, Duke Math. J. 61 (1990), no. 2, 445--517. MR1074305 (91i:11060)
- A. Joyce, The Manin Constant of an Optimal Quotient of $J_0 (431)$, preprint, 2003.
- K. Kato, $p$- adic Hodge theory and values of zeta functions of modular forms, 244 page preprint.
- N. M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481--502. MR0604840 (82d:14025)
- N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Princeton University Press, Princeton, N. J., 1985. MR0772569 (86i:11024)
- D. R. Kohel and W. A. Stein, Component Groups of Quotients of
$J_0 (N)$, Proceedings of the 4th International Symposium (ANTS-IV),
Leiden, Netherlands, July 2--7, 2000 (Berlin), Springer, 2000. MR1850621 (2002h:11051)
- V. A. Kolyvagin and D. Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171--196. MR1036843 (91c:11032)
- D. S. Kubert and S. Lang, Modular units,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Science], vol. 244, Springer-Verlag, New York, 1981. MR0648603 (84h:12009)
- S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, 1995, With appendixes by D. Zagier and W. Feit, Corrected reprint of the 1976 original. MR1363488 (96g:11037)
- S. Lichtenbaum, Curves over discrete valuation rings, American Journal of Mathematics, 90 (1968), 380--405. MR0230724 (37 #6284)
- J. Lipman, Desingularization of two-dimensional schemes, Annals of Mathematics, 107 (1978), 151--207. MR0491722 (58 #10924)
- Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press, Oxford, 2002. MR1917232 (2003g:14001)
- Q. Liu and D. Lorenzini, Models of curves and finite covers, Compositio Math., 118 (1999), 61--102. MR1705977 (2000f:14033)
- W. L�tkebohmert, On compactification of schemes, Manuscripta Mathematica, 80 (1993), 95--111. MR1226600 (94h:14004)
- H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid. MR0879273 (88h:13001)
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes �tudes Sci. Publ. Math. (1977), no. 47, 33--186. MR0488287 (80c:14015)
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129--162. MR0482230 (80h:14022)
- L. Merel, L'accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de $J_0 (p)$, J. Reine Angew. Math. 477 (1996), 71--115. MR1405312 (97f:11045)
- A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449--462. MR0364259 (51 #514)
- A. P. Ogg, Rational points on certain elliptic modular curves,
Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis
Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973,
pp. 221--231. MR0337974 (49 #2743)
- A. P. Ogg, Rational points of finite order on elliptic curves, Invent. Math. 12 (1971), 105--111. MR0291084 (45 #178)
- B. Poonen and M. Stoll, The Cassels--Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109--1149. MR1740984 (2000m:11048)
- D. Popescu, General N\'eron desingularization and approximation, Nagoya Math Journal, 104 (1986), pp. 85--115. MR0868439 (88a:14007)
- Michel Raynaud, Sch\'emas en groupes de type $(p, \ldots , p)$, Bull. Soc. Math. France 102 (1974), 241--280. MR0419467 (54 #7488)
- K.
Ribet, "On the component groups and the Shimura subgroup of $J_0 (N)$",
expos� 6, S�m. Th. Nombres, Universit� Bordeaux, 1987--88. MR0993107 (91b:11070)
- K. Ribet, "Irreducible Galois representations arising from component groups of Jacobians" in Elliptic curves, modular forms, and Fermat's Last Theorem, International Press, 1995. MR1363499 (97h:11059)
- M. Schlessinger, Infinitesimal deformations of singularities, 1964 Harvard Ph.D. thesis, unpublished.
- J-P. Serre, Groupes finis d'automorphismes d'anneaux locaux r\'eguliers, Colloque d'Alg�bre (Paris, 1967), Exp. 8 (1968), 11. MR0234953 (38 #3267)
- J-P. Serre, Cohomologie des groupes discrets,
Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton,
N.J., 1970), Princeton Univ. Press, Princeton, N.J., 1971, pp. 77--169.
Ann. of Math. Studies, No. 70. MR0385006 (52 #5876)
- J-P. Serre, Lie algebras and Lie groups,
second ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag,
Berlin, 1992, 1964 lectures given at Harvard University. MR1176100 (93h:17001)
- J-P. Serre, \OE uvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, 1985--1998. MR1730973 (2001e:01037)
- I. Shafarevich, Lectures on minimal models and birational transformations of two-dimensional schemes, Tata Institute: Bombay, 1966. MR0217068 (36 #163)
- G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), no. 3, 523--544. MR0318162 (47 #6709)
- G. Shimura, An introduction to computing modular forms using modular symbols, to appear in an MSRI proceedings.
- G. Shimura, Shafarevich-Tate groups of nonsquare order, to appear in proceedings of MCAV 2002, Progress of Mathematics. cf. MR2058655
- G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75--106. MR1010156 (90m:11089)
- R. Swan, N\'eron-Popescu desingularization, Lectures in Algebra and Geometry 2, International Press, Cambridge (1998), pp. 135--192. MR1697953 (2000h:13006)
- J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288--295. MR0175892 (31 #168)
- J. Watanabe, Some remarks on Cohen-Macaulay rings with many zero divisors and an application, J. Algebra 39 (1976), no. 1, 1--14. MR0399117 (53 #2968)
Next Item
MR2041090
Stein, William A.(1-HRV);
Watkins, Mark(1-PAS)
A database of elliptic curves---first report.
Algorithmic number theory (Sydney, 2002),
267--275,
Lecture Notes in Comput. Sci., 2369,
Springer, Berlin, 2002.
11G05 (11Yxx)
{A review for this item is in process.}
Previous Item
Next Item
MR1959271 (2004b:11072)
Lario, Joan-C.(E-UPBMS);
Schoof, Ren�(I-ROME2)
Some computations with Hecke rings and deformation rings.
(English. English summary)
With an appendix by Amod Agashe and William Stein.
Experiment. Math. 11 (2002),
no. 2, 303--311.
