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EMPIRICAL EVIDENCE FOR THE BIRCH AND

SWINNERTON-DYER CONJECTURES FOR MODULAR

JACOBIANS OF GENUS 2 CURVES

E. VICTOR FLYNN, FRANCK LEPRÉVOST, EDWARD F. SCHAEFER, WILLIAM A.

STEIN, MICHAEL STOLL, AND JOSEPH L. WETHERELL

Abstract. This paper provides empirical evidence for the Birch and Swinnerton-

Dyer conjectures for modular Jacobians of genus 2 curves. The second of these

conjectures relates six quantities associated to a Jacobian over the rational
numbers. One of these six quantities is the size of the Shafarevich-Tate group.

Unable to compute that, we computed the five other quantities and solved for

the last one. In all 32 cases, the result is very close to an integer that is a

power of 2. In addition, this power of 2 agrees with the size of the 2-torsion

of the Shafarevich-Tate group, which we could compute.

1. Introduction

The conjectures of Birch and Swinnerton-Dyer, originally stated for elliptic
curves over Q, have been a constant source of motivation for the study of ellip-
tic curves, with the ultimate goal being to find a proof. This has resulted not only
in a better theoretical understanding, but also in the development of better algo-
rithms for computing the analytic and arithmetic invariants that are so intriguingly
related by them. We now know that the first and, up to a non-zero rational fac-
tor, the second conjecture hold for modular elliptic curves over Q 1 in the analytic
rank 0 and 1 cases (see [GZ, Ko, Wal1, Wal2]). Furthermore, a number of people
have provided numerical evidence for the conjectures for a large number of elliptic
curves; see for example [BGZ, BSD, Ca, Cr2].
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By now, our theoretical and algorithmic knowledge of curves of genus 2 and
their Jacobians has reached a state that makes it possible to conduct similar in-
vestigations. The Birch and Swinnerton-Dyer conjectures have been generalized to
arbitrary abelian varieties over number fields by Tate [Ta]. If J is the Jacobian of a
genus 2 curve over Q, then the first conjecture states that the order of vanishing of
the L-series of the Jacobian at s = 1 (the analytic rank) is equal to the Mordell-Weil
rank of the Jacobian. The second conjecture is that

(1.1) lim
s→1

(s− 1)−rL(J, s) = Ω · Reg ·
∏

p

cp ·#X(J,Q) · (#J(Q)tors)−2 .

In this equation, L(J, s) is the L-series of the Jacobian J , and r is its analytic rank.
We use Ω to denote the integral over J(R) of a particular differential 2-form; the
precise choice of this differential is described in Section 3.5. Reg is the regulator of
J(Q). For primes p, we use cp to denote the size of J(Qp)/J

0(Qp), where J
0(Qp)

is defined in Section 3.4. We let X(J,Q) be the Shafarevich-Tate group of J over
Q, and we let J(Q)tors denote the torsion subgroup of J(Q).

As in the case of elliptic curves, the first conjecture assumes that the L-series can
be analytically continued to s = 1, and the second conjecture additionally assumes
that the Shafarevich-Tate group is finite. Neither of these assumptions is known
to hold for arbitrary genus 2 curves. The analytic continuation of the L-series,
however, is known to exist for modular abelian varieties over Q, where an abelian
variety is called modular if it is a quotient of the Jacobian J0(N) of the modular
curve X0(N) for some level N . For simplicity, we will also call a genus 2 curve
modular when its Jacobian is modular in this sense. So it is certainly a good idea
to look at modular genus 2 curves over Q, since we then at least know that the
statement of the first conjecture makes sense. Moreover, for many modular abelian
varieties it is also known that the Shafarevich-Tate group is finite, therefore the
statement of the second conjecture also makes sense. As it turns out, all of our
examples belong to this class. An additional benefit of choosing modular genus 2
curves is that one can find lists of such curves in the literature.

In this article, we provide empirical evidence for the Birch and Swinnerton-Dyer
conjectures for such modular genus 2 curves. Since there is no known effective way
of computing the size of the Shafarevich-Tate group, we computed the other five
terms in equation (1.1) (in two different ways, if possible). This required several
different algorithms, some of which were developed or improved while we were
working on this paper. If one of these algorithms is already well described in the
literature, then we simply cite it. Otherwise, we describe it here in some detail (in
particular, algorithms for computing Ω and cp).

For modular abelian varieties associated to newforms whose L-series have ana-
lytic rank 0 or 1, the first Birch and Swinnerton-Dyer conjecture has been proven.
In such cases, the Shafarevich-Tate group is also known to be finite and the second
conjecture has been proven, up to a non-zero rational factor. This all follows from
results in [GZ, KL, Wal1, Wal2]. In our examples, all of the analytic ranks are
either 0 or 1. Thus we already know that the first conjecture holds. Since the
Jacobians we consider are associated to a quadratic conjugate pair of newforms,
the analytic rank of the Jacobian is twice the analytic rank of either newform (see
[GZ]).

The second Birch and Swinnerton-Dyer conjecture has not been proven for the
cases we consider. In order to verify equation (1.1), we computed the five terms
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other than #X(J,Q) and solved for #X(J,Q). In each case, the value is an
integer to within the accuracy of our calculations. This number is a power of 2,
which coincides with the independently computed size of the 2-torsion subgroup
of X(J,Q). Hence, we have verified the second Birch and Swinnerton-Dyer con-
jecture for our curves at least numerically, if we assume that the Shafarevich-Tate
group consists of 2-torsion only. (This is an ad hoc assumption based only on the
fact that we do not know better.) See Section 6 for circumstances under which the
verification is exact.

The curves are listed in Table 1, and the numerical results can be found in
Table 2.

