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Abstract

We explain how weight-two modular forms on Γ0(N) are related to modular
symbols, and how to use this to explicitly compute spaces of modular forms.

Introduction

The definition of the spaces of modular forms as functions on the upper half plane
satisfying a certain equation is very abstract. The definition of the Hecke operators
even more so. Nevertheless, one wishes to carry out explicit investigations involving
these objects.

We are fortunate that we now have methods available that allow us to transform
the vector space of cusp forms of given weight and level into a concrete object, which
can be explicitly computed. We have the work of Atkin-Lehner, Birch, Swinnerton-
Dyer, Manin, Mazur, Merel, and many others to thank for this (see, e.g., [3, 6, 15,
16]). For example, we can use the Eichler-Selberg trace formula, as extended in
[11], to compute characteristic polynomials of Hecke operators. Then the method
described in [25] gives a basis for certain spaces of modular forms. Alternatively,
we can compute Θ-series using Brandt matrices and quaternion algebras as in [12,
18], or we can use a closely related geometric method that involves the module of
enhanced supersingular elliptic curves [17]. Another related method of Birch [2] is
very fast, but gives only a piece of the full space of modular forms. The power of
the modular symbols approach was demonstrated by Cremona in his book [6] in
which he systematically computes a large table of invariants of all elliptic curves of
conductor up to 1000 (his online tables [7] go well beyond 100, 000).

Though the above methods are each beautiful and well suited to certain appli-
cations, we will only discuss the modular symbols method further, as it has many
advantages. We will primarily discuss the theory in this summary paper, leaving
an explicit description of the objects involved for other papers. Nonetheless, there
is a definite gap between the theory on the one hand, and an efficient running ma-
chine implementation on the other. To implement the algorithms hinted at below
requires making absolutely everything completely explicit, then finding intelligent
and efficient ways of performing the necessary manipulations. This is a nontrivial
and tedious task, with room for error at every step. Fortunately, Sage [24] has
extensive capabilities for computing with modular forms and includes Cremona’s
programs; we will give a few examples below. See also the author’s Magma [4]
package for computing with modular forms and modular symbols.
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In this paper we will focus exclusively on the case of weight-2 modular forms
for Γ0(N). The methods explained here extend to modular forms of integer weight
greater than 2; for more details see the author’s book [23] and Merel’s paper [16].

Section 1 contains a brief summary of basic facts about modular forms, Hecke
operators, and integral homology. Section 2 introduces modular symbols, and de-
scribes how to compute with them. Section 3 outlines an algorithm for constructing
cusp forms using modular symbols in conjunction with Atkin-Lehner theory.

This paper assumes some familiarity with algebraic curves, Riemann surfaces,
and homology groups of compact surfaces. A few basic facts about modular forms
are recalled, but only briefly. In particular, only a roundabout attempt is made to
motivate why one might be interested in modular forms; for this, see many of the
references in the bibliography. No prior exposure to modular symbols is assumed.

1 Modular forms and Hecke operators

All of the objects we will consider arise from the modular group SL2(Z) of two-
by-two integer matrices with determinant equal to one. This group acts via linear
fractional transformations on the complex upper half plane h, and also on the ex-
tended upper half plane

h∗ = h ∪ P1(Q) = h ∪ Q ∪ {∞}.

See [21, §1.3–1.5] for a careful description of the topology on h∗. A basis of neigh-
borhoods for α ∈ Q is given by the sets {α} ∪ D, where D is a disc in h that is
tangent to the real line at α. Let N be a positive integer and consider the group
Γ0(N) of matrices

(

a b
c d

)

∈ SL2(Z) such that N | c. This group acts on h∗ by linear
fractional transformations, and the quotient Γ0(N)\h∗ is a Riemann surface, which
we denote by X0(N). Shimura showed in [21, §6.7] that X0(N) has a canonical
structure of algebraic curve over Q.

A cusp form is a function f on h such that f(z)dz is a holomorphic differential
on X0(N). Equivalently, a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for each γ ∈
Γ0(N), and

(b) f(z) is holomorphic at each element of P1(Q), and moreover f(z) tends to 0
as z tends to any element of P1(Q).

The space of cusp forms on Γ0(N) is a finite dimensional complex vector space, of
dimension equal to the genus g of X0(N). Viewed topologically, as a 2-dimensional
real manifold, X0(N)(C) is a g-holed torus.

