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VISIBLE EVIDENCE FOR THE BIRCH AND

SWINNERTON-DYER CONJECTURE FOR MODULAR ABELIAN

VARIETIES OF ANALYTIC RANK ZERO

(WITH AN APPENDIX BY J. CREMONA AND B. MAZUR)

AMOD AGASHE AND WILLIAM STEIN

Abstract. This paper provides evidence for the Birch and Swinnerton-Dyer

conjecture for analytic rank 0 abelian varieties Af that are optimal quo-
tients of J0(N) attached to newforms. We prove theorems about the ratio
L(Af , 1)/ΩAf

, develop tools for computing with Af , and gather data about

certain arithmetic invariants of the nearly 20000 abelian varieties Af of level
≤ 2333. Over half of these Af have analytic rank 0, and for these we compute
upper and lower bounds on the conjectural order of X(Af ). We find that
there are at least 168 such that the Birch and Swinnerton-Dyer Conjecture

implies that X(Af ) is divisible by an odd prime, and we prove for 39 of these
that the odd part of the conjectural order of X(Af ) really divides #X(Af )

by constructing nontrivial elements of X(Af ) using visibility theory. We also
give other evidence for the conjecture. The appendix, by Cremona and Mazur,
fills in some gaps in the theoretical discussion in their paper on visibility of

Shafarevich-Tate groups of elliptic curves.
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1. Introduction

Let N be a positive integer, and f be a newform of weight 2 on Γ0(N). A
construction due to Shimura associates to f an abelian variety quotient Af of J0(N).
We say that Af has analytic rank zero if its L-function L(Af , s) is nonzero at
s = 1. In this paper we give evidence for the Birch and Swinnerton-Dyer conjecture
for analytic rank 0 abelian varieties Af of arbitrary dimension. For such abelian
varieties, the conjecture asserts that Af (Q) is finite, and gives a formula for the
order of the Shafarevich-Tate group X(Af ).

Kolyvagin and Logachev proved in [KL89, KL92] that if L(Af , 1) 6= 0, then
Af (Q) and X(Af ) are both finite. To the best of our knowledge, Birch and
Swinnerton-Dyer’s formula for #X(Af ) has not been completely verified for a
single abelian variety Af of dimension greater than one. In [KL92, §1.6] Kolyva-
gin and Logachev remark that if one were able to compute the height of a certain
Heegner point, their methods could be used to find an upper bound on #X(Af ),
but we have not done this. Instead, in this paper we focus on computing nonzero
subgroups of X(Af ) when the conjecture predicts that X(Af ) is nonzero.

Inspired by work of Cremona and Mazur (see [CM]), we had the idea to reverse
their methods and prove, in some cases, that #X(Af ) is at least as big as predicted
by the Birch and Swinnerton-Dyer conjecture. Instead of assuming that X(Af ) is
as predicted by the conjecture and trying to understand whether or not it is visible
in J0(N), we prove a theorem (see [AS02]) that allows us to sometimes construct
the odd part of X(Af ) without assuming any conjectures. After developing algo-
rithms that allow us to compute the conjectural order of X(Af ) in most cases, we
analyzed the 19608 abelian varieties Af of level ≤ 2333, and constructed the tables
of Section 5. This resulted in the first systematic experimental evidence for the
Birch and Swinnerton-Dyer conjecture for modular abelian varieties of dimension
greater than 2 (see [FpS+01] for dimension 2).

This paper is organized as follows. In Section 2 we review background about
modular abelian varieties and state the Birch and Swinnerton-Dyer conjecture.
Section 3 explains the basic facts about quotients Af of J0(N) that one needs to
know in order to compute with them. In Section 4 we discuss a generalization
of the Manin constant, derive a formula for the ratio L(Af , 1)/ΩAf

, and bound
the denominator of this ratio, thus giving some theoretical evidence towards the
Birch and Swinnerton-Dyer conjecture. Section 5 reports on our construction of a
table of 168 rank 0 abelian varieties Af of level ≤ 2333 such that the Birch and
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Swinnerton-Dyer conjecture predicts that #X(Af ) is divisible by an odd prime,
and discusses what we computed to show that for 39 of the Af there are at least as
many elements of the odd part of #X(Af ) as predicted. The part of #X(Af ) that
is coprime to the modular degree of Af (which we define below) is a perfect square,
and in the several cases where we could compute the odd part of the conjectured
value of #X(Af ), we found the odd part to be a perfect square, which gives
computational evidence for the conjecture. The appendix, written by Cremona
and Mazur, fills in some gaps in the theoretical discussion in [CM].
Acknowledgment. It is a pleasure to thank Bryan Birch, Robert Coleman,

Benedict Gross, Hednrik Lenstra, Dino Lorenzini, Löıc Merel, Bjorn Poonen, Ken
Ribet, and John Tate for many helpful comments and discussions. Special thanks
go to Barry Mazur for guiding our ideas on visibility and purchasing the second
author a powerful computer, and to Allan Steel and David Kohel at Magma for
their crucial computational support.

2. Background and Definitions

2.1. Modular Forms. Fix a positive integer N . The group

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) : N | c
}

acts by linear fractional transformations on the extended complex upper halfplane
h∗. As a Riemann surface, X0(N)(C) is the quotient Γ0(N)\h∗. There is a standard
model for X0(N) over Q (see [Shi94, Ch. 6]), and the Jacobian J0(N) of X0(N)
is an abelian variety over Q of dimension equal to the genus g of X0(N), which
is equipped with an action of the Hecke algebra T = Z[. . . Tn . . .]. The space
S2(Γ0(N)) of cuspforms of weight 2 on Γ0(N) is a module over T and S2(Γ0(N)) ∼=
H0(X0(N),ΩX0(N)) as T-modules.

2.2. Abelian Varieties Attached to Newforms. A newform

f =
∑

n≥1

anq
n ∈ S2(Γ0(N))

is an eigenvector for T that is normalized so that a1 = 1 and which lies in the
orthogonal complement of the old subspace of S2(Γ0(N)). Let If denote the anni-
hilator AnnT(f) of f in T. Following Shimura [Shi73], attach to If the quotient

Af = J0(N)/IfJ0(N),

which is an abelian variety over Q of dimension [Q(. . . , an, . . .) : Q], which is
equipped with a faithful action of T/If . Moreover, Af is an optimal quotient of
J0(N), in the sense that A∨f → J0(N) is a closed immersion, or equivalently that

the kernel of J0(N)→ Af is connected (see [CS01, Prop. 3.3]).
Also, the complex torus Af (C) fits into the exact sequence

H1(X0(N),Z)→ Hom(S2(Γ0(N))[If ],C)→ Af (C)→ 0.

2.3. The Birch and Swinnerton-Dyer Conjecture. The conjecture of Birch
and Swinnerton-Dyer makes sense for abelian varieties over fairly general global
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fields, but we only state a special case. This conjecture involves the L-function
attached to A = Af :

L(A, s) =
d
∏

i=1

L(f (i), s) =
d
∏

i=1





∑

n≥1

a
(i)
n

ns



 ,

where f (i) is the ith Galois conjugate of f and a
(i)
n is the ith Galois conjugate of an.

It follows from work of Hecke that L(A, s) has an analytic continuation to the whole
complex plane and satisfies a functional equation. Birch and Swinnerton-Dyer made
the following conjecture, which relates the rank of A to the order of vanishing of
L(A, s) at s = 1.

Conjecture 2.1 (Birch and Swinnerton-Dyer). The Mordell-Weil rank of A is
equal to the order of vanishing of L(A, s) at s = 1, i.e.,

dim(A(Q)⊗Q) = ords=1 L(A, s).

Birch and Swinnerton-Dyer also furnished a conjectural formula for the order of
the Shafarevich-Tate group

X(A) := ker



H1(Q, A) −→
∏

all places v

H1(Qv, A)



 .

(They only made their conjecture for elliptic curves, but Tate [Tat66] reformulated
it a functorial way which makes sense for abelian varieties. See also [Lan91, §III.5]
for another formulation.) We now state their conjecture in the special case when
L(A, 1) 6= 0, where [KL89, KL92] implies that X(A) is finite. The conjecture
involves the Tamagawa numbers cp of A (see Section 3.7), and the canonical volume
ΩA of A(R) (see Section 4.2).

Conjecture 2.2 (Birch and Swinnerton-Dyer). Suppose L(A, 1) 6= 0. Then

L(A, 1)

ΩA
=

#X(A) ·∏p|N cp

#A(Q)tor ·#A∨(Q)tor
,

where A∨ is the abelian variety dual of A.

Remark 2.3. Since L(A, 1) 6= 0, finiteness of X(A) and the existence of the Cassels-
Tate pairing implies that #X(A) = #X(A∨), so Conjecture 2.2 can also be viewed
as a formula for #X(A∨).

The algorithms outlined in this paper take advantage of the fact that A is at-
tached to a newform in order to compute the conjectural order of X(A) away from
certain bad primes.

3. Explicit Approaches to Modular Abelian Varieties

We use the algorithms of this section to enumerate the Af , compute informa-
tion about the invariants of Af that appear in Conjecture 2.2, and to verify the
hypothesis of Theorem 3.13 in order to construct nontrivial subgroups of X(Af ).
The second author has implemented the algorithms discussed in this paper, and
made many of them part of the Magma computer algebra system [BCP97].

In Section 3.1, we discuss modular symbols, which are the basic tool we use in
many of the computations, and in Section 3.2 we discuss how we systematically
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enumerate modular abelian varieties. There is an analogue for Af of the usual
elliptic-curve modular degree, which we discuss in Section 3.3, and which we use to
rule out the existence of visible elements of X(Af ) of a certain order. In Section 3.4
we describe how to compute the intersection of two abelian varieties, which will be
needed to verify the hypothesis of Theorem 3.13. In Sections 3.5 and 3.6, we
describe standard methods for bounding the torsion subgroup of an abelian variety
above and below. Section 3.7 reviews an algorithm for computing the odd part of
the Tamagawa number cp when p || N , and discusses the Lenstra-Oort bound in
the case when p2 | N .

Unless otherwise stated, f is a newform, If its annihilator, and A = Af is the
corresponding optimal quotient of J0(N).

3.1. Modular Symbols. Modular symbols are crucial to many algorithms for
computing with modular abelian varieties, because they can be used to construct a
finite presentation forH1(X0(N),Z) in terms of paths between elements ofP1(Q) =
Q ∪ {∞}. They were introduced by Birch [Bir71] and studied by Manin, Mazur,
Merel, Cremona, and others.