2. The Curves

Each of the genus 2 curves we consider is related to the Jacobian J0(N) of the
modular curve X0(N) for some level N . When only one of these genus 2 curves
arises from a given level N , then we denote this curve by CN ; when there are two
curves coming from level N we use the notation CN,A, CN,B . The relationship
of, say, CN to J0(N) depends on the source. Briefly, from Hasegawa [Hs] we
obtain quotients of X0(N) and from Wang [Wan] we obtain curves whose Jacobians
are quotients of J0(N). In both cases the Jacobian JN of CN is isogenous to a
2-dimensional factor of J0(N). (When not referring to a specific curve, we will
typically drop the subscript N from J .) In this way we can also associate CN with
a 2-dimensional subspace of S2(N), the space of cusp forms of weight 2 for Γ0(N).

We now discuss the precise source of the genus 2 curves we will consider. Hasegawa
[Hs] has provided exact equations for all genus 2 curves which are quotients of
X0(N) by a subgroup of the Atkin-Lehner involutions. There are 142 such curves.
We are particularly interested in those where the Jacobian corresponds to a sub-
space of S2(N) spanned by a quadratic conjugate pair of newforms. There are 21
of these with level N ≤ 200. For these curves we will provide evidence for the
second conjecture. There are seven more such curves with N > 200. We can clas-
sify the other 2-dimensional subspaces into four types. There are 2-dimensional
subspaces of oldforms that are irreducible under the action of the Hecke algebra.
There are also 2-dimensional subspaces that are reducible under the action of the
Hecke algebra and are spanned by two oldforms, two newforms or one of each.
The Jacobians corresponding to the latter three kinds are always isogenous, over
Q, to the product of two elliptic curves. Given the small levels, these are elliptic
curves for which Cremona [Cr2] has already provided evidence for the Birch and
Swinnerton-Dyer conjectures. In Table 5, we describe the kind of cusp forms span-
ning the 2-dimensional subspace and the signs of their functional equations from
the level at which they are newforms. The analytic and Mordell-Weil ranks were
always the smallest possible given those signs.

The second set of curves was created by Wang [Wan] and is further discussed
in [FM]. This set consists of 28 curves that were constructed by considering the
spaces S2(N) with N ≤ 200. Whenever a subspace spanned by a pair of quadratic
conjugate newforms was found, these newforms were integrated to produce a quo-
tient abelian variety A of J0(N). These quotients are optimal in the sense of [Ma],
in that the kernel of the quotient map is connected.

The period matrix for A was created using certain intersection numbers. When
all of the intersection numbers have the same value, then the polarization on A
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induced from the canonical polarization of J0(N) is equivalent to a principal po-
larization. (Two polarizations are equivalent if they differ by an integer multiple.)
Conversely, every 2-dimensional optimal quotient of J0(N) in which the induced
polarization is equivalent to a principal polarization is found in this way.

Using theta functions, numerical approximations were found for the Igusa in-
variants of the abelian surfaces. These numbers coincide with rational numbers
of fairly small height within the limits of the precision used for the computations.
Wang then constructed curves defined over Q whose Igusa invariants are the ra-
tional numbers found. (There is one abelian surface at level N = 177 for which
Wang was not able to find a curve.) If we assume that these rational numbers are
the true Igusa invariants of the abelian surfaces, then it follows that Wang’s curves
have Jacobians isomorphic, over Q, to the principally polarized abelian surfaces in
his list. Since the classification given by these invariants is only up to isomorphism
over Q, the Jacobians of Wang’s curves are not necessarily isomorphic to, but can
be twists of, the optimal quotients of J0(N) over Q (see below).

There are four curves in Hasegawa’s list which do not show up inWang’s list (they
are listed in Table 1 with an H in the last column). Their Jacobians are quotients
of J0(N), but are not optimal quotients. It is likely that there are modular genus 2
curves which neither are Atkin-Lehner quotients of X0(N) (in Hasegawa’s sense)
nor have Jacobians that are optimal quotients. These curves could be found by
looking at the optimal quotient abelian surfaces and checking whether they are
isogenous to a principally polarized abelian surface over Q.

For 17 of the curves in Wang’s list, the 2-dimensional subspace spanned by the
newforms is the same as that giving one of Hasegawa’s curves. In all of those
cases, the curve given by Wang’s equation is isomorphic, over Q, to that given by
Hasegawa. This verifies Wang’s equations for these 17 curves. They are listed in
Table 1 with HW in the last column.

The remaining eleven curves (listed in Table 1 with a W in the last column)
derive from the other eleven optimal quotients in Wang’s list. These are described
in more detail in Section 2.1 below.

With the exception of curves C63, C117,A and C189, the Jacobians of all of our
curves are absolutely simple, and the canonically polarized Jacobians have auto-
morphism groups of size two. We showed that these Jacobians are absolutely simple
using an argument like those in [Le, Sto1]. The automorphism group of the canoni-
cally polarized Jacobian of a hyperelliptic curve is isomorphic to the automorphism
group of the curve (see [Mi2, Thm. 12.1]). Each automorphism of a hyperelliptic
curve induces a linear fractional transformation on x-coordinates (see [CF, p. 1]).
Each automorphism also permutes the six Weierstrass points. Once we believed we
had found all of the automorphisms, we were able to show that there are no more
by considering all linear fractional transformations sending three fixed Weierstrass
points to any three Weierstrass points. In each case, we worked with sufficient
accuracy to show that other linear fractional transformations did not permute the
Weierstrass points.