Condition (b) in the definition of f(z) means that f(z) has a Fourier expansion
about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.
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Example 1.1. Let E be the elliptic curve defined by the equation y2 + xy = x3 +
x2 − 4x− 5. For p 6= 3, 13, let ap = p + 1 −#Ẽ(Fp), where Ẽ is the reduction of E
mod p, and let a3 = −11, a13 = 1. For n composite, define an using the relations
at the end of Section 3. Then

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · · = q + q2 − 11q3 + 2q5 + · · ·

is the q-expansion of a modular form on Γ0(39). The Shimura-Taniyama conjecture,
which is now a theorem (see [5]) asserts that any q-expansion constructed as above
from an elliptic curve over Q is a modular form. We define the above elliptic curve
and compute the associated modular form f using Sage as follows:

sage: E = EllipticCurve([1,1,0,-4,-5]); E

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 4*x - 5

over Rational Field

sage: E.q_eigenform(10)

q + q^2 - q^3 - q^4 + 2*q^5 - q^6 - 4*q^7 - 3*q^8 + q^9 + O(q^10)

The Hecke operators are a family of commuting endomorphisms of S2(N), which
are defined as follows. The complex points of the open subcurve Y0(N) = Γ0(N)\h
are in bijection with pairs (E, C), where E is an elliptic curve over C and C is a
cyclic subgroup of E(C) of order N . If p ∤ N then there are two natural maps
π1 and π2 from Y0(pN) to Y0(N); the first, π1, sends (E, C) to (E, C′), where C′

is the unique cyclic subgroup of C of order N , and the second, π2, sends a point
(E, C) ∈ Y0(N)(C) to (E/D, C/D), where D is the unique cyclic subgroup of C of
order p. These maps extend in a unique way to maps from X0(pN) to X0(N):

X0(pN)

π2

yyttttttttt
π1

%%
KKKKKKKKK

X0(N) X0(N).

The pth Hecke operator Tp is (π1)∗ ◦ (π2)
∗; it acts on most objects attached to

X0(N), such as divisors and cusp forms. There is a Hecke operator Tn for every
positive integer n, but we will not need to consider those with n composite.

Example 1.2. There is a basis of S2(39) so that

T2 =





0 2 −1
1 −2 1
0 −1 1



 and T5 =





1 −1 −1
−2 2 −2
−3 −1 −1



 .

Notice that these matrices commute, and that 1 is an eigenvalue of T2, and 2 is
an eigenvalue of T5. We compute each of the above matrices and verify that they
commute using Sage as follows:

sage: S = CuspForms(39)

sage: T2 = S.hecke_matrix(2); T2
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H1(X0(39),Z) ∼= Z × Z × Z× Z × Z × Z

Figure 1: The homology of X0(39).

[ 0 2 -1]

[ 1 -2 1]

[ 0 -1 1]

sage: T5 = S.hecke_matrix(5); T5

[ 1 -1 -1]

[-2 2 -2]

[-3 -1 -1]

sage: T2*T5 == T5*T2

True

The first homology group H1(X0(N),Z) is the group of singular 1-cycles modulo
homology relations. Recall that topologically X0(N) is a g-holed torus, where g is
the genus of X0(N). The group H1(X0(N),Z) is thus a free abelian group of rank
2g (see, e.g., [10, Ex. 19.30]), with two generators corresponding to each hole, as
illustrated in the case N = 39 in Diagram 1.

The Hecke operators Tp act on H1(X0(N),Z), and integration defines a nonde-
generate Hecke-equivariant pairing

〈 , 〉 : S2(N) × H1(X0(N),Z) → C.

Explicitly, for a path x,

〈f, x〉 = 2πi

∫

x

f(z)dz,

where the integral may be viewed as a complex line integral along an appropriate
piece of the preimage of x in the upper half plane. The pairing is Hecke equivariant
in the sense that for every prime p, we have 〈fTp, x〉 = 〈f, Tpx〉. As we will see,
modular symbols allow us to make explicit the action of the Hecke operators on
H1(X0(N),Z); the above pairing then translates this into a wealth of information
about cusp forms.

For a more detailed survey of the basic facts about modular curves and modular
forms, we urge the reader to consult the book [9] by Diamond and Shurman along
with Diamond and Im’s survey paper [8]. For a discussion of how to draw a picture
of the ring generated by the Hecke operators, see [19, §3.8].
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∞

α β0 Q

Figure 2: The modular symbols {α, β} and {0,∞}.

2 Modular symbols

The modular symbols formalism provides a presentation of H1(X0(N),Z) in terms
of paths between elements of P1(Q). Furthermore, a trick due to Manin gives an
explicit finite list of generators and relations for the space of modular symbols.

The modular symbol defined by a pair α, β ∈ P1(Q) is denoted {α, β}. As
illustrated in Figure 2, this modular symbol should be viewed as the homology
class, relative to the cusps, of a geodesic path from α to β in h∗. The homology
group relative to the cusps is a slight enlargement of the usual homology group, in
that we allow paths with endpoints in P1(Q) instead of restricting to closed loops.