11F80 (11F11 11F25)
Let $E$ be the elliptic curve over $
Q$ of conductor 142, having
Weierstrass equation $Y^{2}+XY=X^{3}-X^{2}-X-3$. The representation
$\overline\rho\colon {\rm Gal}(\overline
Q/
Q)\to
{\rm
GL}_{2}(
F_{3})$ provided by the $3$-torsion points is
unramified outside $3$ and $71$. For $N=71, 142$ and $284$ the authors
determine explicitly the structure of the local Hecke algebra $
T_{N}$ generated over $
Z_{3}$ by the Hecke operators acting on
the weight 2 and level $N$ cusp forms whose associated mod 3
representation is isomorphic to $\overline\rho$. More precisely, they
show that $
T_{N}\simeq
Z_{3}[[X,Y]]/I_{N}$, where
generators of the ideals $I_{N}$ are explicitly computed. By the
results of
A. J. Wiles \ref[Ann. of Math. (2)
141 (1995), no. 3, 443--551;
MR1333035 (96d:11071)]
and R. L. Taylor and Wiles \ref[Ann. of Math. (2)
141 (1995), no. 3, 553--572;
MR1333036 (96d:11072)],
in the case $N=71$
(resp. $N=284$) the algebra $T_{N}$ is the universal deformation ring
of $\overline\rho$ for a deformation problem which is minimal
(resp. non-minimal) at 71; it is a complete intersection, as we can
directly see from the description given in this paper. For the case
$N=142$ two natural Hecke algebras are considered, corresponding to
the eigenvalues $�1$ for the Hecke operator $T_{2}$. Both algebras
turn out to be complete intersections. The main tool of the
construction is the determination, in the appendix, of a bound
(depending on the level $N$) on the greatest index $n$ such that the
Hecke operators $T_{r}$ with $r\leq n$ generate the whole Hecke
algebra. This allows the authors to do computations by dealing with a
finite number of vectors with entries in $
Z_{3}$.
Reviewed by Lea Terracini
Previous Item
[References]
- G. Cornell, J.H. Silverman and G. Stevens, Eds. Modular forms and Fermat's Last Theorem, Springer-Verlag, New York 1997. MR1638473 (99k:11004)
- B. J. Birch and W. Kuyk. Modular Functions of One Variable IV, Lecture Notes in Mathematics 476, Springer-Verlag, Berlin-Heidelberg, 1975. MR0376533 (51 #12708)
- J. Cremona. Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, UK, 1992. MR1201151 (93m:11053)
- H. Darmon. "Serre's conjectures." in Seminar on Fermat's Last Theorem 1993--1994, Kumar Murty ed., pp. 135--153, Canadian Mathematical Society, CMS Conference Proceedings 17, 1995. MR1357210 (96h:11048)
- E. De Shalit. "Hecke rings and universal deformation rings." Chapter XIV in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638487
- B. De Smit, K. Rubin, and R. Schoof. "Criteria for Complete Intersections." Chapter XI in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638484
- F. Diamond. "The refined conjecture of Serre." in Elliptic Curves, Modular Forms and Fermat's Last Theorem, J. Coates, S. Yau, eds., pp. 22--37, International Press, Cambridge, 1995. MR1363493 (97b:11065)
- F. Diamond, and K. Ribet. "$\ell$-adic Modular Deformations and Wiles's "Main Conjecture" ", Chapter XII in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638485
- S. J. Edixhoven. "Serre's conjecture." Chapter VII in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638480
- S. Gelbart. "Three lectures on the modularity of $\bar{\rho}_{E, 3}$ and the Langlands reciprocity conjecture." Chapter VI in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638479
- B. Mazur. "Deformation theory of Galois representations in Galois groups over $Q$." Chapter VIII in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638481
- A. Rio. Representacions de Galois octa\`edriques, Tesi Doctoral, Universitat de Barcelona (1995).
- J.-P. Serre. "Sur les repr�sentations de degr� 2 de ${\rm Gal}(\overline{Q}/Q)$." Duke Math. Journal 54 (1987), 179--230. MR0885783 (88g:11022)
- J.-P. Serre. "Propri�t�s galoisiennes des points d'ordre fini des courbes elliptiques." Invent. Math. 15 (1972), 259--331. MR0387283 (52 #8126)
- W. A. Stein. HECKE package, Magma V2.7 or higher, 2000.
- J. Sturm. "On the Congruence of Modular Forms." in Number theory (New York, 1984--1985), 275--280, Lecture Notes in Math., 1240, Springer, Berlin-New York, 1987. MR0894516 (88h:11031)
- R. Taylor and A. Wiles. "Ring-theoretic properties of certain Hecke algebras." Ann. Math. 141 (1995), 553--572. MR1333036 (96d:11072)
- J. Tilouine. "Hecke algebras and the Gorenstein property." Chapter X in Modular Forms and Fermat's Last Theorem, G. Cornell, J.H. Silverman, and G. Stevens, eds., Springer-Verlag, New York 1997. MR1638483
- A. Wiles. "Modular elliptic curves and Fermat's Last Theorem." Ann. Math. 141 (1995), 443--551. MR1333035 (96d:11071)
Next Item
MR1939144 (2003h:11070)
Agashe, Amod(1-TX);
Stein, William(1-HRV)
Visibility of Shafarevich-Tate groups of abelian varieties.
(English. English summary)
J. Number Theory 97 (2002),
no. 1, 171--185.
11G40 (11G10 14K15)
To a short exact sequence $0\to A\to J\to Q\to
0$ of abelian varieties over a field $K$
corresponds a long exact sequence
$$
0\to A(K)\to J(K)\to Q(K)\to
H^1(K,A)\to H^1(K,J)\to\cdots
$$
of cohomology groups. B. C. Mazur says that a class $c\in H^1(K,A)$ is
visible in $J$ if it gets killed in $H^1(K,J)$. The authors show
that every class $c$ is visible in some $J$ (Proposition
1.3)---indeed, one can take $J$ to have dimension less than $dn^{2d}$,
where $d$ is the dimension of $A$ and $n$ is the order of $c$ in
$H^1(K,A)$ (Proposition 2.3).
When $K$ is a number field, the notion of visibility in $J$ applies to
elements of the subgroup ${\cyr X}(A)\subset H^1(K,A)$ of those
classes whose restriction to every completion of $K$ is trivial. If
$d=1$, the upper bound $dn^{2d}=n^2$ can be improved to $n$ for
elements of ${\cyr X}(A)$ (Proposition 2.4).
The main theorem (Theorem 3.1) provides a method for constructing elements
of the kernel of ${\cyr X}(A)\to{\cyr X}(J)$, which is the $J$-visible
subgroup of ${\cyr X}(A)$. Namely, if one can find an abelian
subvariety $B\subset J$ and an integer $n$ satisfying a certain number
of properties which are too technical to reproduce here, then there is
a natural map $\varphi$ from $B(K)/nB(K)$ to the $J$-visible subgroup of
${\cyr X}(A)$; the order of the kernel of $\varphi$ is at most $n^r$,
where $r$ is the rank of $A(K)$.
As an application, the authors give an example (Proposition 4.1) of a
20-dimensional abelian subvariety $A$ of $J_0(389)$ and an elliptic
curve $B\subset J_0(389)$ such that by taking $J=A+B$ and $n=5$ in the
main theorem, one concludes that $\varphi$ embeds $(\bold Z/5\bold
Z)^2$ into the subgroup of $J$-visible elements of ${\cyr X}(A)$, thus
providing evidence for the Birch and Swinnerton-Dyer conjecture in
this case.