Let M2 be the free abelian group with basis the set of all symbols {α, β}, with
α, β ∈ P1(Q), modulo the three-term relations

{α, β}+ {β, γ}+ {γ, α} = 0,

and modulo any torsion. The group GL2(Q) acts on the left on M2 by

g{α, β} = {g(α), g(β)},
where g acts on α and β by a linear fractional transformation. The space M2(Γ0(N))
of modular symbols for Γ0(N) is the quotient of M2 by the subgroup generated by
all elements of the form x−g(x), for x ∈M2 and g in Γ0(N), modulo any torsion. A
modular symbol for Γ0(N) is an element of this space, and we frequently denote the
equivalence class that defines a modular symbol by giving a representative element.

Let B2(Γ0(N)) be the free abelian group with basis the finite set Γ0(N)\P1(Q).
The boundary map δ : M2(Γ0(N)) → B2(Γ0(N)) sends {α, β} to [β] − [α], where
[β] denotes the basis element of B2(Γ0(N)) corresponding to β ∈ P1(Q). The
cuspidal modular symbols are the kernel S2(Γ0(N)) of δ, and the integral homology
H1(X0(N),Z) is canonically isomorphic to S2(Γ0(N)).

Cremona’s book [Cre97, §2.2] contains a concrete description of how to compute
M2(Γ0(N)) ⊗ Q using Manin symbols, which are a finite set of generators for
M2(Γ0(N)). In general, the easiest way we have found to compute M2(Γ0(N)) is
to compute M2(Γ0(N)) ⊗Q, then compute the Z-submodule of M2(Γ0(N)) ⊗Q
generated by the Manin symbols.

3.2. Enumerating Newforms. SinceX0(N) is defined overQ it is defined overR,
so complex conjugation acts onX0(N)(C) hence on the homologyH1(X0(N),Z). In
terms of modular symbols, complex conjugation acts by sending {α, β} to {−α,−β}.
Let H1(X0(N),Z)+ denote the +1-eigenspace for the action of the involution in-
duced by complex conjugation, which we can compute using modular symbols.
We list all newforms of a given level N by decomposing the new subspace of
H1(X0(N),Q)+ under the action of the the Hecke operators and listing the corre-
sponding systems of Hecke eigenvalues (see [Ste02a]). First we compute the char-
acteristic polynomial of T2, and use it to break up the new space. We apply this
process recursively with T3, T5, . . . until either we have exceeded the bound coming
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from [Stu87] (see [LS02]), or we have found a Hecke operator Tn whose characteristic
polynomial is irreducible.

We order the newforms in a way that extends the ordering in [Cre97]: First sort
by dimension, with smallest dimension first; within each dimension, sort in binary
by the signs of the Atkin-Lehner involutions, e.g., + + +, + + −, + − +, + − −,
−++, etc. When two forms have the same Atkin-Lehner sign sequence, order by
|Tr(ap)| with ties broken by taking the positive trace first. We denote a Galois-
conjugacy class of newforms by a bold symbol such as 389E, which consists of a
level and isogeny class, where A denotes the first class, B the second, E the fifth,
BB the 28th, etc. As discussed in [Cre97, pg. 5], for certain small levels the above
ordering, when restricted to elliptic curves, does not agree with the ordering used
in the tables of [Cre97]. For example, our 446B is Cremona’s 446D.

3.3. The Modular Degree. Since Af is an optimal quotient, the dual map A∨f →
J0(N) is injective and the composite θf : A∨f → Af has finite degree. The map θf
is a polarization, so deg(θf ) is a perfect square (see Lemma 3.14). The modular
degree of Af is the square root of the degree of θf :

moddeg(Af ) =
√

deg(θf ).

When dimAf = 1, moddeg(Af ) is the usual modular degree, i.e., the degree of
X0(N)→ Af .

If M is an abelian group, let M∗ = HomZ(M,Z). The Hecke algebra acts in a
natural way onH1(X0(N),Z) andH1(X0(N),Z)∗, and we have a natural restriction
map

rf : H1(X0(N),Z)∗[If ]→ (H1(X0(N),Z)[If ])
∗.

The following proposition leads to an algorithm for computing the modular degree.

Proposition 3.1. coker(rf ) ∼= ker(θf ), so moddeg(Af ) =
√

#coker(rf ).

The proposition is proved in [KS00]. The proof makes use of the Abel-Jacobi
theorem, which realizes the Jacobian J0(N)(C) as a complex torus:

0→ H1(X0(N),Z)→ Hom(S2(Γ0(N)),C)→ J0(N)(C)→ 0,

where H1(X0(N),Z) is embedded as a lattice of full rank in the complex vector
space Hom(S2(Γ0(N)),C) using the integration pairing, and this description of
J0(N)(C) is compatible with the action of Hecke operators.

3.4. Intersecting Complex Tori. Let V be a finite dimensional complex vector
space and let Λ be a lattice in V , so that T = V/Λ is a complex torus. Suppose
that VA and VB are subspaces of V such that ΛA = VA ∩ Λ and ΛB = VB ∩ Λ are
lattices in VA and VB , respectively.

Proposition 3.2. If A ∩B is finite, then there is an isomorphism

A ∩B ∼=
(

Λ

ΛA + ΛB

)

tor .

Proof. Extend the exact sequence

0→ A ∩B → A⊕B (x,y)7→x−y−−−−−−−→ T
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to the following diagram:

ΛA ⊕ ΛB

²²

// Λ //

²²

Λ/(ΛA + ΛB)

²²

0 //

²²

VA ⊕ VB

²²

// V //

²²

V/(VA + VB)

²²

A ∩B // A⊕B // T // T/(A+B).

The middle row is exact because A ∩B is finite so VA ∩ VB = 0.
Using the snake lemma, which connects the kernel A ∩ B of A ⊕ B → T to the

cokernel of ΛA ⊕ ΛB → Λ, we obtain an exact sequence

0→ A ∩B → Λ/(ΛA + ΛB)→ V/(VA + VB).

Since V/(VA+VB) is a C-vector space, the torsion part of Λ/(ΛA+ΛB) must map
to 0. No non-torsion in Λ/(ΛA +ΛB) could map to 0, because if it did then A ∩B
would not be finite. The proposition follows. ¤

For abelian subvarieties of J0(N) attached to newforms, we use the proposition
above as follows. The complex vector space V = Hom(S2(Γ0(N)),C) is the tangent
space of J0(N)(C) at the identity. Setting Λ = H1(X0(N),Z) and considering Λ
as a lattice in V via the integration pairing, we have J0(N)(C) ∼= V/Λ. Suppose f
and g are non-conjugate newforms, and let If and Ig be their annihilators in the
Hecke algebra T, and let A = A∨f and B = A∨g . Then VA = V [If ] and VB = V [Ig]
are the tangent spaces to A and B at the identity, respectively. The above propo-
sition shows that the group A ∩ B is canonically isomorphic to (Λ/(ΛA + ΛB))tor.
Here ΛA = Λ[If ] and ΛB = Λ[Ig], because Af and Ag are optimal quotients.

The following formula for the intersection of n subtori is obtained in a similar
way to that of Proposition 3.2.

Proposition 3.3. For i = 1, . . . , n, with n ≥ 2, let Ai = Vi/Λi be a subtorus of
T = V/Λ, and assume that each pairwise intersection Ai ∩ Aj is finite. Define a
linear map

f : V1 × · · · × Vn −→ V ⊕(n−1).

by f(x1, . . . , xn) = (x1 − x2, x2 − x3, x3 − x4, . . . , xn−1 − xn). Then

A1 ∩ · · · ∩An ∼=
(

Λ⊕(n−1)

f(Λ1 ⊕ · · · ⊕ Λn)

)

tor

.

3.5. Bounding the Torsion From Above. In this section we recall the standard
upper bound on the order of #A(Q)tor, and illustrate its usefulness.

Let f =
∑

anq
n be a weight 2 newform on Γ1(N) with Nebentypus character

ε : (Z/NZ)∗ → C∗ (recall that f is a form on Γ0(N) if and only if ε = 1), and let
A = Af be the corresponding optimal quotient of J1(N), as in [Shi73]. Shimura
proved in [Shi94, Ch. 7] that the local Euler factor of Af at p is

Lp(Af , s) =
∏

σ:Kf ↪→Q

1

1− σ(ap)p−s + σ(ε(p))p1−2s
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by showing that the characteristic polynomial Fp of Frobenius on any `-adic Tate
module of AFp

(for ` - pN) is

Fp(X) =
∏

σ:Kf ↪→Q

X2 − σ(ap)X + σ(ε(p))p,

where Kf = Q(. . . , an, . . .). Let Q(ε) be the field generated by the values of ε (note
that Q(ε) ⊂ Kf ), and for any p - N let Gp(X) ∈ Q(ε)[X] be the characteristic
polynomial of left multiplication by ap on the Q(ε)-vector space Kf , which is a
polynomial of degree d′ = [Kf : Q(ε)]. Then

Fp(X) = NormQ(ε)/Q

(

Xd′ ·Gp
(

X +
ε(p)p

X

))

,

so

#AFp
(Fp) = deg(1− Frobp) = |det(1− Frobp)|

= |Fp(1)| = |NormQ(ε)/Q(Gp(1 + ε(p)p))|.

If p - N is odd, standard facts about formal groups imply that the reduction
map A(Q)tor → AFp

(Fp) is injective, so

#A(Q)tor | gcd
{

#AFp
(Fp) : primes p - 2N

}

.

Likewise, since A∨ is isogenous to A, the same bound applies to A∨(Q)tor, since
A∨ and A have the same L-series.

The upper bound is the same for every abelian variety isogenous to A, so it is
not surprising that it is not sharp in general. For example, let E (resp., F ) be the
elliptic curve labeled 30A1 (resp. 30A2) in Cremona’s tables [Cre97]. Then E
and F are isogenous, E(Q) ≈ Z/6Z, and F (Q) ≈ Z/12Z, so

12 | gcd
{

#EFp
(Fp) : primes p - 2N

}

.

(Incidentally, since #E(F5) = 12, the gcd is 12.) For answers to some related deep
questions about this gcd, see [Kat81].