Let ζ3 denote a primitive third root of unity. The Jacobians of curves C63, C117,A

and C189 are each isogenous to the product of two elliptic curves over Q(ζ3), though
not overQ, where they are simple. These genus 2 curves have automorphism groups
of size 12. In the following table we list the curve at the left. On the right we give
one of the elliptic curves which is a factor of its Jacobian. The second factor is the
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conjugate.

C63 : y2 = x(x2 + (9− 12ζ3)x− 48ζ3)
C117,A : y2 = x(x2 − (12 + 27ζ3)x− (48 + 48ζ3))
C189 : y2 = x3 + (66− 3ζ3)x

2 + (342 + 81ζ3)x+ 105 + 21ζ3

Note that these three Jacobians are examples of abelian varieties ‘with extra twist’
as discussed in [Cr1], where they can be found in the tables on page 409.

2.1. Models for the Wang-only curves. As we have already noted, a modular
genus 2 curve may be found by either, both, or neither of Wang’s and Hasegawa’s
techniques. Hasegawa’s method allows for the exact determination, over Q, of
the equation of any modular genus 2 curve it has found. On the other hand, if
Wang’s technique detects a modular genus 2 curve CN , his method produces real
approximations to a curve C ′

N which is defined over Q and is isomorphic to CN
over Q. We will call C ′

N a twisted modular genus 2 curve.
In this section we attempt to determine equations for the eleven modular genus 2

curves detected by Wang but not by Hasegawa. If we assume that Wang’s equations
for the twisted modular genus 2 curves are correct, we find that we are able to
determine the twists. In turn, this gives us strong evidence that Wang’s equations
for the twisted curves were correct. Undoing the twist, we determine probable
equations for the modular genus 2 curves. We end by providing further evidence
for the correctness of these equations.

In what follows, we will use the notation of [Cr2] and recommend it as a reference
on the general results that we assume here and in Section 4 and the appendix. Fix
a level N and let f(z) ∈ S2(N). Then f has a Fourier expansion

f(z) =

∞∑

n=1

ane
2πinz .

For a newform f , we have a1 6= 0; so we can normalize it by setting a1 = 1. In our
cases, the an’s are integers in a real quadratic field. For each prime p not dividingN ,
the corresponding Euler factor of the L-series L(f, s) is 1−app−s+p1−2s. Let N(ap)
and Tr(ap) denote the norm and trace of ap. The product of this Euler factor
and its conjugate is 1− Tr(ap) p

−s + (N(ap) + 2p) p−2s − p Tr(ap) p
−3s + p2 p−4s.

Therefore, the characteristic polynomial of the p-Frobenius on the corresponding
abelian variety over Fp is x4 − Tr(ap)x

3 + (N(ap) + 2p)x2 − p Tr(ap)x+ p2. Let
C be a curve, over Q, whose Jacobian, over Q, comes from the space spanned by f
and its conjugate. Then we know that p+1−#C(Fp) = Tr(ap) and

1
2 (#C(Fp)

2+
#C(Fp2))− (p+1)#C(Fp)− p = N(ap) (see [MS, Lemma 3]). For the odd primes
less than 200, not dividing N , we computed #C(Fp) and #C(Fp2) for each curve
given by one of Wang’s equations. From these we could compute the characteristic
polynomials of Frobenius and see if they agreed with those predicted by the ap’s of
the newforms.

Of the eleven curves, the characteristic polynomials agreed for only four. In each
of the remaining seven cases we found a twist of Wang’s curve whose characteristic
polynomials agreed with those predicted by the newform for all odd primes less
than 200 not dividing N . Four of these twists were quadratic and three were of
higher degree. It is these twists that appear in Table 1.

We can provide further evidence that these equations are correct. For each
curve given in Table 1, it is easy to determine the primes of singular reduction. In
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Section 3.4 we will provide techniques for determining which of those primes divides
the conductor of its Jacobian. In each case, the primes dividing the conductor of the
Jacobian of the curve are exactly the primes dividing the level N ; this is necessary.
With the exception of curve C188, all the curves come from odd levels. We used
Liu’s genus2reduction program (ftp://megrez.math.u-bordeaux.fr/pub/liu)
to compute the conductor of the curve. In each case (other than curve C188), the
conductor is the square of the level; this is also necessary. For curve C188, the odd
part of the conductor of the curve is the square of the odd part of the level.

In addition, since the Jacobians of the Wang curves are optimal quotients, we
can compute k · Ω (where k is the Manin constant, conjectured to be 1) using the
newforms. In each case, these agree (to within the accuracy of our computations)
with the Ω’s computed using the equations for the curves. We can also compute the
value of cp for optimal quotients from the newforms, when p exactly divides N and
the eigenvalue of the pth Atkin-Lehner involution is −1. When p exactly divides N
and the eigenvalue of the pth Atkin-Lehner involution is +1, the component group
is either 0, Z/2Z, or (Z/2Z)2. These results are always in agreement with the
values computed using the equations for the curves. The algorithms based on the
newforms are described in Section 4, those based on the equations of the curves are
described in Section 3.

Lastly, we were able to compute the Mordell-Weil ranks of the Jacobians of
the curves given by ten of these eleven equations. In each case it agrees with the
analytic rank of the Jacobian, as deduced from the newforms.

It should be noted that curve C125,B is the
√
5-twist of curve C125,A; the cor-

responding statement holds for the associated 2-dimensional subspaces of S2(125).
Since curve C125,A is a Hasegawa curve, this proves that the equation given in
Table 1 for curve C125,B is correct.

The ap’s and other information concerning Wang’s curves are currently kept in a
database at the Institut für experimentelle Mathematik in Essen, Germany. Most
recently, this database was under the care of Michael Müller. William Stein also
keeps a database of ap’s for newforms.