As another application (Proposition 4.2), the authors treat the elliptic
curve $E$ of conductor $5389$ considered by
J. E. Cremona and B. C. Mazur \ref[Experiment. Math. 9 (2000), no. 1,
13--28;
MR1758797 (2001g:11083)]
for which the conjectural order of ${\cyr
X}(E)$ is $9$ but no element of order 3 is visible in $J_0(5389)$.
The authors produce 9 elements of ${\cyr X}(E)$ and show that they are
all visible at the higher level of $J_0(7�5389)$.
Reviewed by Chandan Singh Dalawat
Previous Item
[References]
- A. Agashe and W.A. Stein, Visible Evidence for the Birch and
Swinnerton-Dyer Conjecture for Rank 0 Modular Abelian Varieties,
preprint. cf. MR2085902
- S. Bosch, W. L�tkebohmert, and M. Raynaud, "N�ron Models," Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034)
- W. Bosma, J. Cannon, and C. Playoust, The magma algebra system. I. The user language, J. Symbolic Comput. 24, No. 3-4 (1997), 235--265; Computational Algebra and Number Theory, London, 1993. MR1484478
- J.W.S. Cassels, Arithmetic on curves of genus 1. V. Two counterexamples, J. London Math. Soc. 38 (1963), 244--248. MR0148664 (26 #6171)
- J.E. Cremona, Elliptic curves of conductor $\leqslant 12000$, http://www.maths.nott.ac.uk/personal/jec/ftp/data/.
- J.E. Cremona, "Algorithms for Modular Elliptic Curves," 2nd ed., Cambridge Univ. Press, Cambridge, UK, 1997. MR1628193 (99e:11068)
- J.E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Exp. Math. 9, No. 1 (2000), 13--28. MR1758797 (2001g:11083)
- B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109, No. 3 (1992), 563--594. MR1176206 (93h:11124)
- A. Grothendieck, �l�ments de g�om�tric alg�brique. IV. �tude locale des sch�mas et des morphismes de sch�mas. II, Inst. Hautes \'Etudes Sci. Publ. Math. No. 24 (1965), 231. MR0199181 (33 #7330)
- A. Grothendieck, �l�ments de g�om�trie alg�brique. IV. �tude locale des sch�mas et des morphismes de sch�mas. III, Inst. Hautes \'Etudes Sci. Publ. Math. No. 28 (1966), 255. MR0217086 (36 #178)
- A. Grothendieck, �l�ments de g�om�trie alg�brique. IV. �tude locale des sch�mas et des morphismes de sch�mas IV, Inst. Hautes \'Etudes Sci. Publ. Math. No. 32 (1967), 361. MR0238860 (39 #220)
- A. Grothendieck, "Sch�mas en groupes. I: Propri�t�s g�n�rales des sch�mas en groupes," Springer-Verlag, Berlin, 1970. MR0274458 (43 #223a)
- T. Klenke, "Modular Varieties and Visibility," Ph.D. thesis, Harvard University, 2001.
- S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659--684. MR0106226 (21 #4960)
- B. Mazur, Visualizing elements of order three in the Shafarevich-Tate group, Asian J. Math. 3, No. 1 (1999), 221--232. MR1701928 (2000g:11048)
- J.S. Milne, "Arithmetic Quality Theorems," Academic Press Inc., Boston, MA, 1986. MR0881804 (88e:14028)
- C. O'Neil, The period-index obstruction for elliptic curves, J. Number Theory, to appear. MR1924106 (2003f:11079)
- K.A. Ribet, Raising the levels of modular representations, in "S�minaire de Th�orie des Nombres," Paris 1987--88, pp. 259--271, Birkh�user, Boston, MA, 1990. MR1042773 (91g:11055)
- J-P. Serre, "Local Fields," Springer-Verlag, New York, 1979 (translated from the French by Marvin Jay Greenberg). MR0554237 (82e:12016)
- J. Sturm, On the congruence of modular forms, "Number Theory (New York, 1984--1985)," pp. 275--280, Springer, Berlin, 1987. MR0894516 (88h:11031)
Next Item
MR1900139 (2003c:11059)
Stein, William A.(1-HRV)
There are genus one curves over $\Bbb Q$ of every odd index.
(English. English summary)
J. Reine Angew. Math. 547 (2002), 139--147.
11G05 (11G18)
For a genus $1$ curve $X$ over a field $K$, let $r$ be the smallest
degree of an extension $L \vert K$ such that $X(L)$ is non-empty,
called the index of $X \vert K$. The author shows, for each $r$ not
divisible by $8$, that there are infinitely many genus $1$ curves over
$K$ of index $r$, partially answering a question of
S. Lang and J. Tate \ref[Amer. J. Math.
80 (1958), 659--684;
MR0106226 (21 \#4960)].
The paper starts by giving a cohomological definition of the
index $r$ of $X \vert K$ and then some background on Heegner
points and Kolyvagin's Euler system. The author proves an
intermediate result for $K = \bold Q$ using Kolyvagin's Euler
system. Using some additional computations, the author then
deduces the main result by considering twists of $E = X_0(17)$.
Reviewed by Imin Chen
Previous Item
[References]
- C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity
of elliptic curves over $\Bbb{Q}$: Wild 3-adic exercises, J. Amer.
Math. Soc. 14 (2001) no. 4, 843--939. MR1839918 (2002d:11058)
- D.
Bump, S. Friedberg, and J. Hoffstein, Eisenstein series on the
metaplectic group and nonvanishing theorems for automorphic
$L$-functions and their derivatives, Ann. Math. (2) 131 (1990), no. 1, 53--127. MR1038358 (92e:11053)
- J. W. S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. reine angew. Math. 211 (1962), 95--112. MR0163915 (29 #1214)
- J. W. S. Cassels, Arithmetic on curves of genus 1. V. Two counterexamples, J. London Math. Soc. 38 (1963), 244--248. MR0148664 (26 #6171)
- J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193--291. MR0199150 (33 #7299)
- J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge 1997. MR1628193 (99e:11068)
- J. E. Cremona, Elliptic curves of conductor $\leqq$ 12000, http://www.maths.nott.ac.uk/personal/jec/ftp/data/.
- B. Gross and D. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225--320. MR0833192 (87j:11057)
- B.
H. Gross, Kolyvagin's work on modular elliptic curves, $L$-functions
and arithmetic (Durham 1989), Cambridge Univ. Press, Cambridge (1991),
235--256. MR1110395 (93c:11039)
- V.
A. Kolyvagin, On the structure of Shafarevich-Tate groups, Algebraic
geometry (Chicago, IL, 1989), Springer, Berlin (1991), 94--121. MR1181210 (94b:11055)
- S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659--684. MR0106226 (21 #4960)
- S. Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120--136. MR0242831 (39 #4158)
- W.