Example 3.4. Let

f = q + (−1 +
√
2)q2 + q3 + (−2

√
2 + 1)q4 − 2

√
2q5 + · · · ∈ S2(Γ0(39))

be the form 39B. Then G5(X) = X2 − 8, so

#Af (Q)tor | G5(1 + 5) = 28.

We find in [FpS+01] that Af is isogenous to the Jacobian J of y2 + (x3 + 1)y =
−5x4− 2x3+16x2− 12x+2 and that #J(Q) = 28. However Af is not isomorphic
to J since, as reported in Table 2 of [FpS+01], the Tamagawa numbers of J are
c3 = 28, c13 = 1, whereas the methods of Section 3.7 below show that the Tamagawa
numbers of Af are c3 = 14, c13 = 2. The authors do not know for sure whether
#Af (Q) = 28, but in Example 3.6 below we show that 14 | #Af (Q). (Also, using
the computational techniques of this paper one sees that the Birch and Swinnerton-
Dyer conjecture implies that #Af (Q) = 28.)

Example 3.5. Let

f = q + (−ζ6 − 1)q2 + (2ζ6 − 2)q3 + ζ6q
4 + (−2ζ6 + 1)q5 + · · ·
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be one of the two Galois-conjugate newforms in S2(Γ1(13)). This form has character
ε : (Z/13Z)∗ → C∗ of order 6, and Af = J1(13). We have G3(X) = X − 2ζ6 + 2
and ε(3) = −ζ6, so

#J1(13)(Q)tor | #J1(13)(F3) = |Norm(G3(1− 3ζ6))|
= |Norm(−5ζ6 + 3)| = 19.

In fact Ogg proved that J1(13)(Q)tor ≈ Z/19Z (see [Ogg73] and [MT74]).

3.6. Bounding the Torsion From Below. A cusp α ∈ Γ0(N)\P1(Q) ⊂ X0(N)
defines a point (α) − (∞) ∈ J0(N)(Q)tor. The rational cuspidal subgroup C of
J0(N)(Q)tor generated by Q-rational cusps is of interest because the order of the
image of C in Af (Q)tor provides a lower bound on #Af (Q)tor. Stevens [Ste82,

§1.3] computed the action of Gal(Q/Q) on the subgroup of J0(N)(Q) generated
by all cusps (and for other congruence subgroups besides Γ0(N)). He found that
Gal(Q/Q) acts on the cusps through Gal(Q(ζN )/Q) ∼= (Z/NZ)∗, and that d ∈
(Z/NZ)∗ acts by x/y 7→ x/(d′y), where dd′ ≡ 1 (mod N). Thus, e.g., (0)− (∞) ∈
J0(N)(Q)tor, and if N is square-free then all cusps are rational.

To compute the image of C in Af (Q)tor, first make a list of inequivalent cusps
using, e.g., the method described in [Cre97, §2.2, pg. 17]. Keep only the Q-rational
cusps, which can be determined using the result of Stevens above and [Cre97,
Prop. 2.2.3] (when N is squarefree all cusps are rational). Next compute the
subgroup C of M2(Γ0(N)) generated by modular symbols {α,∞}, where α is a
Q-rational cusp. The image of C in Af (Q)tor is isomorphic to the image of C in

P = Φf (M2(Γ0(N)))/Φf (S2(Γ0(N))),

where Φf : M2(Γ0(N)) → Hom(S2(Γ0(N))[If ],C) is defined by the integration
pairing. To keep everything rational, note that P can be computed using any map
with the same kernel as Φf ; for example, such a map can be constructed by finding
a basis for Hom(M2(Γ0(N)),Q)[If ] as described at the end of Section 4.2).

Example 3.6. Let the notation be as in Example 3.4. The cusps on X0(39) are
represented by 0, ∞, −1/9, and −4/13, and since N = 39 is squarefree, these
cusps are all rational. Using Magma we find that the image of C in Af (Q)tor is
isomorphic to Z/14Z. Thus Af (Q)tor is isomorphic to one of Z/14Z, Z/28Z, or
Z/14Z× Z/2Z, but we do not know which.

Example 3.7. Let

f = q +
1 +

√
5

2
q2 +

1−
√
5

2
q3 +

5 +
√
5

2
q4 + · · · ∈ S2(Γ0(175))

be the form 175D. The cusps of X0(175) are represented by

0, ∞, 1

25
,
1

28
,
1

30
,
1

35
,
1

45
,
1

60
,
1

65
,
1

70
,

1

105
,

1

140
.

The Q-rational cusps in this list are 0,∞, 125 , 128 , and these generate a subgroup of
Af (Q)tor of order 2. (Incidentally, the group generated by all cusps, both rational
and not, is isomorphic to Z/32Z.) Using ap for p ≤ 17 and the method of the
previous section, we see that #Af (Q)tor | 4. The authors do not know if the
cardinality is 2 or 4.
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Example 3.8. The form 209C is

f = q + αq2 + (1/2α4 − α3 − 5/2α2 + 4α+ 1)q3 + (α2 − 2)q4 + · · · ,
where α5 − 2α4 − 6α3 + 10α2 + 5α − 4 = 0. As above, we find that #Af (Q)tor
divides 5. The image of the (rational) cuspidal subgroup in Af (Q)tor is isomorphic
to Z/5Z, so Af (Q)tor ≈ Z/5Z.

3.7. Tamagawa Numbers. Suppose p | N and let ΦA,p denote the component
group of A at p, which is defined by the following exact sequence:

0→ A0Fp
→ AFp

→ ΦA,p → 0,

where AFp
is the closed fiber of the Néron model of A over Zp and A0Fp

is the

component of AFp
that contains the identity.

Definition 3.9. The Tamagawa number of A at p is

cp = cA,p = #ΦA,p(Fp).

When p || N , the second author found a computable formula for #ΦA,p(Fp) and
(sometimes only up to a power of 2) for #ΦA,p(Fp). There is a discussion about
how to compute this number in [KS00] and [CS01] contains a proof of the formula.
Note also that in this case the Tamagawa number of A at p is the same as the
Tamagawa number of A∨ at p.

When p2 | N the authors do not know an algorithm to compute cp. However, in
this case Lenstra and Oort (see [LO85]) proved that

∑

`6=p

(`− 1) ord`(#ΦA,p(Fp)) ≤ 2 dim(Af ),

so if ` | #ΦA,p(Fp) then ` ≤ 2 · dim(Af ) + 1 or ` = p. (Here ord`(x) denotes the
exponent of the largest power of ` that divides x.)

Example 3.10. Let f be 39B as in Example 3.4. Running the algorithm of [KS00],
we find that c3 = 14 and c13 = 2.

Example 3.11. Let f be 175D as in Example 3.7. Running the algorithm of [KS00],
we find that c7 = 1, and the Lenstra-Oort bound implies that the only possible
prime divisors of c5 are 2, 3, and 5.

3.8. Visibility Theory. We briefly recall visibility theory, which we will use to
construct elements of Shafarevich-Tate groups. Section 6 contains another approach
to the results reported in this section, but in the special case of elliptic curves.

Definition 3.12. Let ι : A ↪→ J be an embedding of abelian varities over Q. The
visible subgroup of X(A) with respect to the embedding ι is

VisJ(X(A)) = Ker(X(A)→X(J)).

The following is a special case of Theorem 3.1 of [AS02].

Theorem 3.13. Let A and B be abelian subvarieties of an abelian variety J over Q
such that A(Q) ∩ B(Q) is finite. Let N be an integer divisible by the residue
characteristics of primes of bad reduction for J (e.g., the conductor of J). Suppose p
is a prime such that

p - 2 ·N ·#(J/B)(Q)tor ·#B(Q)tor ·
∏

`

cA,` · cB,`,
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where cA,` = #ΦA,`(F`) (resp., cB,`) is the Tamagawa number of A (resp., B) at `.

Suppose furthermore that B[p](Q) ⊂ A(Q) as subgroups of J(Q). Then there is a
natural map

ϕ : B(Q)/pB(Q)→ VisJ(X(A))

such that dimFp
ker(ϕ) ≤ dimQA(Q)⊗Q.

We return to the situation where A = Af is an optimal quotient of J0(N)
attached to a newform. In Proposition 3.15 below we show that VisJ0(N)(X(A∨))
is annihilated by multiplication by moddeg(A) (see also [CM, p.19]). We first state
a lemma; the outline of the proof was indicated to us by B. Poonen.

Lemma 3.14. Let A be an abelian variety over k, where k is a field, and let
λ : A→ A∨ be a polarization. Suppose either that k has characteristic 0 or that its
characteristic does not divide the degree of λ. Then there is a finite abelian group H
such that ker(λ) ≈ H ×H as groups.

Proof. We work in the setting of Section 16 of [Mil86], using the notation used
there. Consider the pairing

eλ : Ker(λ)×Ker(λ)→ µm ⊆ k
∗
,

as in [Mil86, p. 135], where m is an integer that kills Ker(λ). We will show that
this pairing is nondegenerate.

Suppose a ∈ Ker(λ) is such that eλ(a, a′) = 1 for all a′ ∈ Ker(λ). Let a′′ ∈
A∨[m]. There exists an isogeny λ′ : A∨ → A such that λ′ ◦λ is multiplication by m
on A and λ ◦ λ′ is multiplication by m on A∨ (to construct λ′, note that λ′ is the
quotient map A∨ → A∨/λ(A[m])). Pick an element b ∈ A(k) such that λb = a′′.
Then mb = λ′(λb) = λ′(a′′). So em(a, a′′) = em(a, λb) = eλ(a, λ′a′′) = 0 (note that
λ(λ′a′′) = ma′′ = 0, so that λ′a′′ ∈ Ker(λ)). This is true for all a′′ ∈ A∨[m], so the
non-degeneracy of em ([Mil86, p. 131]) implies that a = 0.

Similarly, suppose a′ ∈ Ker(λ) is such that eλ(a, a′) = 1 for all a ∈ Ker(λ).
Since eλ is skew-symmetric ([Mil86, p. 135]), this implies that eλ(a′, a) = 1 for all
a ∈ Ker(λ). Then by the previous paragraph, a′ = 0. This finishes the proof of
non-degeneracy.

As mentioned before, the pairing eλ is skew-symmetric. It is alternating because
it extends to pairings on Tate modules (denoted by eλ` in [Mil86, p. 132]), and
the latter take values in a torsion-free group, so there is no distinction between
skew-symmetric and alternating.