Remark 2.1. For the remainder of this paper we will assume that the equations
for the curves given in Table 1 are correct; that is, that they are equations for the
curves whose Jacobians are isogenous to a factor of J0(N) in the way described
above. Some of the quantities can be computed either from the newform or from
the equation for the curve. We performed both computations whenever possible,
and view this duplicate effort as an attempt to verify our implementation of the
algorithms rather than an attempt to verify the equations in Table 1. For most
quantities, one method or the other is not guaranteed to produce a value; in this
case, we simply quote the value from whichever method did succeed. The reader
who is disturbed by this philosophy should ignore the Wang-only curves, since the
equations for the Hasegawa curves can be proven to be correct.

3. Algorithms for genus 2 curves

In this section, we describe the algorithms that are based on the given models
for the curves. We give algorithms that compute all terms on the right hand side
of equation (1.1), with the exception of the size of the Shafarevich-Tate group. We
describe, however, how to find the size of its 2-torsion subgroup. Note that these
algorithms are for general genus 2 curves and do not depend on modularity.
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3.1. Torsion Subgroup. The computation of the torsion subgroup of J(Q) is
straightforward. We used the technique described in [CF, pp. 78–82]. This tech-
nique is not always effective, however. For an algorithm working in all cases
see [Sto3].

3.2. Mordell-Weil rank andX(J,Q)[2]. The group J(Q) is a finitely generated
abelian group and so is isomorphic to Zr ⊕ J(Q)tors for some r called the Mordell-
Weil rank. As noted above (see Section 1), we justifiably use r to denote both the
analytic and Mordell-Weil ranks since they agree for all curves in Table 1.

We used the algorithm described in [FPS] to compute Sel2fake(J,Q) (notation
from [PSc]), which is a quotient of the 2-Selmer group Sel2(J,Q). More details
on this algorithm can be found in [Sto2]. Theorem 13.2 of [PSc] explains how
to get Sel2(J,Q) from Sel2fake(J,Q). Let M [2] denote the 2-torsion of an abelian
group M and let dimV denote the dimension of an F2 vector space V . We have
dimSel2(J,Q) = r + dim J(Q)[2] + dimX(J,Q)[2]. In other words,

dim X(J,Q)[2] = dimSel2(J,Q)− r − dim J(Q)[2].

It is interesting to note that in all 30 cases where dimX(J,Q)[2] ≤ 1, we were
able to compute the Mordell-Weil rank independently from the analytic rank. The
cases where dimX(J,Q)[2] = 1 are discussed in more detail in Section 6. For both
of the remaining cases we have dimX(J,Q)[2] = 2. One of these cases is C125,B .

For this curve we computed Sel
√
5(J125,B ,Q) using the technique described in [Sc].

From this, we were able to determine that the Mordell-Weil rank is 0 independently
from the analytic rank. For the other case, C133,A, we could show that r had to be
either 0 or 2 from the equation, but we needed the analytic computation to show
that r = 0.

3.3. Regulator. When the Mordell-Weil rank is 0, then the regulator is 1. When
the Mordell-Weil rank is positive, then to compute the regulator, we first need to
find generators for J(Q)/J(Q)tors. The regulator is the determinant of the canon-
ical height pairing matrix on this set of generators. An algorithm for computing
the generators and canonical heights is given in [FS]; it was used to find generators
for J(Q)/J(Q)tors and to compute the regulators. In that article, the algorithm
for computing height constants at the infinite prime is not clearly explained and
there are some errors in the examples. A clear algorithm for computing infinite
height constants is given in [Sto3]. In [Sto4], some improvements of the results and
algorithms in [FS] and [Sto3] are discussed. The regulators in Table 2 have been
double-checked using these improved algorithms.

3.4. Tamagawa Numbers. Let O be the integer ring in K which will be Qp

or Qunr
p (the maximal unramified extension of Qp). Let J be the Néron model

of J over O. Define J 0 to be the open subgroup scheme of J whose generic fiber
is isomorphic to J over K and whose special fiber is the identity component of
the closed fiber of J . The group J 0(O) is isomorphic to a subgroup of J(K)
which we denote J0(K). The group J(Qunr

p )/J0(Qunr
p ) is the component group

of J over OQunr
p

. We are interested in computing cp = #J(Qp)/J
0(Qp), which

is sometimes called the Tamagawa number. Since Néron models are stable un-
der unramified base extension, the Gal(Qunr

p /Qp)-invariant subgroup of J0(Qunr
p )
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is J0(Qp). Since H1(Gal(Qunr
p /Qp), J

0(Qunr
p )) is trivial (see [Mi1, p. 58]) we see

that the Gal(Qunr
p /Qp)-invariant subgroup of J(Qunr

p )/J0(Qunr
p ) is J(Qp)/J

0(Qp).

There exist several discussions in the literature on constructing the group J(Qunr
p )/J0(Qunr

p )
starting with an integral model of the underlying curve. For our purposes, we espe-
cially recommend Silverman’s book [Si], Chapter IV, Sections 4 and 7. For a more
detailed treatment, see [BLR, chap. 9] and [Ed2, §2]. One can find justifications
for what we will do in these sources. While constructing such groups, we ran into
a number of difficulties that we did not find described anywhere. For that reason,
we will present examples of such difficulties that arose, as well as our methods of
resolution. We do not claim that we will describe all situations that could arise.

When computing cp we need a proper, regular model C for C over Zp. Let Z
unr
p

denote the ring of integers ofQunr
p and note that Zunrp is a pro-étale Galois extension

of Zp with Galois group Gal(Zunrp /Zp) = Gal(Qunr
p /Qp). It follows that giving a

model for C over Zp is equivalent to giving a model for C over Zunrp that is equipped
with a Galois action. We have found it convenient to always work with the latter
description. Thus for us, giving a model over Zp will always mean giving a model
over Zunrp together with a Galois action.