G. McCallum, Kolyvagin's work on Shafarevich-Tate groups, $L$-functions
and arithmetic (Durham 1989), Cambridge Univ. Press, Cambridge (1991),
295--316. MR1110398 (92m:11062)
- J. S. Milne, Arithmetic duality theorems, Academic Press Inc., Boston, Mass., 1986. MR0881804 (88e:14028)
- M. R. Murty and V. K. Murty, Non-vanishing of $L$-functions and applications, Birkh�user Verlag, Basel 1997. MR1482805 (98h:11106)
- C. O'Neil, The Period-Index Obstruction for Elliptic Curves, J. Number Th., to appear. cf. MR1924106 (2003f:11079)
- K. A. Ribet and W. A. Stein, Lectures on Serre's conjectures, IAS/Park City Math. Ser. 9 (2001). MR1860042 (2002h:11047)
- K.
Rubin, The work of Kolyvagin on the arithmetic of elliptic curves,
Arithmetic of complex manifolds (Erlangen 1988), Springer, Berlin
(1989), 128--136. MR1034261 (91i:11070)
- J.-P. Serre, Propri�t�s galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259--331. MR0387283 (52 #8126)
- J.-P. Serre, Travaux de Wiles (et Taylor,...). I, Ast�risque 237, Exp. No. 803, 5 (1996), 319--332, S�minaire Bourbaki, Vol. 1994/95. MR1423630 (97m:11076)
- I. R. Shafarevich, Exponents of elliptic curves, Dokl. Akad. Nauk SSSR (N.S.) 114 (1957), 714--716. MR0094363 (20 #881)
Next Item
MR1897901 (2003c:11052)
Buzzard, Kevin(4-LNDIC);
Stein, William A.(1-HRV)
A mod five approach to modularity of icosahedral Galois representations.
(English. English summary)
Pacific J. Math. 203 (2002),
no. 2, 265--282.
11F80
Let $\rho\colon {\rm Gal}(\overline{\bold Q}/\bold Q)\rightarrow
{\rm GL}_2(\bold C)$ be a continuous
irreducible two-dimensional complex representation of the absolute
Galois group of the field $\bold Q$ of rational numbers. Assume further
that $\rho$ is odd, that is, the image of a complex conjugation
element in ${\rm Gal}(\overline
{\bold Q}/\bold Q)$ has determinant $-1$. A special case of
the strong Artin conjecture asserts that there should be a weight one
cuspidal newform $f$ whose $L$-function $L(s,f)$ matches the Artin
$L$-function $L(s,\rho)$ attached to $\rho$; briefly, $\rho$ should be
modular. The conjecture is known to hold when the image of $\rho$ (a
finite subgroup of ${\rm GL}_2(\bold C)$) is solvable
\ref[R. P. Langlands,
Base change for ${\rm GL(2)$}, Ann. of Math. Stud.,
96, Princeton Univ. Press, Princeton, N.J., 1980;
MR0574808 (82a:10032);
J. Tunnell,
Bull. Amer. Math. Soc. (N.S.)
5 (1981), no. 2, 173--175;
MR0621884 (82j:12015)].
In the remaining cases the projective image of $\rho$
in ${\rm PGL}_2(\bold C)$ is isomorphic to the alternating group $A_5$, the
group of rotational symmetries of the icosahedron. For these
"icosahedral" Artin representations modularity was (until
recently---see below) unknown except in a handful of cases
\ref[J. P. Buhler,
Icosahedral Galois representations, Lecture Notes in
Math., 654, Springer, Berlin, 1978;
MR0506171 (58 \#22019);
On Artin's
conjecture for odd $2$-dimensional representations, Lecture Notes in Math.,
1585, Springer, Berlin, 1994;
MR1322315 (95i:11001)].
In the paper under review, Buzzard and Stein demonstrate an effective
computational approach to proving the modularity of a class of
icosahedral Artin representations. They apply this approach to eight
representations, thereby demonstrating the modularity of each. The
approach is described in detail for the first representation, of
conductor $1376=2^5�43$, and the necessary data for carrying out
the computations for the remaining seven examples are provided.
A summary of the approach: Suppose that $\rho$ is an icosahedral
representation which is unramified at $5$, and for which the
eigenvalues of a Frobenius element at $5$ have distinct reduction
modulo $5$. By the main theorem of
\ref[K. Buzzard and R. L. Taylor, Ann. of Math. (2) 149 (1999), no. 3,
905--919;
MR1709306 (2000j:11062)],
it suffices to establish
that the ${\rm mod}\,5$ reduction $\overline{\rho}$ of $\rho$ is
modular; that is, that there is some ${\rm mod}\,5$ cuspidal eigenform
$f$ such that for all but finitely many primes $p$ the eigenvalue of
the Hecke operator $T_p$ on $f$ is equal to the trace of
$\overline\rho$ applied to a Frobenius element at $p$. By computing
the space of ${\rm mod}\,5$ modular forms of weight $5$ and
appropriate level, the authors identify a ${\rm mod}\,5$ modular form
$f$ whose first few Hecke eigenvalues match the corresponding traces
of Frobenius of $\overline\rho$; this form is then almost certainly
the one required. They then compute enough information about the
icosahedral extension of $\bold Q$ cut out by the ${\rm mod}\,5$
representation $\overline\rho_f$ associated to $f$ to identify it
uniquely as an element of Table 1 of \ref[ On Artin's conjecture for odd
$2$-dimensional representations, Lecture Notes in Math., 1585, Springer,
Berlin, 1994;
MR1322315 (95i:11001)],
which lists icosahedral extensions of $\bold Q$ of small discriminant,
and hence match $\overline\rho_f$ with $\overline\rho$.
The paper also contains a result which makes it practical to determine
computationally when two normalized cuspidal eigenforms of the same
level $N>4$, weight $k$ and character, over a field of characteristic
not dividing $N$, are equal: essentially, the number of coefficients
of the $q$-expansions of the eigenforms that have to be checked to
guarantee equality is at worst linear in $N$ (for fixed $k$). For
computational purposes, this improves considerably on similar results
of J. Sturm \ref[in Number theory (New York, 1984--1985), 275--280,
Lecture Notes in Math., 1240, Springer, Berlin, 1987;
MR0894516 (88h:11031)]
which
require checking on the order of $N^3$
coefficients.
After the first draft of this paper was written, two more relevant
articles appeared \ref[K. Buzzard et al., Duke Math. J. 109 (2001),
no. 2, 283--318;
MR1845181 (2002k:11078);
R. Taylor, "On
icosahedral Artin representations. II", to appear]. Each of these
establishes the modularity of a general icosahedral Artin
representation, subject to various local conditions. However, none of
the eight examples in this paper is covered by the first of these
articles, and only three of them by the second.