Now the lemma follows from the fact that if G is a finite abelian group with an
alternating nondegenerate pairing, then there is a finite abelian group H such that
G ≈ H ×H as groups (e.g., see [Del01, Prop. 2]). ¤

Proposition 3.15. Let mA = moddeg(A). We have

VisJ0(N)(X(A∨)) ⊂X(A∨)[mA].

Proof. The polarization θf (from Section 3.3) is the composite map A∨ → J0(N)→
A. Let eA be the exponent of the finite group ker(θf ). By Lemma 3.14, multipli-
cation by mA kills ker(θf ), so eA | mA. Also θf factors through multiplication by
eA, so there is a map θ′f : A → A∨ such that θ′f ◦ θf is multiplication by eA. If

φ is a map of abelian varieties (over Q), let φ∗ denote the corresponding map on
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Shafarevich-Tate groups. Since VisJ0(N)(X(A∨)) is contained in ker((θf )∗), it is
also contained in

ker((δ′ ◦ δ)∗) = X(A∨)[eA] ⊂X(A∨)[mA].

¤

Since X(A∨)[n] is finite for any n, we obtain the following corollary.

Corollary 3.16. VisJ0(N)(X(A∨)) is finite.

4. The Quotient L(A, 1)/ΩA

Fix a newform f ∈ S2(Γ0(N)), let If be the annihilator of f in T, and A =
Af = J0(N)/IfJ0(N) the corresponding optimal quotient. Suppose for the rest of
this section that L(A, 1) 6= 0.

4.1. The Manin Constant. When trying to compute the conjectural order of
X(A), we try to compute the quotient L(A, 1)/ΩA, but find that it is easier to
compute cA · L(A, 1)/ΩA where cA is the Manin constant of A, which is defined as
follows:

Definition 4.1 (Manin constant). The Manin constant of A is

cA = #

(

S2(Γ0(N),Z)[If ]

H0(A,ΩA/Z)

)

∈ Z,

where we consider H0(A,ΩA/Z) as a submodule of S2(Γ0(N),Q) using

H0(A,ΩA/Z)→ H0(J ,ΩJ /Z)[If ]→ H0(J,ΩJ/Q)[If ]→ S2(Γ0(N),Q)[If ],

where A and J are the Néron models of A and J , respectively. (See [AS04] for a
discussion of why the image of H0(A,ΩA/Z) is contained in S2(Γ0(N),Z).)

Theorem 4.2. If ` | cA is a prime then `2 | 4N .

Proof. Mazur proved this when dimA = 1 in [Maz78, §4], and we generalized his
proof in [AS04]. ¤

When dimA = 1, Edixhoven [Edi91] obtained strong results towards the folklore
conjecture that cA = 1, and when A has arbitrary dimension the authors have made
the following conjecture (see [AS04] for evidence):

Conjecture 4.3. cA = 1.

4.2. A Formula for L(A, 1)/ΩA. If L and M are lattices in a real vector space V ,
then the lattice index [L : M ] is the absolute value of the determinant of a lin-
ear transformation of V taking L onto M . The lattice index satisfies the usual
properties suggested by the notation, e.g., [L :M ] · [M : N ] = [L : N ].

The real volume ΩA is defined as follows. If L∗ is a lattice in the cotangent space

T ∗ = H0(AR,ΩAR
) = S2(Γ0(N),R)[If ]

of AR, then L∗ determines a lattice L = Hom(L∗,Z) in the tangent space T =
Hom(T ∗,R), and hence a measure on T by declaring that the quotient T/L has
measure 1. Let A(R)0 denote the identity component of A(R). Then A(R)0 inherits
a measure by virtue of being viewed as T/H1(A(R)0,Z), and we have

µL(A(R)0) = [L : H1(A(R)0,Z)].
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We also set

µL(A(R)) = µL(A(R)0) · c∞,
where c∞ = #(A(R)/A(R)0). Let A be the Néron model of A (see [BLR90]). The
Néron differentials H0(A,ΩA/Z) define a lattice Λ∗ in T ∗, and we define ΩA =
µΛ(A(R)).

Lemma 4.4. H1(A(R)0,Z) ∼= H1(A(C),Z)+.

Proof. This lemma is well known, but we give a proof for the reader’s convenience
(which was suggested by H. Lenstra and B. Poonen). We have the commutative
diagram

0 // H1(A(R)0,Z) //

ψ
²²

H1(A(R)0,R) //

∼=
²²

A(R)0 //
Ä _

i
²²

0

0 // H1(A(C),Z)+ // H1(A(C),R)+
π

// A(C)+

where the upper horizontal sequences is exact (we view the real torus A(R)0 as the
quotient of the tangent space at the identity by the first integral homology), and
the lower horizontal sequence is exact because it is the beginning of the long exact
sequence of Gal(R/C)-cohomology that arises from

0→ H1(A(C),Z)→ H1(A(C),R)→ A(C)→ 0.

The middle vertical map is an isomorphism because if it were not then its kernel
would be an uncountable set that maps to 0 in A(R)0. The snake lemma then
yields an exact sequence

0→ ker(ψ)→ 0→ 0→ coker(ψ)→ 0,

which implies that ψ is an isomorphism. ¤

Let

Φ : H1(X0(N),Q)→ Hom(S2(Γ0(N))[If ],C)

be the map induced by integration, scaled so that

Φ({0,∞})(f) = L(f, 1)

(that {0,∞} ∈ H1(X0(N),Q) is the Manin-Drinfeld theorem, and that
∫∞

0
f is a

multiple of L(f, 1) follows from the definition of L(f, s) as a Mellin transform).

Theorem 4.5. Recall that A is an abelian variety attached to a newform f ∈
S2(Γ0(N)), that c∞ is the number of connected components of A(R), that cA is the
Manin constant of A, that ΩA is the Néron canonical volume of A(R), and that
Φ is the period mapping on homology induced by integrating homology classes on
X0(N) against the C-vector space spanned by the Gal(Q/Q)-conjugates of f . Then
we have the following equation:

c∞ · cA ·
L(A, 1)

ΩA
= [Φ(H1(X0(N),Z))+ : Φ(T{0,∞})] ∈ Q,

where the lattice index on the right hand side should be interpreted as 0 if Φ(T{0,∞})
has rank less than the dimension of A.
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Proof. It is easier to compute with Λ̃∗ = S2(Γ0(N),Z)[If ] than with Λ∗, so let

Ω̃A = µΛ̃(A(R)). Note that Ω̃A · cA = ΩA, where cA is the Manin constant. By
Lemma 4.4 and Section 2.2,

Ω̃A = c∞ · [Λ̃ : H1(A(R)0,Z)]

= c∞ · [Hom(S2(Γ0(N),Z)[If ],Z) : Φ(H1(X0(N),Z))+].

For any ring R the pairing

TR × S2(Γ0(N), R)→ R

given by 〈Tn, f〉 = a1(Tnf) is perfect, so (T/If )⊗R ∼= Hom(S2(Γ0(N), R)[If ], R).
Using this pairing, we may view Φ as a map

Φ : H1(X0(N),Q)→ (T/If )⊗C,

so that
Ω̃A = c∞ · [T/If : Φ(H1(X0(N),Z))+].

Note that (T/If )⊗C is isomorphic as a ring to a product of copies of C, with

one copy corresponding to each Galois conjugate f (i) of f . Let πi ∈ (T/If ) ⊗ C

be the projector onto the subspace of (T/If ) ⊗ C corresponding to f (i). Then

Φ({0,∞}) · πi = L(f (i), 1) · πi. Since the πi form a basis for the complex vector
space (T/If )⊗C, we see that

det(Φ({0,∞})) =
∏

i

L(f (i), 1) = L(A, 1).

Letting H = H1(X0(N),Z), we have

[Φ(H)+ : Φ(T{0,∞})] = [Φ(H)+ : (T/If ) · Φ({0,∞})]
= [Φ(H)+ : T/If ] · [T/If : T/If · Φ({0,∞})]

=
c∞

Ω̃A
· det(Φ({0,∞}))

=
c∞cA
ΩA

· L(A, 1),

which proves the theorem. ¤

Theorem 4.5 was inspired by the case when A is an elliptic curve (see [Cre97,
§II.2.8]) or the winding quotient of J0(p) (see [Aga99]), and it generalizes to forms
of weight > 2 (see [Ste00]).

Theorem 4.5 is true with Φ replaced by any linear map with the same kernel
as Φ. One way to find such a linear map with image in a Q-vector space is to
compute a basis ϕ1, . . . ϕd for Hom(H1(X0(N),Q),Q)[If ] and let Φ = ϕ1 × · · · ×
ϕd. Also, since H1(X0(N),Z)+ and T{0,∞} are contained in H1(X0(N),Q)+,
Theorem 4.5 implies that L(A, 1)/ΩA ∈ Q, a fact well known to the experts (see
[Gro94, Prop. 2.7] for the statement, but without proof).

4.3. The Denominator of L(A, 1)/ΩA. In this section, we prove a result about
the denominator of the rational number L(A, 1)/ΩA and compare it to what is
predicted by the Birch and Swinnerton-Dyer conjecture.

Proposition 4.6. Let z be the point in J0(N)(Q) defined by the degree 0 divisor
(0)− (∞) on X0(N), and let n = nf be the order of the image of z in A(Q). Then
the denominator of c∞ · cA · L(A, 1)/ΩA divides n.
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Proof. Let x be the image of z in A(Q), and let I = AnnT(x) be the ideal of
elements of T that annihilate x. Since f is a newform, the Hecke operators Tp, for
p | N , act as 0 or ±1 on A(Q) (see, e.g., [DI95, §6]). If p - N , then a standard
calculation (see, e.g., [Cre97, §2.8]) shows that Tp(x) = (p+ 1)x.

Let C be the cyclic subgroup of A(Q) of order n generated by x. Consider the
map T → C given by Tp 7→ Tp(x). The kernel of this map is I, and the map
is surjective because its image is an additive group that contains x, and C is the

smallest such group. Thus the map induces an isomorphism T/I
∼=−→ C. ¤

Conjecture 2.2 predicts that

#A(Q) ·#A∨(Q) · L(A, 1)
ΩA

= #X(A) ·
∏

cp ∈ Z,

and since n | #A(Q), Proposition 4.6 implies that

c∞ · cA ·#A(Q) · L(A, 1)
ΩA

∈ Z.