In order to find a proper, regular model for C over Zp, we start with the models in
Table 1. Technically, we consider the curves to be the two affine pieces y2+g(x)y =
f(x) and v2 + u3g(1/u)v = u6f(1/u), glued together by ux = 1, v = u3y. We blow
them up at all points that are not regular until we have a regular model. (A point
is regular if the cotangent space there has two generators.) These curves are all
proper, and this is not affected by blowing up.

Let Cp denote the special fiber of C over Zunrp . The group J(Qunr
p )/J0(Qunr

p ) is
isomorphic to a quotient of the degree 0 part of the free group on the irreducible
components of Cp. Let the irreducible components be denoted Di for 1 ≤ i ≤ n,
and let the multiplicity of Di in Cp be di. Then the degree 0 part of the free group
has the form

L = {
n∑

i=1

αiDi |
n∑

i=1

diαi = 0} .

In order to describe the group that we quotient out by, we must discuss the
intersection pairing. For componentsDi andDj of the special fiber, letDi·Dj denote
their intersection pairing. In all of the special fibers that arise in our examples,
distinct components intersect transversally. Thus, if i 6= j, then Di · Dj equals the
number of points at which Di and Dj intersect. The case of self-intersection (i = j)
is discussed below.

The kernel of the map from L to J(Qunr
p )/J0(Qunr

p ) is generated by divisors of
the form

[Dj ] =
n∑

i=1

(Dj · Di)Di

for each component Dj . We can deduce Dj · Dj by noting that [Dj ] must be
contained in the group L. This follows from the fact that the intersection pairing
of Cp =

∑
diDi with any irreducible component is 0.

Example 1. Curve C65,B over Z2.
The Jacobian of C65,B is a quotient of the Jacobian of X0(65). Since 65 is odd,

J0(65) has good reducation at 2; however, C65,B has singular reduction at 2. Since
the equation for this curve is conjectural (it is a Wang-only curve), it will be nice
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to verify that 2 does not divide the conductor of its Jacobian, i.e. that the Jacobian
has good reduction at 2. In addition, we will need a proper, regular model for this
curve in order to find Ω.

We start with the arithmetic surface over Zunr2 given by the two pieces y2 =
f(x) = −x6 + 10x5 − 32x4 + 20x3 + 40x2 + 6x− 1 and v2 = u6f(1/u). (Here and
in the following we will not specify the gluing maps.) This arithmetic surface is
regular at u = 0 so we focus our attention on the first affine piece. The special fiber
of y2 = f(x) over Zunr2 is given by (y+x3+1)2 = 0 (mod 2); this is a genus 0 curve
of multiplicity 2 that we denote A. This model is not regular at the two points
(x−α, y, 2), where α is a root of x2−3x−1. The current special fiber is in Figure 1
and is labelled Fiber 1.

We fix α and move (x− α, y, 2) to the origin using the substitution x0 = x− α.
We get

y2 = −x60+(−6α+10)x50+(5α−47)x40+(−28α+60)x30+(−11α−2)x20+(−24α−16)x0
which we rewrite as the pair of equations

g1(x0, y, p) = −x60 + (−3α+ 5)px50 + (5α− 47)x40 + (−7α+ 15)p2x30

+ (−11α− 2)x20 + (−3α− 2)p3x0 − y2

= 0,

p = 2.

To blow up at (x0, y, p), we introduce projective coordinates (x1, y1, p1) with x0y1 =
x1y, x0p1 = x1p, and yp1 = y1p. We look in three affine pieces that cover the blow-
up of g1(x0, y, p) = 0, p = 2 and check for regularity.

x1 = 1: We have y = x0y1, p = x0p1. We get g2(x0, y1, p1) = 0, x0p1 = 2,
where

g2(x0, y1, p1) = x−2
0 g1(x0, x0y1, x0p1)

= −x40 + (−3α+ 5)p1x
4
0 + (5α− 47)x20 + (−7α+ 15)p21x

3
0

+ (−11α− 2) + (−3α− 2)p31x
2
0 − y21 .

In the reduction we have either x0 = 0 or p1 = 0.
x0 = 0: (y1 + α + 1)2 = 0. This is a new component which we denote

B. It has genus 0 and multiplicity 2. We check regularity along B at
(x0, y1 + α + 1, p1 − t, 2), with t in Zunr2 , and find that B is nowhere
regular.

p1 = 0: (y1 + x20 + αx0 + (α + 1))2 = 0. Using the gluing maps, we see
that this is A.

y1 = 1: We get no new information from this affine piece.
p1 = 1: We have x0 = x1p, y = y1p. We get g3(x1, y1, p) = p−2g1(x1p, y1p, p) =

0, p = 2. In the reduction we have
p = 0: (y1 + (α + 1)x1)

2 = 0. Using the gluing maps, we see that this
is B. It is nowhere regular.