Reviewed by Mark Edward Tristan Dickinson
Previous Item
[References]
- E. Artin, \"Uber eine neue Art von $L$- reihen, Abh. Math. Sem. in Univ. Hamburg, 3(1) (1923/1924), 89--108.
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comp., 24(3-4) (1997), 235--265, CMP 1 484 478, Zbl 0898.68039, http://www.maths.usyd.edu. au:8000/u/magma/. MR1484478
- J.P. Buhler, Icosahedral Galois representations, Springer-Verlag, Berlin, 1978, Lecture Notes in Mathematics, Vol. 654, , Zbl 0374.12002. MR0506171 (58 #22019)
- K. Buzzard, M. Dickinson, N. Shepherd-Barron and R. Taylor, On icosahedral Artin representations, Duke Math. J., 109(2) (2001), 283--318, CMP 1 845 181. MR1845181 (2002k:11078)
- K. Buzzard and R. Taylor, Companion forms and weight one forms, Ann. of Math. (2), 149(3) (1999), 905--919, , Zbl 0965.11019. MR1709306 (2000j:11062)
- H. Cohen and J. Oesterl�, Dimensions des espaces de formes modulaires, Lecture Notes in Math., 627 (1977), 69--78, , Zbl 0371.10020. MR0472703 (57 #12396)
- P. Deligne and J-P. Serre, Formes modulaires de poids 1, Ann. Sci. �cole Norm. Sup. (4), 7 (1974), 507--530, , Zbl 0321.10026. MR0379379 (52 #284)
- G. Frey (ed.), On Artin's conjecture for odd 2- dimensional representations, Springer-Verlag, Berlin, 1994, , Zbl 0801.00004. MR1322315 (95i:11001)
- B.H. Gross, A tameness criterion for Galois representations associated to modular forms $\pmod p$, Duke Math. J., 61(2) (1990), 445--517, , Zbl 0743.11030. MR1074305 (91i:11060)
- H. Hijikata, Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan, 26(1) (1974), 56--82, , Zbl 0266.12009. MR0337783 (49 #2552)
- R.P. Langlands, Base Change for ${\rm GL}(2)$, Princeton University Press, Princeton, N.J., 1980, , Zbl 0444.22007. MR0574808 (82a:10032)
- L. Merel, Universal Fourier expansions of modular forms, On Artin's conjecture for odd 2-dimensional representations (Berlin), Springer, Lecture Notes in Math., 1585 (1994), 59--94, , Zbl 0844.11033. MR1322319 (96h:11032)
- T. Miyake, Modular Forms, Springer-Verlag, Berlin, 1989, Translated from the Japanese by Yoshitaka Maeda, , Zbl 0701.11014. MR1021004 (90m:11062)
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1, , Zbl 0872.11023. MR1291394 (95e:11048)
- W.A. Stein, Explicit approaches to modular abelian varieties, U.C. Berkeley, Ph.D. thesis (2000).
- J. Sturm, On the congruence of modular forms, Number theory (New York, 1984--1985), Springer, Berlin, Lecture Notes in Math., 1240 (1987), 275--280, , Zbl 0615.10035. MR0894516 (88h:11031)
- R. Taylor, On icosahedral Artin representations II, in preparation.
- J. Tunnell, Artin's conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.), 5(2) (1981), 173--175, , Zbl 0475.12016. MR0621884 (82j:12015)
Next Item
MR1901355 (2003m:11074)
Stein, William A.(1-HRV);
Verrill, Helena A.(D-HANN-IM)
Cuspidal modular symbols are transportable.
(English. English summary)
LMS J. Comput. Math. 4 (2001), 170--181 (electronic).
11F67
References: 0 | Reference Citations: 0 | Review Citations: 0 |
Summary: "Modular symbols of weight 2 for a congruence subgroup
$\Gamma$ satisfy the identity
$\{\alpha,\gamma(\alpha)\}=\{\beta,\gamma(\beta)\}$ for all $\alpha,\
\beta$ in the extended upper half plane and $\gamma\in\Gamma$. The
analogue of this identity is false for modular symbols of weight
greater than 2. This paper provides a definition of transportable
modular symbols, which are symbols for which an analogue of the above
identity holds, and proves that every cuspidal symbol can be written
as a transportable symbol. As a corollary, an algorithm is obtained
for computing periods of cusp forms."
Previous Item
Next Item
MR1879817 (2003f:11087)
Conrad, Brian(1-MI);
Stein, William A.(1-HRV)
Component groups of purely toric quotients.
(English. English summary)
Math. Res. Lett. 8 (2001),
no. 5-6, 745--766.
11G18 (11G10 11G40 14K15)
Let $R$ be a discrete valuation ring, $K$ its field of fractions and
$k$ its residue field. Suppose $J$ is an abelian variety over $K$,
endowed with a symmetric principal polarization and let $\pi\colon
J\rightarrow A$ be an optimal quotient of $J$ meaning that the kernel
of $\pi$ is an abelian variety.
The principal polarization on $J$ induces a polarization $\theta_A$ on
$A$, whose degree is the square of a positive integer $m_A$.
Assume that the special fibre of the N�ron model of $A$ is the
extension of a finite group $\Phi_A$ by a torus. Let $X_A$ denote
the group of $\overline k$-characters of this torus.
Similarly, let $X_J$ denote the group of $\overline k$-characters of
the toric part of the special fibre of the N�ron model of $J$.
A. Grothendieck defined in \ref[ Groupes de monodromie en g\'eom\'etrie
alg\'ebrique. I, Lecture Notes in Math., 288, Springer, Berlin, 1972;
MR0354656 (50 \#7134)]
a monodromy
pairing between $X_A$ and $X_{A^\vee}$, inducing an exact sequence
$$
0 \rightarrow X_{A^\vee} \rightarrow {\rm Hom}(X_A,Z)
\rightarrow \Phi_A \rightarrow 0
$$
and similarly for $J$, the symmetric principal polarization on $J$
allowing one to write the pairing as
$$
0\rightarrow X_J \rightarrow {\rm Hom}(X_J,Z)
\rightarrow \Phi_J \rightarrow 0.
$$
By functoriality of N�ron models and characters, $\pi\colon
J\rightarrow A$ induces a map $\pi^*\colon X_A\rightarrow X_J$, the
saturation of whose image is denoted by $\scr L$. One deduces from the
monodromy pairing a map $\alpha\colon X_J \rightarrow {\rm Hom}(\scr
L,Z)$; let $\Phi_X$ be its cokernel. Moreover, let $m_X$ be the
order of the finite group $\alpha(X_J)/\alpha(\scr L)$.