Since c∞ is a power of 2, and cA is conjecturally 1 (if N is prime, then by Theo-
rem 4.2 it is a power of 2), Proposition 4.6 provides theoretical evidence for Con-
jecture 2.2, and also reflects a surprising amount of cancellation between

∏

cp and
#A∨(Q).

5. Results and Conclusions

We computed all 19608 abelian varieties A = Af attached to newforms of level
N ≤ 2333. Interesting data about some of these abelian varieties is summarized in
Tables 1–4, which use the notation described in this section.

Suppose that A is one of the 10360 of these for which L(A, 1) 6= 0, so Conjec-
ture 2.2 asserts that X(A) has order

#X? =
L(A, 1)

Ω̃A · cA
· #A(Q)tor ·#A∨(Q)tor

∏

p|N cp
.

(See Section 4.2 for the definition of Ω̃A and cA.)
For any rational number x, let xodd be the odd part of x. If a and b are rational

numbers with a 6= 0, we say that a | b if b/a is an integer.
Define integers Sl and Su such that

Sl | numer(#Xodd
? ) | Su

as follows:

Su The upper bound Su is the odd part of the numerator of

L(A, 1)

Ω̃A
· T 2
∏

p||N cp
,

where T is the upper bound on #A(Q) and #A∨(Q) computed using Sec-
tion 3.5 using ap for p ≤ 17. Since the Manin constant and the Tamagawa
numbers are integers, Su is an upper bound on the odd part of #X?.

Sl The lower bound Sl is defined as follows: Let Sl,1 be the odd part of the
rational number

L(A, 1)

Ω̃A
· #C ·#D∏

p||N cp
,
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where C ⊂ A(Q)tor and D is the part of C coprime to the modular degree
of A. Usually C is the group generated by the image of (0)−(∞), and in all
cases it contains this subgroup. More precisely, when A is an elliptic curve,
we instead let C and D be the full torsion subgroup A(Q)tor, because it
is easy to calculate. When A is not an elliptic curve it would be better to
let C be the subgroup generated by all rational cusps, but the authors only
realized this after completing the calculations, so we did not do this.

If N is square free, we let Sl = Sl,1. Otherwise, let Sl,2 be the largest
part of Sl,1 coprime to all primes whose square divides N . This takes care
of the Manin constant, which only involves primes whose square divides N .
To take care of Tamagawa numbers, remove all primes p ≤ 2 dim(A) + 1
from Sl,2 to obtain Sl.

Remark 5.1. When N is square free we have

Sl | #Xodd
? | Su

since cA is a power of 2 and no Tamagawa numbers have been omitted from the
formulas for Sl and Su. For every N ≤ 2333 we found that Sl is an integer, so
when N ≤ 2333 is squarefree, #Xodd

? is an integer. Since Conjecture 2.2 asserts
that #X? is the order of a group, hence an integer, our data gives evidence for
Conjecture 2.2.

Tables 1–4 list every A of level N ≤ 2333 such that Sl > 1. The A column
contains the label of A (see Section 3.2), and the next column (labeled dim) contains
dimA. A star next to the label for A indicates that we have proved that the odd
part of #X(A) is at least as large as conjectured by the Birch and Swinnerton-
Dyer conjecture. This is the case for 39 of the 168 examples. The columns labeled
Sl contains the number Sl defined above. If Sl = Su then the column labeled
Su contains an = sign, and otherwise, it contains Su (there are only 13 cases in
which Su 6= Sl). The column labeled moddeg(A)odd contains the odd part m
of the modular degree of A, written as a product gcd(m,Su) · m/ gcd(Su, m), where
m/ gcd(Su, m) is shrunk to save space. The only non-square-free levels of Af for which
Sl > 1 are 1058, 1664, 2224, and 2264.

The column labeled B contains all B such that L(B, 1) = 0 and

gcd(Sl,#(A∨ ∩ B̃∨)) > 1.

(In retrospect, it would probably have been more interesting to list those B such

that gcd(Su,#(A∨ ∩ B̃∨)) > 1.) Here if B = Ag for some newform g of level

dividing N , and B̃∨ is the abelian subvariety of J0(N) generated by all images of

B∨ under the degeneracy maps. Thus, e.g., when B∨ is of level N , B̃∨ = B∨. The
next column, labeled dim, contains the dimension of B.

The final two columns contain information about the relationship between A
and B. The one labeled A∨ ∩ B̃∨ contains the abelian group structure of the
indicated abelian group, where e.g., [abcd] means the abelian group (Z/aZ)b ×
(Z/cZ)d. The column labeled Vis contains a divisor of the order of VisC(X(A∨)),

where C = A∨ + B̃∨ (note that VisC(X(A∨)) ⊂ VisJ0(N)(X(A∨))).
The table is divided into three vertical regions, where the columns in the first

region are about A only, the columns of the second region are about B only, and
the third column is about the relationship between A and B.
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5.1. Example: Level 389. We illustrate what is involved in computing the first
line of Table 1. Using the method sketched in Section 3.2, we find that S2(Γ0(389))
contains exactly five Galois-conjugacy classes of newforms, and these are defined
over extensions of Q of degrees 1, 2, 3, 6, and 20. Thus J = J0(389) decomposes,
up to isogeny, as a product A1 × A2 × A3 × A6 × A20 of abelian varieties, where
dimAd = d and Ad is the optimal quotient corresponding to the appropriate Galois-
conjugacy class of newforms.

Next we consider the arithmetic of the Ad. Using Theorem 4.5 we find that

L(A1, 1) = L(A2, 1) = L(A3, 1) = L(A6, 1) = 0,

and
L(A20, 1)

ΩA20

=
52 · 211
97 · cA

,

where cA is the Manin constant attached to A20, which, by Theorem 4.2, is of the
form 2n with n ≥ 0. Using the algorithms of Sections 3.5, 3.6, 3.7, we find that
#A20(Q) = c389 = 97. Thus Conjecture 2.2 predicts that #X(A20) = 52 · 211/cA.
The following proposition provides support for this conjecture.

Proposition 5.2. There is a natural inclusion

(Z/5Z)2 ∼= A1(Q)/5A1(Q) ↪→ VisJ0(389)(X(A∨20)).

Proof. Let A = A∨20, B = A∨1 and J = A + B ⊂ J0(389). Using Proposition 3.3,
we find that A ∩ B ∼= (Z/4)2 × (Z/5Z)2, so B[5] ⊂ A. Since 5 does not divide the
numerator of (389− 1)/12, it does not divide the Tamagawa numbers or the orders
of the torsion groups, so Theorem 3.13 yields the asserted injection. To see that
(Z/5Z)2 ∼= A1(Q)/5A1(Q) use the standard elliptic curves algorithms [Cre97]. ¤

5.2. Invisible Elements of X(A). Tables 1–4 suggest that much of X(A∨) is
invisible in J0(N). This is because Proposition 3.15 implies that if a prime divides
#X(A∨) but not moddeg(A∨) then X(A∨) contains an element of order p that
is invisible. We find many examples in the table where p divides the conjectural
order of X(A∨), but p - moddeg(A∨).

Invisible elements might become visible at higher level (see [AS02, §4.3] for a
discussion and example).

5.3. The Part of X(A) That Must be a Perfect Square. When dimA = 1,
properties of the Cassels-Tate pairing imply that if X(A) is finite then #X(A) is
a perfect square, and the fact that one finds in examples (see [Cre97]) that #X?

is a perfect square is computational evidence for Conjecture 2.2.
In contrast, when the dimension is greater than one, Poonen and Stoll [PS99]

discovered Jacobians J such that X(J) has order twice a square, and the second
author found for each prime p < 25000 an abelian variety A of dimension p−1 such
that #X(A) = pn2 for some integer n (see [Ste02b]).

Proposition 5.3. Let A = Af be a quotient of J0(N) and ` be a prime that
does not divide the modular degree of A. Suppose that X(A)[`∞] is finite. Then
#X(A)[`∞] is a perfect square.

Proof. The Cassels-Tate pairing (see [Tat63, §3]) induces a pairing

φ : X(A)[`∞]×X(A∨)[`∞]→ Q/Z.
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Since X(A)[`∞] is finite, it follows from [Tat63, Thm. 3.2] that X(A∨)[`∞] is also
finite and φ is non-degenerate. In particular, #X(A∨)[`∞] = #X(A)[`∞].

Since J0(N) is a Jacobian, it possesses a canonical polarization arising from the
theta divisor; this divisor is rational over Q, since X0(N) always has a point over Q
(the cusp∞ is rational). This polarization induces a polarization θ : A∨ → A, which
also comes from a divisor that is rational over Q. Hence, by [Tat63, Thm. 3.3] (see
also [PS99, Thm. 5]), the pairing

φ′ : X(A∨)[`∞]×X(A∨)[`∞]→ Q/Z

obtained by composing θ with the pairing φ above is alternating.
Since ` does not divide the modular degree of A, it does not divide the degree

of the isogeny θ. Hence θ induces an isomorphism X(A∨)[`∞]
∼=→X(A)[`∞]. Thus

by the non-degeneracy of the pairing φ, the pairing φ′ is also non-degenerate. Since
φ′ is also alternating, it follows from arguments similar to those in [Cas62, p. 260]
that #X(A∨)[`∞] is a perfect square. Since #X(A)[`∞] = #X(A∨)[`∞], we see
that #X(A)[`∞] is also a perfect square.