The current special fiber is in Figure 1 and is labelled Fiber 2. It is not regular
along B and at the other point on A which we have not yet blown up. The com-
ponent B does not lie entirely in any one affine piece so we will blow up the affine
pieces x1 = 1 and p1 = 1 along B.
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Figure 1. Special fibers of curve C65,B over Z2; points not regular
are thick
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Fiber 3

To blow up x1 = 1 along B we make the substitution y2 = y1 + α + 1 and
replace each factor of 2 in a coefficient by x0p1. We have g4(x0, y2, p1) = 0 and
x0p1 = 2, and we want to blow up along the line (x0, y2, 2). Blowing up along a line
is similar to blowing up at a point: since we are blowing up at (x0, y2, 2) = (x0, y2),
we introduce projective coordinates x3, y3 together with the relation x0y3 = x3y2.
We consider two affine pieces that cover the blow-up of x1 = 1.

x3 = 1: We have y2 = y3x0. We get g5(x0, y3, p1) = x−2
0 g4(x0, y3x0, p1) = 0

and x0p1 = 2. In the reduction we have
x0 = 0: y23 + (α+ 1)y3p1 + αp31 + p21 + α+ 1 = 0. This is B. It is now a

non-singular genus 1 curve.
p1 = 0: (x0 + y3 + α)2 = 0. This is A. The point where B meets A

transversally is regular.
y3 = 1: We get no new information from this affine piece.

When we blow up p1 = 1 along B we get essentially the same thing and all points
are again regular.

The other non-regular point on A is the conjugate of the one we blew up. There-
fore, after performing the conjugate blow ups, it too will be a genus 1 component
crossing A transversally. We denote this component D; it is conjugate to B.

We now have a proper, regular model C of C over Z2. Let C2 be the special fiber
of this model; a diagram of C2 is in Figure 1 and is labelled Fiber 3. We can use
C to show that the Néron model J of the Jacobian J = J65,B has good reduction
at 2.

We know that the reduction of J 0 is the extension of an abelian variety by a
connected linear group. Since C is regular and proper, the abelian variety part of the
reduction is the product of the Jacobians of the normalizations of the components
of C2 (see [BLR, 9.3/11 and 9.5/4]). Thus, the abelian variety part is the product
of the Jacobians of B and D. Since this is 2-dimensional, the reduction of J 0 is an
abelian variety. In other words, since the sum of the genera of the components of
the special fiber is equal to the dimension of J , the reduction is an abelian variety.
It follows that J has good reduction at 2, that the conductor of J is odd, and
that c2 = 1. As noted above, this gives further evidence that the equation given in
Table 1 is correct.

Example 2. Curve C63 over Z3.
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Figure 2. Special fiber of curve C63 over Z3
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The Tamagawa number is often found using the intersection matrix and sub-
determinants. This is not entirely satisfactory for cases where the special fiber has
several components and a non-trivial Galois action. Here is an example of how to
resolve this (see also [BL]).

When we blow up curve C63 over Z
unr
3 , we get the special fiber shown in Figure 2.

Elements of Gal(Qunr
3 /Q3) that do not fix the quadratic unramified extension of Q3

switch H and I. The other components are defined over Q3. All components have
genus 0. The group J(Qunr

3 )/J0(Qunr
3 ) is isomorphic to a quotient of

L = {αA+βB+δD+εE+φF+γG+ηH+ιI | α+β+2δ+2ε+4φ+2γ+2η+2ι = 0} .
The kernel is generated by the following divisors.

[A] = −2A+ E [B] = −2B + E
[D] = −D + E [E] = A+B +D − 4E + F
[F ] = E − 2F +G+H + I [G] = F − 2G
[H] = F − 2H [ I ] = F − 2I

When we project away from A, we find that J(Qunr
3 )/J0(Qunr

3 ) is isomorphic to

〈B,D,E, F,G,H, I | E = 0, E = 2B,D = E, 4E = B +D + F,

2F = E +G+H + I, F = 2G = 2H = 2I〉.
At this point, it is straightforward to simplify the representation by elimination.
Note that we projected away from A, which is Galois-invariant. It is best to continue
eliminating Galois-invariant elements first. We find that this group is isomorphic to
〈H, I | 2H = 2I = 0〉 and elements of Gal(Qunr

3 /Q3) that do not fix the quadratic
unramified extension ofQ3 switchH and I. Therefore J(Qunr

3 )/J0(Qunr
3 ) ∼= Z/2Z⊕

Z/2Z and c3 = #J(Q3)/J
0(Q3) = 2.

3.5. Computing Ω. By an integral differential (or integral form) on J we mean
the pullback to J of a global relative differential form on the Néron model of J
over Z. The set of integral n-forms on J is a full-rank lattice in the Q-vector space
of global holomorphic n-forms on J . Since J is an abelian variety of dimension 2,
the integral 1-forms are a free Z-module of rank 2 and the integral 2-forms are a
free Z-module of rank 1. Moreover, the wedge of a basis for the integral 1-forms is
a generator for the integral 2-forms. The quantity Ω is the integral, over the real
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points of J , of a generator for the integral 2-forms. (We choose the generator that
leads to a positive integral.)

We now translate this into a computation on the curve C. Let {ω1, ω2} be a Q-
basis for the holomorphic differentials on C and let {γ1, γ2, γ3, γ4} be a Z-basis for
the homology of C(C). Create a 2×4 complex matrix MC = [

∫
γj
ωi] by integrating

the differentials over the homology and let MR = TrC/R(MC) be the 2 × 4 real
matrix whose entries are traces from the complex matrix. The columns of MR

generate a lattice Λ in R2. If we make the standard identification between the
holomorphic 1-forms on J and the holomorphic differentials on C (see [Mi2]), then
the notation

∫
J(R)

|ω1 ∧ω2| makes sense and its value can be computed as the area

of a fundamental domain for Λ.
If {ω1, ω2} is a basis for the integral 1-forms on J , then

∫
J(R)

|ω1 ∧ ω2| = Ω.

On the other hand, the computation of MC is simplest if we choose ω1 = dX/Y ,
and ω2 = X dX/Y with respect to a model for C of the form Y 2 = F (X); in this
case we obtain Ω by a simple change-of-basis calculation. This assumes, of course,
that we know how to express a basis for the integral 1-forms in terms of the basis
{ω1, ω2}; this is addressed in more detail below.