The main result of this paper (Theorem 6.1) implies the equality
$$
{\#\Phi_A \over m_A} = {\#\Phi_X \over m_X}.
$$
This situation is quite common in the context of modular forms, where
$J$ is the Jacobian of a modular curve and $A$ arises from a
newform. Using modular symbols, one can then compute $m_A$ explicitly.
Moreover, using the method of graphs or the ideal theory of quaternion
algebras, one can compute $m_X$ and $\Phi_X$. The main theorem of
this paper can thus be used to compute $\#\Phi_A$.
Two tables of computations are given.
It should finally be noted that this paper also offers proofs of some
more or less well-known facts concerning group schemes, but for which
adequate references are missing. They certainly will be of
independent interest.
Reviewed by Antoine Chambert-Loir
Previous Item
[References]
- A. Agashe and W. A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties: Evidence for the Birch and Swinnerton-Dyer conjecture, (2001). MR1939144 (2003h:11070)
- S. Bosch, W. L�tkebohmert, and M. Raynaud, N\'eron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034)
- C. Chevalley, Une d\'emonstration d'un th\'eor\`eme sur les groupes alg\'ebriques, J. Math. Pures Appl. (9) 39 1960, 307--317. MR0126447 (23 #A3743)
- B. Conrad, A modern proof of Chevalley's theorem on algebraic groups, http://www-math.mit.edu/$\sim$dejong/papers/chev.dvi
- B. Edixhoven, L'action de l'alg\`ebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est "Eisenstein". Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). Ast�risque No. 196-197, (1991), 7--8, 159--170 (1992). MR1141457 (92k:11059)
- M. Emerton, Optimal quotients of modular Jacobians, (2001), preprint. cf. MR2021024
- E. V. Flynn, F. Lepr�vost, E. F. Schaefer, W. A. Stein, M. Stoll, and J. L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675--1697 (electronic). MR1836926 (2002d:11072)
- A. Grothendieck, \'El\'ements de g\'eom\'etrie alg\'ebrique, Publications Math�matiques IHES, 4,8,11,17,20,24,28,32, 1960--7. MR0217083 (36 #177a)
- A. Grothendieck, Groupes de monodromie en g\'eom\'etrie alg\'ebrique, Lecture Notes in Math 288, Springer-Verlag, Heidelberg (1972). MR0354656 (50 #7134)
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies, 108. Princeton University Press, Princeton, NJ, 1985. MR0772569 (86i:11024)
- D. R. Kohel, Hecke module structure of quaternions.
Class field theory---its centenary and prospect (Tokyo, 1998),
177--195, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001. MR1846458 (2002i:11059)
- D. R. Kohel and W. A. Stein, Component Groups of Quotients of
$J_0(N)$, Proceedings of the 4th International Symposium (ANTS-IV),
Leiden, Netherlands, July 2--7, 2000 (Berlin), Springer, 2000. MR1850621 (2002h:11051)
- B. Mazur, Modular curves and the Eisenstein ideal. Inst. Hautes �tudes Sci. Publ. Math. No. 47 (1977), 33--186 (1978). MR0488287 (80c:14015)
- J.-F. Mestre, La m\'ethode des graphes. Exemples et applications.
Proceedings of the international conference on class numbers and
fundamental units of algebraic number fields (Katata, 1986), 217--242,
Nagoya Univ., Nagoya, 1986. MR0891898 (88e:11025)
- J.-F. Mestre and J. Oesterl�, Courbes de Weil semi-stables de discriminant une puissance $m$- i\`eme, J. Reine Angew. Math. 400 (1989), 173--184. MR1013729 (90g:11078)
- D. Mumford, Abelian varieties.
Tata Institute of Fundamental Research Studies in Mathematics, No. 5,
Published for the Tata Institute of Fundamental Research, Bombay;
Oxford University Press, London 1970. MR0282985 (44 #219)
- K. A. Ribet, Letter about component groups of elliptic curves, arXiv:math.AG/0105124v1 (2001).
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil.
Modular functions of one variable, IV (Proc. Internat. Summer School,
Univ. Antwerp, Antwerp, 1972), 33--52. Lecture Notes in Math., Vol.
476, Springer, Berlin, 1975. MR0393039 (52 #13850)
Next Item
MR1860042 (2002h:11047)
Ribet, Kenneth A.(1-CA);
Stein, William A.(1-HRV)
Lectures on Serre's conjectures.
Arithmetic algebraic geometry (Park City, UT, 1999),
143--232,
IAS/Park City Math. Ser., 9,
Amer. Math. Soc., Providence, RI, 2001.
11F80 (11F66 11G05)
This is a nicely written survey article on the conjectures in the
title of the paper. The conjectures of Serre in question are about the
modularity of mod\,$p$, 2-dimensional, continuous, odd, absolutely
irreducible representations of the absolute Galois group $G_
Q$
of $
Q$. There is a more refined version which also predicts
certain minimal modular invariants from which these Galois
representations arise. While the conjectures in their qualitative form
are still wide open there has been considerable progress in proving
that the qualitative form of the conjecture implies the refined
form. It is this implication, which is a consequence of deep work of
many mathematicians, that this paper surveys in the main. The paper
also has useful exercises that will be of help to someone wishing to
learn about this area, and two appendices by K. Buzzard and B. Conrad on
mod $ l$ multiplicity one principles and constructions of Galois
representations attached to weight 2 newforms.
{For the entire collection see MR1860012 (2002d:11003).}
Reviewed by Chandrashekhar Khare
Previous Item
Next Item
MR1857596 (2003d:11082)
Merel, Lo�c(F-PARIS6-MI);
Stein, William A.(1-HRV)
The field generated by the points of small prime order on an elliptic curve.
Internat. Math. Res. Notices 2001, no. 20, 1075--1082.
11G05
Let $p$ be a prime number, and let $
Q(\mu_p)$ denote the $p$th
cyclotomic field. The authors prove the following theorem: If there
exists an elliptic curve over $
Q(\mu_p)$ such that the points of
order $p$ on $E$ are all $
Q(\mu_p)$-rational, then $p=2,3,5,13$,
or $p > 1000$. (In addition, the case $p=13$ has recently been ruled
out by M. Rebolledo.) This result generalizes previous results of
L. Merel \ref[Duke Math. J.
110 (2001), no. 1, 81--119;
MR1861089 (2002k:11080)],
and the techniques used in the two papers are similar.
The main new ingredient is the (quite nontrivial) verification of a
technical hypothesis on $p$ involving the non-vanishing of certain
$L$-functions. The reduction (for each fixed $p$) of the main theorem
to the verification of this hypothesis is discussed in Sections 1 and
2 of the paper. The computational methods used for verifying the
hypothesis are described in detail in Section 3.