¤

For the entries in Tables 1–4, X(A) is finite, so if ` - moddeg(A) then the `-power
part of #X(A) must be a perfect square. When Sl = Su and the level is square
free, then Sl is the odd part of the conjectural order of X(A). We found that Sl is
a perfect square whenever Sl = Su, which provides evidence for Conjecture 2.2.
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Table 1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
389E∗ 20 52 = 5 389A 1 [202] 52

433D∗ 16 72 = 7·111 433A 1 [142] 72

446F∗ 8 112 = 11·359353 446B 1 [112] 112

551H 18 32 = 169 NONE
563E∗ 31 132 = 13 563A 1 [262] 132

571D∗ 2 32 = 32 ·127 571B 1 [32] 32

655D∗ 13 34 = 32 ·9799079 655A 1 [362] 34

681B 1 32 = 3·125 681C 1 [32] −
707G∗ 15 132 = 13·800077 707A 1 [132] 132

709C∗ 30 112 = 11 709A 1 [222] 112

718F∗ 7 72 = 7·5371523 718B 1 [72] 72

767F 23 32 = 1 NONE
794G∗ 12 112 = 11·34986189 794A 1 [112] −
817E∗ 15 72 = 7·79 817A 1 [72] −
959D 24 32 = 583673 NONE
997H∗ 42 34 = 32 997B 1 [122] 32

997C 1 [242] 32

1001F 3 32 = 32 ·1269 1001C 1 [32] −
91A 1 [32] −

1001L 7 72 = 7·2029789 1001C 1 [72] −
1041E 4 52 = 52 ·13589 1041B 2 [52] −
1041J 13 54 = 53 ·21120929983 1041B 2 [54] −
1058D 1 52 = 5·483 1058C 1 [52] −
1061D 46 1512 = 151·10919 1061B 2 [223022] −
1070M 7 3·52 32 ·52 3·5·1720261 1070A 1 [152] −
1077J 15 34 = 32 ·1227767047943 1077A 1 [92] −
1091C 62 72 = 1 NONE
1094F∗ 13 112 = 112 ·172446773 1094A 1 [112] 112

1102K 4 32 = 32 ·31009 1102A 1 [32] −
1126F∗ 11 112 = 11·13990352759 1126A 1 [112] 112

1137C 14 34 = 32 ·64082807 1137A 1 [92] −
1141I 22 72 = 7·528921 1141A 1 [142] −
1147H 23 52 = 5·729 1147A 1 [102] −
1171D∗ 53 112 = 11·81 1171A 1 [442] 112

1246B 1 52 = 5·81 1246C 1 [52] −
1247D 32 32 = 32 ·2399 43A 1 [362] −
1283C 62 52 = 5·2419 NONE
1337E 33 32 = 71 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32 ·2224523985405 NONE
1363F 25 312 = 31·34889 1363B 2 [22622] −
1429B 64 52 = 1 NONE
1443G 5 72 = 72 ·18525 1443C 1 [71141] −
1446N 7 32 = 3·17459029 1446A 1 [122] −
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Table 2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
1466H∗ 23 132 = 13·25631993723 1466B 1 [262] 132

1477C∗ 24 132 = 13·57037637 1477A 1 [132] 132

1481C 71 132 = 70825 NONE
1483D∗ 67 32 ·52 = 3·5 1483A 1 [602] 32 ·52
1513F 31 3 34 3·759709 NONE
1529D 36 52 = 535641763 NONE
1531D 73 3 32 3 1531A 1 [482] −
1534J 6 3 32 32 ·635931 1534B 1 [62] −
1551G 13 32 = 3·110659885 141A 1 [152] −
1559B 90 112 = 1 NONE
1567D 69 72 ·412 = 7·41 1567B 3 [4411482] −
1570J∗ 6 112 = 11·228651397 1570B 1 [112] 112

1577E 36 3 32 32 ·15 83A 1 [62] −
1589D 35 32 = 6005292627343 NONE
1591F∗ 35 312 = 31·2401 1591A 1 [312] 312

1594J 17 32 = 3·259338050025131 1594A 1 [122] −
1613D∗ 75 52 = 5·19 1613A 1 [202] 52

1615J 13 34 = 32 ·13317421 1615A 1 [91181] −
1621C∗ 70 172 = 17 1621A 1 [342] 172

1627C∗ 73 34 = 32 1627A 1 [362] 34

1631C 37 52 = 6354841131 NONE
1633D 27 36 ·72 = 35 ·7·31375 1633A 3 [64422] −
1634K 12 32 = 3·3311565989 817A 1 [32] −
1639G∗ 34 172 = 17·82355 1639B 1 [342] 172

1641J∗ 24 232 = 23·1491344147471 1641B 1 [232] 232

1642D∗ 14 72 = 7·123398360851 1642A 1 [72] 72

1662K 7 112 = 11·16610917393 1662A 1 [112] −
1664K 1 52 = 5·7 1664N 1 [52] −
1679C 45 112 = 6489 NONE
1689E 28 32 =3·172707180029157365 563A 1 [32] −
1693C 72 13012 = 1301 1693A 3 [2426022] −
1717H∗ 34 132 = 13·345 1717B 1 [262] 132

1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659·151291281 1739C 2 [2213182] −
1745K 33 52 = 5·1971380677489 1745D 1 [202] −
1751C 45 52 = 5·707 103A 2 [5052] −
1781D 44 32 = 61541 NONE
1793G∗ 36 232 = 23·8846589 1793B 1 [232] 232

1799D 44 52 = 201449 NONE
1811D 98 312 = 1 NONE
1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 36 = 1 NONE
1871C 98 192 = 14699 NONE
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Table 3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
1877B 86 72 = 1 NONE
1887J 12 52 = 5·10825598693 1887A 1 [202] −
1891H 40 74 = 72 ·44082137 1891C 2 [421962] −
1907D∗ 90 72 = 7·165 1907A 1 [562] 72

1909D∗ 38 34 = 32 ·9317 1909A 1 [182] 34

1913B∗ 1 32 = 3·103 1913A 1 [32] 32

1913E 84 54 ·612 = 52 ·61·103 1913A 1 [102] −
1913C 2 [226102] −

1919D 52 232 = 675 NONE
1927E 45 32 34 52667 NONE
1933C 83 32 ·7 32 ·72 3·7 1933A 1 [422] 32

1943E 46 132 = 62931125 NONE
1945E∗ 34 32 = 3·571255479184807 389A 1 [32] 32

1957E∗ 37 72 ·112 = 7·11·3481 1957A 1 [222] 112

1957B 1 [142] 72

1979C 104 192 = 55 NONE
1991C 49 72 = 1634403663 NONE
1994D 26 3 32 32 ·46197281414642501 997B 1 [32] −
1997C 93 172 = 1 NONE
2001L 11 32 = 32 ·44513447 NONE
2006E 1 32 = 3·805 2006D 1 [32] −
2014L 12 32 = 32 ·126381129003 106A 1 [92] −
2021E 50 56 = 52 ·729 2021A 1 [1002] 54

2027C∗ 94 292 = 29 2027A 1 [582] 292

2029C 90 52 ·2692 = 5·269 2029A 2 [2226902] −
2031H∗ 36 112 = 11·1014875952355 2031C 1 [442] 112

2035K 16 112 = 11·218702421 2035C 1 [111221] −
2038F 25 5 52 52 ·92198576587 2038A 1 [202] −

1019B 1 [52] −
2039F 99 34 ·52 = 13741381043009 NONE
2041C 43 34 = 61889617 NONE
2045I 39 34 = 33 ·3123399893 2045C 1 [182] −

409A 13 [93701996792] −
2049D 31 32 = 29174705448000469937 NONE
2051D 45 72 = 7·674652424406369 2051A 1 [562] −
2059E 45 5·72 52 ·72 52 ·7·167359757 2059A 1 [702] −
2063C 106 132 = 8479 NONE
2071F 48 132 = 36348745 NONE
2099B 106 32 = 1 NONE
2101F 46 52 = 5·11521429 191A 2 [1552] −
2103E 37 32 ·112 = 32 ·11·874412923071571792611 2103B 1 [332] 112

2111B 112 2112 = 1 NONE
2113B 91 72 = 1 NONE
2117E∗ 45 192 = 19·1078389 2117A 1 [382] 192
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Table 4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
2119C 48 72 = 89746579 NONE
2127D 34 32 = 3·18740561792121901 709A 1 [32] −
2129B 102 32 = 1 NONE
2130Y 4 72 = 7·83927 2130B 1 [142] −
2131B 101 172 = 1 NONE
2134J 11 32 = 1710248025389 NONE
2146J 10 72 = 7·1672443 2146A 1 [72] −
2159E 57 132 = 31154538351 NONE
2159D 56 34 = 233801 NONE
2161C 98 232 = 1 NONE
2162H 14 3 32 3·6578391763 NONE
2171E 54 132 = 271 NONE
2173H 44 1992 = 199·3581 2173D 2 [3982] −
2173F 43 192 32 ·192 32 ·19·229341 2173A 1 [382] 192

2174F 31 52 = 5·21555702093188316107 NONE
2181E 27 72 = 7·7217996450474835 2181A 1 [282] −
2193K 17 32 = 3·15096035814223 129A 1 [212] −
2199C 36 72 = 72 ·13033437060276603 NONE
2213C 101 34 = 19 NONE
2215F 46 132 = 13·1182141633 2215A 1 [522] −
2224R 11 792 = 79 2224G 2 [792] −
2227E 51 112 = 259 NONE
2231D 60 472 = 91109 NONE
2239B 110 114 = 1 NONE
2251E∗ 99 372 = 37 2251A 1 [742] 372

2253C∗ 27 132 = 13·14987929400988647 2253A 1 [262] 132

2255J 23 72 = 15666366543129 NONE
2257H 46 36 ·292 = 33 ·29·175 2257A 1 [92] −

2257D 2 [221742] −
2264J 22 732 = 73 2264B 2 [1462] −
2265U 14 72 = 72 ·73023816368925 2265B 1 [72] −
2271I∗ 43 232 = 23·392918345997771783 2271C 1 [462] 232

2273C 105 72 = 72 NONE
2279D 61 132 = 96991 NONE
2279C 58 52 = 1777847 NONE
2285E 45 1512 = 151·138908751161 2285A 2 [223022] −
2287B 109 712 = 1 NONE
2291C 52 32 = 427943 NONE
2293C 96 4792 = 479 2293A 2 [229582] −
2294F 15 32 = 3·6289390462793 1147A 1 [32] −
2311B 110 52 = 1 NONE
2315I 51 32 = 3·4475437589723 463A 16 [134263127691692] −
2333C 101 833412 = 83341 2333A 4 [261666822] −
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6. Appendix by J. Cremona and B. Mazur:

“Explaining” Shafarevich-Tate via Mordell-Weil

Introduction. In our article [CM] we discussed the notion of visibility and offered
some tables of examples of that phenomenon. We gave, however, very little theo-
retical discussion in that article. Here we wish to take the opportunity to correct
some gaps in our commentary on our tables and to offer the details of the proof of
a general criterion that is sometimes useful to test visibility. Regarding Table 1 of
[CM] we said that for each pair (E, p) that occurs there and for which there is a
corresponding “F” on the table of the same conductor of E, the Shafarevich-Tate
group of E is explained by the Mordell-Weil group of F , in the technical sense that
we gave to the word explained in that article. Now this is indeed the case for all
entries of our table such that E has semistable reduction at p and it is also the case
for those entries where the conductor of F properly divides the conductor of E. We
will review why this is so, below. It is also true that for each of the remaining 7
entries (E = 2601H, 2718D, 2900D, 3555E, 3879E, 3933A, 5499E) a nontriv-
ial subgroup of the Shafarevich-Tate group of E is explained by the Mordell-Weil
group of the corresponding F , but we wish to notify our readers that we have not
yet checked whether or not all of the “X” of these 7 elliptic curves is so explained.
These 7 cases deserve to be looked at (the issue being local at the prime 3 for all
but 2900D, where it is local at the prime 5). Regarding Table 2 of [CM], although
our commentary in [CM] does not say this clearly, for all the entries E of that table
for which there is a corresponding F of the same conductor we only have checked
that E[2] = F [2] in J0(N) and nothing more, except, of course, for those entries
we particularly signal to have shown something less; namely, in the language of
our article, that they “seem to satisfy a 2-congruence.” In these latter cases where
we signal that we have shown something less, W. Stein has checked that in fact
E[2] 6= F [2] in J0(N).