It is worth mentioning an alternate strategy. Instead of finding a Z-basis for the
homology of C(C) one could find a Z-basis {γ ′1, γ′2} for the subgroup of the homol-
ogy that is fixed by complex conjugation (call this the real homology). Integrating
would give us a 2 × 2 real matrix M ′

R and the determinant of M ′
R would equal

the integral of ω1 ∧ ω2 over the connected component of J(R). In other words, the
number of real connected components of J is equal to the index of the C/R-traces
in the real homology.

We now come to the question of determining the differentials on C which corre-
spond to the integral 1-forms on J . Call these the integral differentials on C. This
computation can be done one prime at a time. At each prime p this is equivalent to
determining a Zunrp -basis for the global relative differentials on any proper, regular
model for C over Zunrp . In fact a more general class of models can be used; see the
discussion of models with rational singularities in [BLR, §6.7] and [Li, §4.1].

We start with the model y2 + g(x)y = f(x) given in Table 1. Note that the
substitution X = x and Y = 2y + g(x) gives us a model of the form Y 2 = F (X).
For integration purposes, our preferred differentials are dX/Y = dx/(2y + g(x))
and X dX/Y = x dx/(2y + g(x)). It is not hard to show that at primes of non-
singular reduction for the y2+ g(x)y = f(x) model, these differentials will generate
the integral 1-forms. For each prime p of singular reduction we give the following
algorithm. All steps take place over Zunrp .

Step 1: Compute explicit equations for a proper, regular model C.
Step 2: Diagram the configuration of the special fiber of C.
Step 3: (Optional) Identify exceptional components and blow them down in

the configuration diagram. Repeat step 3 as necessary.
Step 4: (Optional) Remove components with genus 0 and self-intersection
−2. Since C has genus greater than 1, there will be a component that is
not of this kind.

(This step corresponds to contracting the given components. The model
obtained would no longer be regular; it would, however, be a proper model
with rational singularities. We will not need a diagram of the resulting
configuration.)
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Step 5: Determine a Zunrp -basis for the integral differentials. It suffices to
check this on a dense open subset of each surviving component. Note
that we have explicit equations for a dense open subset of each of these
components from the model C in step 1. A pair of differentials {η1, η2}
will be a basis for the integral differentials (at p) if the following three
statements are true.
a: The pair {η1, η2} is a basis for the holomorphic differentials on C.
b: The reductions of η1 and η2 produce well-defined differentials mod p

on an open subset of each surviving component.
c: If a1η1 + a2η2 = 0 (mod p) on all surviving components, then p|a1

and p|a2.
Techniques for explicitly computing a proper, regular model are discussed in

Section 3.4. A configuration diagram should include the genus, multiplicity and self-
intersection number of each component and the number and type of intersections
between components. Note that when an exceptional component is blown down,
all of the self-intersection numbers of the components intersecting it will go up
(towards 0). In particular, components which were not exceptional before may
become exceptional in the new configuration.

Steps 3 and 4 are intended to make this algorithm more efficient for a human.
They are entirely optional. For a computer implementation it may be easier to
simply check every component than to worry about manipulating configurations.

The curves in Table 1 are given as y2 + g(x)y = f(x). We assumed, at first,
that dx/(2y + g(x)) and x dx/(2y + g(x)) generate the integral differentials. We
integrated these differentials around each of the four paths generating the complex
homology and found a provisional Ω. Then we checked the proper, regular models
to determine if these differentials really do generate the integral differentials and
adjusted Ω when necessary. There were three curves where we needed to adjust Ω.
We describe the adjustment for curve C65,B in the following example. For curve
C63, we used the differentials 3 dx/(2y + g(x)) and x dx/(2y + g(x)). For curve
C65,A, we used the differentials 3 dx/(2y + g(x)) and 3x dx/(2y + g(x)).

Example 3. Curve C65,B .
The primes of singular reduction for curve C65,B are 2, 5 and 13. In Example 1 of

Section 3.4, we found a proper, regular model C for C over Zunr2 . The configuration
for the special fiber of C is sketched in Figure 1 under the label Fiber 3. Component
A is exceptional and can be blown down to produce a model in which B and D
cross transversally. Since B and D both have genus 1, we cannot eliminate either
of these components. Furthermore, it suffices to check B, since D is its Galois
conjugate.

To get from the equation of the curve listed in Table 1 to an affine containing
an open subset of B we need to make the substitutions x = x0 − α and y =
x0(y3x0 − α− 1). We also have x0p1 = 2. Using the substitutions and the relation
dx0/x0 = −dp1/p1, we get

dx

2y
=

−dp1
2p1(y3x0 − α− 1)

and
x dx

2y
=

−(x0 + α) dp1
2p1(y3x0 − α− 1)

.

Note that p1 − t is a uniformizer at p1 = t almost everywhere on B. When we
multiply each differential by 2, then the denominator of each is almost everywhere
non-zero; thus, dx/y and x dx/y are integral at 2. Moreover, although the linear
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combination (x − α) dx/y is identically zero on B, it is not identically zero on D
(its Galois conjugate is not identically zero on B). Thus, our new basis is correct
at 2. We multiply the provisional Ω by 4 to get a new provisional Ω which is correct
at 2.

Similar (but somewhat simpler) computations at the primes 5 and 13 show that
no adjustment is needed at these primes. Thus, dx/y and x dx/y form a basis for
the integral differentials of curve C65,B , and the correct value of Ω is 4 times our
original guess.

4. Modular algorithms

In this section, we describe the algorithms that were used to compute some of
the data from the newforms. This includes the analytic rank and leading coefficient
of the L-series. For optimal quotients, the value of k ·Ω can also be found (k is the
Manin constant), as well as partial information on the Tamagawa numbers cp and
the size of the torsion subgroup.