Reviewed by Matthew H. Baker
Previous Item
[References]
- A. Agash�, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris S�r. I Math. 328 (1999), 369--374. MR1678131 (2000e:11083)
- J. Cremona, Algorithms for Modular Elliptic Curves, 2d ed., Cambridge Univ. Press, Cambridge, 1997. MR1628193 (99e:11068)
- L. Merel, Sur la nature non-cyclotomique des points d'ordre fini des courbes elliptiques, Duke Math. J. 110, 81--119. MR1861089 (2002k:11080)
- J.-F. Mestre, "La m�thode des graphes. Exemples et applications" in Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986), Nagoya University, Nagoya, Japan, 1986, 217--242. MR0891898 (88e:11025)
Next Item
MR1836926 (2002d:11072)
Flynn, E. Victor(4-LVRP);
Lepr�vost, Franck(F-GREN-F);
Schaefer, Edward F.(1-STCL-CS);
Stein, William A.(1-HRV);
Stoll, Michael(D-DSLD-MI);
Wetherell, Joseph L.(1-SCA)
Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves.
(English. English summary)
Math. Comp. 70 (2001),
no. 236, 1675--1697 (electronic).
11G40 (11G10 11G30)
For an abelian variety $A$ over a number field $K$, the conjectures of
B. J. Birch and H. P. F. Swinnerton-Dyer \ref[J. Reine Angew. Math.
218
(1965), 79--108;
MR0179168 (31 \#3419)]
and of J. T. Tate \ref[in
S\'eminaire
Bourbaki, Vol.\ 9, Exp. No. 306, 415--440, Soc. Math. France, Paris, 1995;
see
MR1610880 (99f:00041) MR1610977 ] relate arithmetic
properties of $A$ to the analytic behaviour of its $L$-function
$L(A,s)$. The first conjecture states that the rank of the (finitely
generated commutative) group $A(K)$ of $K$-rational points on $A$ is
equal to the order of vanishing of the function $L(A,s)$ at $s=1$. The
second conjecture expresses the leading coefficient $L^*(A,1)$ in the
Taylor expansion of $L(A,s)$ at $s=1$ in terms of certain arithmetic
invariants of $A$, among them the order of the group ${\cyr Sh}(A,K)$
of those principal homogeneous $A$-spaces over $K$ which become
isomorphic to $A$ over every completion of $K$.
Each of these conjectures requires an act of faith even for its
statement. For the first one, the analytic continuation of the
function $L(A,s)$ to a domain containing the point $s=1$ needs to be
assumed; for the second, the finiteness of the group ${\cyr Sh}(A,K)$
needs to be assumed as well. As of now, neither of these two
requirements is known to hold in general.
However, for modular abelian varieties $A$ over $\bold Q$, the analytic
continuation of $L(A,s)$ to the whole of $\bold C$ is known. For such
varieties, V. A. Kolyvagin and others
\ref[V. A. Kolyvagin and D. Yu. Logach�v, Algebra i Analiz 1 (1989),
no. 5, 171--196;
MR1036843 (91c:11032)]
have shown that if the $L$-function
$L(A,s)$ has at most a simple zero at $s=1$, then the order of
vanishing equals the rank of the group $A(Q)$ (as predicted by
the first conjecture) and the group ${\cyr Sh}(A,Q)$ is finite
(so the statement of the second conjecture is meaningful).
One of the triumphs of recent years has been to show that all
1-dimensional abelian varieties over $\bold Q$ are modular
\ref[C. Breuil et al., J. Amer. Math. Soc. 14 (2001), no. 4, 843--939
(electronic);
MR1839918 (2002d:11058)].
Extensive calculations,
beginning with Birch and Swinnerton-Dyer in the early 1960s on one of
the first electronic computers at Cambridge, have lent support to the
conjectures in this $1$-dimensional case
\ref[J. E. Cremona, Algorithms for modular elliptic curves, Second
edition, Cambridge Univ. Press, Cambridge, 1997;
MR1628193 (99e:11068)].
The authors extend these calculations to some 2-dimensional cases.
They consider thirty-two curves $C$ of genus 2 over $\bold Q$ whose
Jacobians $J$ are modular abelian surfaces. For each $J$ they
compute, with a high degree of precision, the leading coefficient
$L^*(J,1)$ and the arithmetic invariants $t$ (the order of the torsion
subgroup of $J(Q)$), $c$ (the product of the local Tamagawa
numbers at the finite places), $R$ (the regulator) and $\Omega$ (the
period). Within the accuracy of their computations, the number
$L^*(J,1)t^2/cR\Omega$---conjecturally
the order of the group ${\cyr Sh}(J,Q)$---does turn out to be an integer.
In all thirty-two cases, this integer happens to be equal to the order
of the $2$-torsion subgroup of ${\cyr Sh}(J,Q)$. So the second
conjecture has been reduced for them to the statement that the number
$L^*(J,1)t^2/cR\Omega$ is an integer and the group ${\cyr Sh}(J,
Q)$ is annihilated by $2$. As an example, for the last
curve on their list, namely
$$y^2+(x^3+x+1)y+(x^3-x^2-x)=0,$$ the Jacobian $J$ satisfies the
conjecture if the number $L^*(J,1)t^2/cR\Omega$, which agrees with 1
to 44 decimal places, is indeed equal to 1 and if the group ${\cyr
Sh}(J,Q)$ is trivial.
Reviewed by Chandan Singh Dalawat
Previous Item
[References]
- A. Agash� and W.A. Stein, Some abelian varieties with visible Shafarevich-Tate groups, preprint, 2000. cf. MR1772005 (2001g:17019)
- A. Agash�, and W.A. Stein, The generalized Manin constant, congruence primes, and the modular degree, in preparation, 2000.