Let p be an odd prime number. If E is an (optimal) elliptic curve over Q of
conductor N then E may be unambiguously identified (up to sign) with a sub-
abelian variety of the modular jacobian J0(N) (over Q). If (E,F, p) is an entry
of Table 1 of [CM] such that E and F are of the same conductor N we checked
that we have equality of the finite group schemes E[p]/Q = F [p]/Q in J0(N)/Q.
For the remaining three entries we checked that there is an isomorphism of finite
group schemes ι : E[p]/Q ∼= F [p]/Q. In both cases, identifying the two finite group
schemes let H denote the common cohomology group,

H := H1(GQ, E[p]/Q) = H1(GQ, F [p]/Q),

and SE ⊂ H, and SF ⊂ H the p-Selmer groups of, respectively, E and F . What
we will show is that

Proposition 6.1. For each of the entries (E, p) in Table 1 of [CM] such that p is
a prime of semistable reduction for E and for which there is a “corresponding” F ,
we have

SE = SF ⊂ H.

To discuss this, we need some notation.
Let X := Spec(Z), Y := Spec(Z[1/p]) = X − Spec(Fp), and η := Spec(Q).

Let Eη := E be our elliptic curve over Q of conductor N , E/X the Néron model
over X of Eη and Eo/X ⊂ E/X the “connected component” of Néron (meaning
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the open subgroup scheme every fiber of which is connected). We have, of course,
similar notation for the corresponding elliptic curve F . Let E[p]/X denote the
closed subgroup scheme given as the kernel of multiplication by p in the Néron
model: E[p]/X ⊂ E/X . We have, in general, that the restriction E[p]/Y of E[p]/X
to the base Y is an étale quasi-finite flat group scheme; and if p2 doesn’t divide N
we have that the group scheme E[p]/X is a quasi-finite flat group scheme [Gro72,
Prop. 3.1(d), pg. 343]. The étale quasi-finite flat group scheme E[p]/Y can be
characterized by the following features:

(i) Its generic fiber is the group scheme E[p]/η ⊂ J0(N)/η,

and (one has a choice here) either:

(ii) E[p]/Y ⊂ J0(N)/Y is a closed étale quasi-finite flat) subgroup scheme,

or:

(ii’) E[p]/Y enjoys the Néronian property over the base Y .

Similar statements hold for F [p]/X .
Let Φ be the (punctual) sheaf of abelian groups for the flat topology over X

which fits into the exact sequence (of abelian sheaves over X)

(1) 0→ Eo → E → Φ→ 0.

We will use the same notation to indicate the corresponding exact sequence of
sheaves for the étale topology over X. Since E0 and E are smooth group schemes,
the long exact sequences of cohomology derived from the short exact sequence (1),
viewed either as sheaves of abelian groups for the flat or étale topology, coincide; cf
Section 11 Appendice: Un théorème de comparaison de la cohomologie étale et de
la cohomologie fppf in [Gro68]. Thinking now of Φ as a sheaf for the étale topology,
denote by Φ` its stalk at the prime `. So Φ` is representable as a finite étale group
scheme over the field F`. We have that

Φ =
⊕

` | N

(i`)∗Φ`,

where i` : SpecF` ↪→ X is the natural closed immersion. We have an exact sequence

(2) 0→ Eo(X)→ E(Q)→ H0(X,Φ)→ H1(X,Eo)→ H1(X,E)→ H1(X,Φ),

where cohomology is computed for the étale topology. We have, for either topology,

Hi(X,Φ) =
⊕

` | N

Hi(Spec(F`),Φ`).

Viewing (1) as an exact sequence of sheaves for the flat topology, and passing to the
associated cohomology sequence we see that (2) may be thought of, ambiguously
as computed for either the étale or the flat topology.

If p is an odd prime number, the p-primary component of the Shafarevich-Tate
group of E is the p-primary component of the image of H1(X,Eo) → H1(X,E)
(see the appendix to [Maz72]), or equivalently the intersection of the kernels of

H1(X,E)→ H1(Spec(F`),Φ`).

Let p be an odd prime number. Let E ′ ⊂ E be the open subgroup scheme of E
which is the inverse image of pΦ ⊂ Φ, so that we have an exact sequence of sheaves
for the flat (or étale) topology:

(3) 0→ E′ → E → Φ/pΦ→ 0,
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and if p is a prime of semistable reduction for E (equivalently: p2 doesn’t divide N)
we have an exact sequence of flat group schemes

(4) 0→ E[p]→ E → E′ → 0.

Put
E[p]o/X := E[p]/X

⋂

Eo/X .

Then E[p]o/X is an open (quasi-finite) subgroup scheme of E[p]/X . Let Ẽ[p]/X be

any “intermediate” open (quasi-finite) subgroup scheme

E[p]o/X ⊂ Ẽ[p]/X ⊂ E[p]/X

so that we have the exact sequence of sheaves for the finite flat topology

(5) 0→ Ẽ[p]/X → E[p]/X → Ψ→ 0,

with Ψ a subquotient of Φ.
Consider the following hypothesis:

A(E, p, `): The Galois module Φ`/pΦ` is either trivial, or else is a non-
constant cyclic Galois module over F`.

Let A(E, p) denote the conjunction of Hypotheses A(E, p, `) for all prime num-
bers `, or equivalently, for all ` dividing N .

Lemma 6.2. These are equivalent formulations of Hypothesis A(E, p).

(a) Φ/pΦ is cohomologically trivial; that is, H0(X,Φ/pΦ) = H1(X,Φ/pΦ) = 0.
(b) If Ψ is any subquotient of Φ, Ψ is “p-cohomologically trivial” in the sense

that the p-primary components of H i(X,Ψ) vanish for all i.

Moreover, if p ≥ 5, or if p = 3 and E has no Néron fibers of type IV or IV*, the
above conditions are equivalent to:

(c) For every ` at which E has split multiplicative reduction, p does not divide
the order of the group of connected components of the Néron fiber of E at `.

Proof. The equivalence of Hypothesis A(E, p) with (a) and with (b) is straightfor-
ward using standard exact sequences plus the fact that the p-primary components
of the (underlying abelian group of) Φ` is cyclic since p > 2; and noting that a
(finite) G-module of prime order with nontrivial G-action has trivial cohomology.
For (c) we are using that if p > 2 the p-primary component of Φ` vanishes for all
primes ` of additive reduction for E except when p = 3 and the Néron fiber type
of E at ` is IV or IV*. ¤

A morphism G1 → G2 of flat (commutative, finite type) groups schemes over X
will be said to induce an isomorphism on p-cohomology if the induced mappings

Hi(X,G1)⊗ Zp → Hi(X,G2)⊗ Zp

are isomorphisms for all i ≥ 0, where cohomology is computed for the flat topology.

Lemma 6.3. Let p be an odd prime number for which A(E, p) holds. We have
that the natural morphisms

Eo/X → E′/X and E′/X → E/X

induce isomorphisms on p-cohomology. If p is of semistable reduction for E, we
also have that

Ẽ[p]/X → E[p]/X
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induces isomorphisms on p-cohomology, for any of the open subgroup schemes
Ẽ[p]/X in E[p]/X described above.

Proof. These all sit in short exact sequences of sheaves of abelian groups for the
flat topology over X where the third sheaf is p-cohomologically trivial. ¤

Corollary 6.4. If p > 2 and A(E, p) holds we have natural isomorphisms

H0(X,Eo)⊗ Zp ∼= H0(X,E′)⊗ Zp ∼= E(Q)⊗ Zp

and

X(E)⊗ Zp ∼= H1(X,Eo)⊗ Zp ∼= H1(X,E′)⊗ Zp ∼= H1(X,E)⊗ Zp.

Corollary 6.5. Let p be an odd prime number, semistable for E, and suppose that
A(E, p) holds.

(i) The image of the natural (injective) coboundary mapping

0→ E(Q)/pE(Q) ↪→ H1(GQ, E[p])

attached to the Kummer sequence is contained in the image of the natural
injection

H1(X,E[p]o) ↪→ H1(GQ, E[p]).

(ii) We have an exact sequence

0→ E(Q)/pE(Q)→ H1(X, Ẽ[p])→X(E)[p]→ 0

for any of the open subgroup schemes Ẽ[p]/X ⊂ E[p]/X defined above.

(iii) The image of H1(X, Ẽ[p]) ↪→ H1(GQ, E[p]) is equal to the p-Selmer sub-
group,

Sp(E) ⊂ H1(GQ, E[p]).

Proof. All this follows from straightforward calculations using the cohomological
exact sequences associated to the exact sequences (1)–(5) in the light of the previous
discussion. ¤

To set things up for our application, let us record the following:

Corollary 6.6. Let E/Q and F/Q be elliptic curves over Q. Let p be an odd
prime number of semistable reduction for E and F , and for which A(E, p) and

A(F, p) both hold. Define Ẽ[p]/X ⊂ E[p]/X to be the open quasi-finite subgroup
scheme whose restriction to Y is equal to E[p]/Y and whose fiber at Fp is equal to

E[p]o/Fp
= (E[p]

⋂

Eo)/Fp
. Define F̃ [p]/X similarly. Suppose, finally, that we have

an isomorphism of GQ-modules ι : F [p]/Q ∼= E[p]/Q which extends to an injection
of quasi-finite flat group schemes

F̃ [p]/X ↪→ Ẽ[p]/X .