Motivated by this picture, we declare that modular symbols satisfy the following
homology relations: if α, β, γ ∈ Q ∪ {∞}, then

{α, β} + {β, γ} + {γ, α} = 0.

Furthermore, we quotient out by any torsion, so, e.g., {α, α} = 0 and {α, β} =
−{β, α}.

Denote byMMM2 the free abelian group with basis the set of symbols {α, β} modulo
the three-term homology relations above and modulo any torsion. There is a left
action of GL2(Q) on MMM2, whereby a matrix g acts by

g{α, β} = {g(α), g(β)},

and g acts on α and β by a linear fractional transformation. The space MMM2(N) of
modular symbols for Γ0(N) is the quotient of MMM2 by the submodule generated by
the infinitely many elements of the form x− g(x), for x in MMM2 and g in Γ0(N), and
modulo any torsion. A modular symbol for Γ0(N) is an element of this space. We
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frequently denote the equivalence class that defines a modular symbol by giving a
representative element.

In [14], Manin proved that there is a natural injection H1(X0(N),Z) →MMM2(N).
The image of H1(X0(N),Z) in MMM2(N) can be identified as follows. Let BBB2(N)
denote the free abelian group whose basis is the finite set Γ0(N)\P1(Q). The
boundary map δ : MMM2(N) →BBB2(N) sends {α, β} to [β]− [α], where [β] denotes the
basis element of BBB2(N) corresponding to β ∈ P1(Q). The kernel SSS2(N) of δ is the
subspace of cuspidal modular symbols. An element of SSS2(N) can be thought of as
a linear combination of paths in h∗ whose endpoints are cusps, and whose images
in X0(N) are a linear combination of loops. We thus obtain a map ϕ : SSS2(N) →
H1(X0(N),Z).

Theorem 2.1. The map ϕ given above defines a canonical isomorphism

SSS2(N) ∼= H1(X0(N),Z).

2.1 Manin’s trick

In this section, we describe a trick of Manin that shows that the space of modular
symbols can be computed.

By reducing modulo N , one sees that the group Γ0(N) has finite index in SL2(Z).
Let r0, r1, . . . , rm be distinct right coset representatives for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)ro ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset represen-
tatives is

(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 0
2 1

)

,

(

1 0
3 1

)

, . . . ,

(

1 0
N − 1 1

)

,

(

0 −1
1 0

)

.

In general, the right cosets of Γ0(N) in SL2(Z) are in bijection with the elements of
P1(Z/NZ) (see [6, §2.2] for complete details).

The following trick of Manin (see [14, §1.5] and [6, §2.1.6]) allows us to write
every modular symbol as a Z-linear combination of symbols of the form ri{0,∞}.
In particular, the finitely many symbols ri{0,∞} generate MMM2(N).

Because of the relation {α, β} = {0, β} − {0, α}, it suffices to consider modular
symbols of the form {0, b/a}, where the rational number b/a is in lowest terms.
Expand b/a as a continued fraction and consider the successive convergents in lowest
terms:

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
b0

1
, . . . ,

bn−1

an−1

,
bn

an
=

b

a

where the first two are added formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(

bk (−1)k−1bk−1

ak (−1)k−1ak−1

)

∈ SL2(Z).
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Hence
{

bk−1

ak−1

,
bk

ak

}

= gk{0,∞} = ri{0,∞},

for some i, is of the required special form.

Example 2.2. Let N = 11, and consider the modular symbol {0, 4/7}. We have

4

7
= 0 +

1

1 + 1

1+ 1

3

,

so the partial convergents are

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
0

1
,

b1

a1

=
1

1
,

b2

a2

=
1

2
,

b3

a3

=
4

7
.

Thus

{0, 4/7} = {0,∞} + {∞, 0} + {0, 1} + {1, 1/2}+ {1/2, 4/7}

=

(

1 −1
2 −1

)

{0,∞} +

(

4 1
7 2

)

{0,∞}

= 2 ·

[(

1 4
1 5

)

{0,∞}

]

2.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Denote the mod-
ular symbol ri{0,∞} by [ri]. The symbols [r0], . . . , [rm] are called Manin symbols,
and they are equipped with a right action of SL2(Z), which is given by [ri]g = [rj ],
where Γ0(N)rj = Γ0(N)rig. Recall that SL2(Z) is generated by the two matrices
σ =

(

0 −1
1 0

)

and τ =
(

1 −1
1 0

)

(see Theorem 2 of [20, VII.1.2]).

Theorem 2.3 (Manin). The Manin symbols [r0], . . . , [rm] satisfy the following re-
lations:

[ri] + [ri]σ = 0

[ri] + [ri]τ + [ri]τ
2 = 0.

Furthermore, these relations generate all relations (modulo torsion relations).

This theorem, which is proved in [14, §1.7], provides a finite presentation for the
space of modular symbols.