- B. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math., 218 (1965), 79--108. MR0179168 (31 #3419)
- S. Bosch and Q. Liu, Rational points of the group of components of a N\'eron model, Manuscripta Math, 98 (1999), 275--293. MR1717533 (2000i:11094)
- S. Bosch, W. L�tkebohmert and M. Raynaud, N\'eron models, Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034)
- C. Breuil, B. Conrad, F. Diamond and R. Taylor On the modularity of elliptic curves over Q: Wild 3-adic exercises. http://abel.math.harvard.edu/HTML/Individuals/Richard\_Taylor.html (2000). MR1839918 (2002d:11058)
- J. Buhler, B.H. Gross and D.B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3. Math. Comp., 44 (1985), 473--481. MR0777279 (86g:11037)
- J.W.S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer., J. Reine Angew. Math., 217 (1965), 180--199. MR0179169 (31 #3420)
- J.W.S. Cassels and E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996. MR1406090 (97i:11071)
- J.E. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields, J. London Math. Soc. (2), 45 (1992), 404--416. MR1180252 (93h:11056)
- J.E. Cremona, Algorithms for modular elliptic curves. 2nd edition, Cambridge Univ. Press, Cambridge, 1997. MR {\bf 93m:}11053 MR1628193 (99e:11068)
- J.E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000) 13--28. MR1758797 (2001g:11083)
- B. Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., 89, Birkhauser Boston, Boston, MA, 1991, pp. 25--39. MR1085254 (92a:11066)
- B. Edixhoven, L'action de l'alg\`ebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est "Eisenstein", Ast�risque, No. 196-197 (1992), 159--170. MR1141457 (92k:11059)
- E.V. Flynn, B. Poonen and E.F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-two curve, Duke Math. J., 90 (1997), 435--463. MR1480542 (98j:11048)
- E.V. Flynn and N.P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith., 79 (1997), 333--352. MR1450916 (98f:11066)
- G. Frey and M. M�ller, Arithmetic of modular curves and applications, in Algorithmic algebra and number theory, Ed. Matzat et al., Springer-Verlag, Berlin, 1999, pp. 11--48. MR {\bf 00a:}11095 MR1672093 (2000a:11095)
- B.H. Gross and D.B. Zagier, Heegner points and derivatives of $L$- series, Invent. Math., 84 (1986), 225--320. MR0833192 (87j:11057)
- A. Grothendieck, Groupes de monodromie en g\'eom\'etrie alg\'ebrique, SGA 7 I, Expos� IX, Lecture Notes in Math. vol. 288, Springer, Berlin-Heidelberg-New York, 1972, pp. 313--523. MR0354656 (50 #7134)
- R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag, New York, 1977. MR0463157 (57 #3116)
- Y. Hasegawa, Table of quotient curves of modular curves $X_0(N)$ with genus 2, Proc. Japan. Acad., 71 (1995), 235--239. MR1373390 (97e:11071)
- D.R. Kohel and W.A. Stein, Component groups of quotients of
$J_0(N)$, in: Algorithmic number theory (Leiden, The Netherlands,
2000), Lecture Notes in Computer Science, 1838, Ed. W. Bosma, Springer,
Berlin, 2000, 405--412. MR1850621 (2002h:11051)
- V.A. Kolyvagin, Finiteness of $E(Q)$ and ${\rm III}(E, Q)$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 522--540. MR0954295 (89m:11056)
- V.A. Kolyvagin and D.Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Leningrad Math J., 1 (1990), 1229--1253. MR1036843 (91c:11032)
- S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, 1976. MR0429740 (55 #2751)
- F. Lepr�vost, Jacobiennes de certaines courbes de genre 2: torsion et simplicit\'e, J. Th�or. Nombres Bordeaux, 7 (1995), 283--306. MR1413580 (98a:11078)
- Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compos. Math., 94 (1994), 51--79. MR1302311 (96b:14038)
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., 44 (1978), 129--162. MR0482230 (80h:14022)
- J.R. Merriman and N.P. Smart; Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point, Math. Proc. Cambridge Philos. Soc., 114 (1993), 203--214. MR1230127 (94h:14031)
- J.S. Milne, Arithmetic duality theorems, Academic Press, Boston, 1986. MR0881804 (88e:14028)
- J.S. Milne, Jacobian varieties, in: Arithmetic geometry, Ed. G. Cornell, G. and J.H. Silverman, Springer-Verlag, New York, 1986, pp. 167--212. MR0861976
- Y. Namikawa and K. Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math., 9 (1973), 143--186. MR0369362 (51 #5595)
- B. Poonen and E.F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math., 488 (1997), 141--188. MR1465369 (98k:11087)
- B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2), 150 (1999), 1109--1149. MR1740984 (2000m:11048)
- K. Ribet, On modular representations of ${\rm Gal}(\overline{Q}/Q)$ arising from modular forms, Invent. Math., 100 (1990), 431--476. MR1047143 (91g:11066)
- E.F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann., 310 (1998), 447--471. MR1612262 (99h:11063)
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1994. MR1291394 (95e:11048)
- J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Grad. Texts in Math. 151, Springer-Verlag, New York, 1994. MR1312368 (96b:11074)
- M. Stoll, Two simple 2-dimensional abelian varieties defined over $Q$ with Mordell-Weil rank at least 19, C. R. Acad. Sci. Paris, S�r. I, 321 (1995), 1341--1344. MR1363577 (96j:11084)
- M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, to appear in Acta Arith. MR1829626 (2002b:11089)
- M. Stoll, On the height constant for curves of genus two, Acta Arith., 90 (1999), 183--201. MR1709054 (2000h:11069)
- M. Stoll, On the height constant for curves of genus two, II, in preparation.
- J. Tate, On the conjectures of Birch and Swinneron-Dyer and a geometric analog. S�minaire Bourbaki, 306 1965/1966. CMP 98:09
- J.-L. Waldspurger, Correspondances de Shimura, Proceedings of the International Congress of Mathematicians, Vol. 1, 2, (Warsaw, 1983), 1984, pp. 525--531. MR0804708 (86m:11036)
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demientier, J. Math. Pures Appl. (9), 60 (1981), 375--484. MR0646366 (83h:10061)
- X. Wang, 2-dimensional simple factors of $J_0(N)$, Manuscripta Math., 87 (1995), 179--197. MR1334940 (96h:11059)
MR1850621 (2002h:11051)
Kohel, David R.(5-SYD);
Stein, William A.(1-CA)
Component groups of quotients of $J\sb 0(N)$.
(English. English summary)
Algorithmic number theory (Leiden, 2000),
405--412,
Lecture Notes in Comput. Sci., 1838,
Springer, Berlin, 2000.
11G18 (11F11 11G10 11G40 14G35)
Let $A$ be an abelian variety over $
Q$
and let $p$ be a prime number. An important
arithmetic invariant attached to $A$ and $p$
is the order of the group $\Phi_{A,p}$ of
connected components of the reduction modulo
$p$ of the N{�}ron model of $A$ over $
Z$.
To each modular newform $f$ of weight 2 for
the congruence subgroup $\Gamma_0(N)$
($N\ge1$), Shimura has associated an abelian
variety $A_f$ defined over $Q$; it is
a certain quotient of $J_0(N)$ and has good
reduction at primes which do not divide $N$.
The authors give an algorithm for computing
the order of $\Phi_{A_f,p}$ when the prime
$p$ divides $N$ but $p^2$ does not divide
$N$. They include a table listing these
orders when $N\le127$.
{For the entire collection see MR1850596 (2002d:11002).}
Reviewed by Chandan Singh Dalawat
Previous Item
Return to headlines