Letting

H := H1(GQ, E[p]) = H1(GQ, F [p])

(making the identification via ι) we have that the p-Selmer groups Sp(E) ⊂ H and
Sp(F ) ⊂ H are the same.
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Proposition 6.7. Let (E,F, p) be a triple which is an entry of Table 1 of [CM].
Suppose further that p is of semistable reduction for E and for F . Then, with the
notation of the previous corollary, the p-Selmer groups Sp(E) ⊂ H and Sp(F ) ⊂
H are the same. In the terminology of [CM] the Shafarevich-Tate group of E is
explained by the Mordell-Weil group of F .

Proof. As mentioned above, we have checked that E[p]/Q = F [p]/Q ⊂ J0(N) when-
ever the pair E and F (appearing as entry of Table 1 of [CM]) have the same con-
ductor. We have checked that E[p]/Q ∼= F [p]/Q for the three entries where E and
F have different conductor (E = 2932A, 3306B, and 5136B). We have checked
that Hypothesis A(E, p, `) and A(F, p, `) hold for all quadruples (E,F, p, `) such
that (E,F, p) occurs as an entry in Table 1 of [CM] (even when p is not semistable
for E and F ) with the exception of the entry (E,F, p, `) = (2366D,2366E, 3, 13).

Sublemma 6.8. Under the hypotheses of our proposition, the isomorphism of
GQ-modules ι : E[p]/Q ∼= F [p]/Q extends to an injection of quasi-finite flat group
schemes

Ẽ[p]/X ↪→ F̃ [p]/X

which is an isomorphism except in two instances (E = 3306B, and 5136B).

Proof. First, since Ẽ[p]/Y = E[p]/Y , F̃ [p]/Y = F [p]/Y , and, as we mentioned at
the beginning, both of these quasi-finite, flat (étale) group schemes F [p]/Y and
E[p]/Y enjoy the Néronian property, the isomorphism ι extends to an isomorphism

Ẽ[p]/Y ∼= F̃ [p]/Y . The remaining question is then local about p. If p is of good

reduction for E, then Ẽ[p]/Xp
and F̃ [p]/Xp

are both finite flat group schemes of odd
order, so by Fontaine’s Theorem [Fon75], the isomorphism between their generic
fibers extends to an isomorphism over Xp. (Compare: Theorem I.1.4 in [Maz77].)
A standard result allows us to patch the isomorphism extending ι over Y with the
isomorphism (“extending ι”) over Xp to get the extension of ι to an isomorphism

of group schemes over X, Ẽ[p]/X ∼= F̃ [p]/X . Now consider the case where p is of
bad reduction. By the assumptions of our proposition, p is then of multiplicative
reduction for E, and hence the fiber of E over Fp is a finite multiplicative type

group scheme of order p. We therefore have that Ẽ[p]/Xp
sits in an exact sequence

(6) 0→ C/Xp
→ Ẽ[p]/Xp

→ E/Xp
→ 0

where C/Xp
is a finite flat group scheme of order p (and with fiber of multiplicative

type in characteristic p) and where E/Xp
is an étale quasi-finite group scheme, with

trivial fiber in characteristic p.
Let us take a moment to recall (see [Maz78, Lem. 1.1]) the construction of such an

exact sequence (6): working in the category of formal schemes, let X̂p := Spf(Zp),

and let Ĉ/X̂p
be the formal completion of the zero-section in Ẽ[p]/Xp

. One checks

that Ĉ/X̂p
may be identified with a finite flat formal group scheme over X̂p which

admits a closed immersion into the formal group scheme over X̂p associated to

Ẽ[p]/Xp
. A standard algebrization argument establishes that there is a (unique)

finite flat subgroup scheme C/Xp
⊂ Ẽ[p]/Xp

whose associated formal group scheme

over X̂p is Ĉ/X̂p
. The exact sequence (6) is then obtained by letting E/Xp

be the

evident quotient (quasi-finite flat) group scheme, and noting that, by construction,
its special fiber is trivial.
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Now let us return to the proof of the sublemma. Since the restriction of ι to
C/Xp

(a finite flat multiplicative type group scheme of order p) is injective over the
generic point, it follows (by elementary considerations, or by Fontaine’s Theorem
cited above) that ι restricted to C/Xp

is an injection over Xp. Since E/Xp
has trivial

fiber in characteristic p, ι is an injection as was to be proved. In all cases under
consideration, then,

ι : Ẽ[p]/X ↪→ F̃ [p]/X

is an injection. If E is of good reduction at p, or if F is of bad reduction at p, ι is
therefore an isomorphism. The cases remaining are when E is of bad reduction at
p and F is of good reduction (i.e., E = 3306B, and 5136B) in which case we can
only assert that ι is an injection. ¤

Returning to our proposition, suppose that F̃ [p]/Xp
is finite flat (which happens

in the two cases signalled above: E = 3306B, and 5136B). Then the isomorphism
induced by ι on generic fibers

Ẽ[p]/Qp
∼= F̃ [p]/Qp

restricted to the GQp
-stable subgroup C/Qp

⊂ Ẽ[p]/Qp
extends to a morphism of

the finite flat group scheme C/Xp
into F̃ [p]/Xp

. This extended morphism j : C/Xp
→

F̃ [p]Xp
is necessarily a closed immersion since C/Xp

is a multiplicative type finite
flat group scheme. Since E/Xp

has trivial fiber in characteristic p an application
of the standard patching argument (as used in the previous case) allows us to put
together the isomorphism of group schemes over Y extending ι with the closed
immersion j over Xp to get a closed immersion

Ẽ[p]/X ↪→ F̃ [p]/X .

Finally suppose that both E and F have multiplicative reduction at p. We then
have exact sequences (6) for each of our quasi-finite flat group schemes Ẽ[p]/Xp

and

F̃ [p]/Xp
. Let V denote their common generic fiber (identified via ι) considered as

two-dimensional Fp-vector space with GQp
-action. Let C(E) ⊂ V and C(F ) ⊂ V

denote the one-dimensional subspaces given by the generic fibers of the finite flat
subgroup schemes C/Xp

corresponding to the exact sequence (6) for for E and for F
respectively. Suppose, first, that these one-dimensional Fp-subspaces C(E) and
C(F ) are different. It then follows that the GQp

-representation V splits as the direct
sum of C(E) and C(F ), both Fp-subspaces being isomorphic, as IQp

-modules to µp,
where IQp

⊂ GQp
is the inertia subgroup of GQp

. But this contradicts the fact
that V is self-Cartier dual (under the Weil pairing). Consequently, C(E) = C(F ) ⊂
V . From the above discussion it follows that we can extend ι to an isomorphism
Ẽ[p]/Xp

∼= F̃ [p]/Xp
.

Our proposition then follows (from Corollary 6.6) for all entries in Table 1 of
[CM] where p is of semistable reduction for E once we produce special arguments
to cover the three special cases E = 3306B, 5136B and 2366D. The first two of
these cases are “special” because we only have an injection Ẽ[p]/Xp

↪→ F̃ [p]/Xp
and

not an isomorphism. However, the cokernel of this morphism restricted to the fiber
in characteristic 3 is, in both of these cases, a cyclic group with nontrivial GQ3

-

action and hence is 3-cohomologically trivial. In particular, the injection Ẽ[p]/Xp
↪→

F̃ [p]/Xp
induces an isomorphism on flat cohomology over X, and the argument for

these two cases proceeds as before. This leaves (E,F, p) = (2366D,2366E, 3)



MODULAR ABELIAN VARIETIES 29

which is the only example of an entry (E,F, p) in our table, where E has a Q-
rational point of order p, and (this is no accident) where Hypothesis A(E, p) and
Hypothesis A(F, p) fail. (Indeed there are no other failures of Hypothesis A(F, p)
for any of the (E,F, p)’s occurring in Table 1 of [CM] and only one other failure of
Hypothesis A(E, p), which is for (E, p, `) = (2932A, 3, 2).)

Let us now deal with the case (E,F, p) = (2366D,2366E, 3). The subgroup C
of Q-rational points of order 3 on E specialize in characteristic 13 to yield an
isomorphism

C ∼= Φ13

and the same for the subgroup of Q-rational points of order 3 on F . We make use of
this information to cut down the group schemes Ẽ[3]/X and F̃ [3]/X and define open

subgroup schemes: ˜̃E[3]/X ⊂ Ẽ[3]/X and ˜̃E[3]/X ⊂ Ẽ[3]/X by requiring that these
closed immersions of subgroup schemes be isomorphisms outside characteristic 13,
and that the “double-tilded” group schemes each have trivial fiber in characteristic

13. We get via the above argument an isomorphism of group schemes ˜̃E[3]/X ∼=
˜̃F [3]/X extending ι, and an identification of the 3-Selmer groups of E and F with

H1(X, ˜̃E[3]) and H1(X, ˜̃F [3]) respectively. Our proposition is proved. ¤

It remains to say a few words about why, in the 7 cases of entries (E,F, p) in our
Table 1 of [CM] for which p is a prime of additive reduction for E some nontrivial
elements of the Shafarevich-Tate group of E are explained by the Mordell-Weil
group of F . Briefly, the reason is as follows. By the inflated p-Selmer group of E
(and of F ) let us mean the subgroup of H obtained by insisting upon all the local
Selmer conditions at primes different from p, but putting no condition at p. The p-
Selmer group of E (and of F ) are, in all 7 instances, Fp-vector spaces of dimension 2
and therefore, the inflated p-Selmer groups are of dimensions either 2 or 3. Working
over Y rather than over X, the above argument applied to these 7 remaining cases
gives us an identification of the inflated p-Selmer groups of E and of F in H. But
the true p-Selmer groups (vector spaces of dimension 2) being subspaces in a vector
space of dimension ≤ 3 must have a nontrivial intersection.
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Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1966 (reprinted in 1995), pp. Exp.
No. 306, 415–440. MR 1 610 977

Department of Mathematics, U niversity of Texas, Austin, Texas 78712

E-mail address: agashe@math.utexas.edu

Department of Mathematics, Harvard University, Cambridge, Massachussetts 02138

E-mail address: was@math.harvard.edu