2.3 Hecke operators on modular symbols

When p is a prime not dividing N , define

Tp{α, β} =

(

p 0
0 1

)

{α, β} +
∑

r mod p

(

1 r
0 p

)

{α, β}.
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As mentioned before, this definition is compatible with the integration pairing 〈 , 〉
of Section 1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the definition is the
same, except that the matrix

(

p 0

0 1

)

is dropped.
For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5}+ {0, 1/10}+ {1/2, 3/5}

= −2{0, 1/5}.

In [16], L. Merel gives a description of the action of Tp directly on Manin symbols
[ri] (see also, [6, §2.4]). For example, when p = 2 and N is odd, we have

T2([ri]) = [ri]

(

1 0
0 2

)

+ [ri]

(

2 0
0 1

)

+ [ri]

(

2 1
0 1

)

+ [ri]

(

1 0
1 2

)

.

3 Computing the space of modular forms

In this section we describe how to use modular symbols to construct a basis of
S2(N) consisting of modular forms that are eigenvectors for every element of the
ring T′ generated by the Hecke operator Tp, with p ∤ N . Such eigenvectors are
called eigenforms.

Suppose M is a positive integer that divides N . As explained in [13, VIII.1–2],
for each divisor d of N/M there is a natural degeneracy map βM,d : S2(M) → S2(N)
given by βM,d(f(q)) = f(qd). The new subspace of S2(N), denoted S2(N)new, is the
orthogonal complement with respect to the Petersson inner product of the images
of all maps βM,d, with M and d as above.

The theory of Atkin and Lehner [1] asserts that, as a T′-module, S2(N) is built
up as follows:

S2(N) =
⊕

M|N, d|N/M

βM,d(S2(M)new).

To compute S2(N) it thus suffices to compute S2(M)new for each positive divisor M
of N .

We now turn to the problem of computing S2(N)new. Atkin and Lehner [1]
also proved that S2(N)new is spanned by eigenforms, each of which occurs with
multiplicity one in S2(N)new. Moreover, if f ∈ S2(N)new is an eigenform then the
coefficient of q in the q-expansion of f is nonzero, so it is possible to normalize f
so that coefficient of q is 1. With f so normalized, if Tp(f) = apf , then the pth
Fourier coefficient of f is ap. If f =

∑∞
n=1

anqn is a normalized eigenvector for
all Tp, then the an, with n composite, are determined by the ap, with p prime,
by the following formulas: anm = anam when n and m are relatively prime, and
apr = apr−1ap − papr−2 for p ∤ N prime. When p | N , apr = ar

p. We conclude
that in order to compute S2(N)new, it suffices to compute all systems of eigenvalues
{a2, a3, a5, . . .} of the Hecke operators T2, T3, T5, . . . acting on S2(N)new. Given a
system of eigenvalues, the corresponding eigenform is f =

∑∞
n=1

anqn, where the
an, for n composite, are determined by the recurrence given above.

In light of the pairing 〈 , 〉 introduced in Section 1, computing the above systems
of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of eigenvalues of
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the Hecke operators Tp on the subspace V of SSS2(N) that corresponds to the new
subspace of S2(N). For each proper divisor M of N and each divisors d of N/M , let
φM,d : SSS2(N) →SSS2(M) be the map sending x to ( t 0

0 1 )x. Then V is the intersection
of the kernels of all maps φM,d.

The computation of the systems of eigenvalues of a collection of commuting di-
agonalizable endomorphisms involves standard linear algebra techniques, such as
computation of characteristic polynomials and kernels of matrices. There are, how-
ever, several tricks that greatly speed up this process, some of which are described
in [22, §3.5.4].

Example 3.1. All forms in S2(39) are new. Up to Galois conjugacy, the eigenvalues of
the Hecke operators T2, T3, T5, and T7 on SSS2(39) are {1,−1, 2,−4} and {a, 1,−2a−
2, 2a+2}, where a2+2a−1 = 0. (Note that these eigenvalues occur with multiplicity
two.) Thus S2(39) has dimension 3, and is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

and the Galois conjugate of f2. We compute f1 and f2 using Sage as follows:

sage: CuspForms(39).newforms(’a’)

[q + q^2 - q^3 - q^4 + 2*q^5 + O(q^6),

q + a1*q^2 + q^3 + (-2*a1 - 1)*q^4 + (-2*a1 - 2)*q^5 + O(q^6)]

3.1 Summary

To compute the q-expansion, to some precision, of each eigenforms in S2(N), we use
the degeneracy maps so that we only have to solve the problem for S2(N)new. Here,
using modular symbols we compute the systems of eigenvalues {a2, a3, a5, . . .}, then
write down each of the corresponding eigenforms q + a2q

2 + a3q
3 + · · · .
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