4.1. Analytic rank of L(J, s) and leading coefficient at s = 1. Fix a Jaco-
bian J corresponding to the 2-dimensional subspace of S2(N) spanned by quadratic
conjugate, normalized newforms f and f . Let WN be the Fricke involution. The
newforms f and f have the same eigenvalue εN with respect to WN , namely +1
or −1. In the notation of Section 2, let

L(f, s) =

∞∑

n=1

an
ns

be the L-series of f ; then L(f, s) is the Dirichlet series whose coefficients are the
conjugates of the coefficients of L(f, s). (Recall that the an are integers in some
real quadratic field.) The order of L(f, s) at s = 1 is even when εN = −1 and odd
when εN = +1. We have L(J, s) = L(f, s)L(f, s). Thus the analytic rank of J
is 0 modulo 4 when εN = −1 and 2 modulo 4 when εN = +1. We found that the
ranks were all 0 or 2. To prove that the analytic rank of J is 0, we need to show
L(f, 1) 6= 0 and L(f, 1) 6= 0. In the case that εN = +1, to prove that the analytic
rank is 2, we need to show that L′(f, 1) 6= 0 and L′(f, 1) 6= 0. When εN = −1, we
can evaluate L(f, 1) as in [Cr2, §2.11]. When εN = +1, we can evaluate L′(f, 1)
as in [Cr2, §2.13]. Each appropriate L(f, 1) or L′(f, 1) was at least 0.1 and the
errors in our approximations were all less than 10−67. In this way we determined
the analytic ranks, which we denote r. As noted in the introduction, the analytic
rank equals the Mordell-Weil rank if r = 0 or r = 2. Thus, we can simply call r
the rank, without fear of ambiguity.

To compute the leading coefficient of L(J, s) at s = 1, we note that lims→1 L(J, s)/(s−
1)r = L(r)(J, 1)/r!. In the r = 0 case, we simply have L(J, 1) = L(f, 1)L(f, 1). In
the r = 2 case, we have L′′(J, s) = L′′(f, s)L(f, s)+2L′(f, s)L′(f, s)+L(f, s)L′′(f, s).
Evaluating both sides at s = 1 we get 1

2L
′′(J, 1) = L′(f, 1)L′(f, 1).

4.2. Computing k · Ω. Let J , f and f be as in Section 4.1 and assume J is an
optimal quotient. Let V be the 2-dimensional space spanned by f and f . Choose
a basis {ω1, ω2} for the subgroup of V consisting of forms whose q-expansion coef-
ficients lie in Z. Let k ·Ω be the volume of the real points of the quotient of C×C
by the lattice of period integrals (

∫
γ
ω1,

∫
γ
ω2) with γ in the integral homology
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H1(X0(N),Z). The rational number k is called the Manin constant. In practice
we compute k · Ω using modular symbols and a generalization to dimension 2 of
the algorithm for computing periods described in [Cr2, §2.10]. When L(J, 1) 6= 0
the method of [Cr2, §2.11] coupled with Sections 4.1 and 4.3 can also be used to
compute k · Ω.

A slight generalization of the argument of Proposition 2 of [Ed1] proves that k is,
in fact, an integer. This generalization can be found in [AS2], where one also finds
a conjecture that k must equal 1 for all optimal quotients of Jacobians of modular
curves, which generalizes the longstanding conjecture of Manin that k equals 1 for
all optimal elliptic curves. In unpublished work, Edixhoven has partially proven
Manin’s conjecture.

The computations of the present paper verify that k equals 1 for the optimal
quotients that we are considering. Specifically, we computed k · Ω as above and Ω
as described in Section 3.5. The quotient of the two values was always well within
0.5 of 1.

4.3. Computing L(J, 1)/(k ·Ω). We compute the rational number L(J, 1)/(k ·Ω),
for optimal quotients, using the algorithm in [AS1]. This algorithm generalizes the
algorithm described in [Cr2, §2.8] to dimension greater than 1.

4.4. Tamagawa numbers. In this section we assume that p is a prime which
exactly divides the conductor N of J . Under these conditions, Grothendieck [Gr]
gave a description of the component group of J in terms of a monodromy pairing on
certain character groups. (For more details, see Ribet [Ri, §2].) If, in addition, J is
a new optimal quotient of J0(N), one deduces the following. When the eigenvalue
for f of the Atkin-Lehner involution Wp is +1, then the rational component group
of J is a subgroup of (Z/2Z)2. Furthermore, when the eigenvalue of Wp is −1, the
algorithm described in [Ste] can be used to compute the value of cp.

4.5. Torsion subgroup. To compute an integer divisible by the order of the tor-
sion subgroup of J we make use of the following two observations. First, it is
a consequence of the Eichler-Shimura relation [Sh, §7.9] that if p is a prime not
dividing the conductor N of J and f(T ) is the characteristic polynomial of the
endomorphism Tp of J , then #J(Fp) = f(p + 1) (see [Cr2, §2.4] for an algorithm
to compute f(T )). Second, if p is an odd prime at which J has good reduction,
then the natural map J(Q)tors → J(Fp) is injective (see [CF, p. 70]). This does
not depend on whether J is an optimal quotient. To obtain a lower bound on
the torsion subgroup for optimal quotients, we use modular symbols and the Abel-
Jacobi theorem [La, IV.2] to compute the order of the image of the rational point
(0)− (∞) ∈ J0(N).

5. Tables

In Table 1, we list the 32 curves described in Section 2. We give the level N
from which each curve arose, an integral model for the curve, and list the source(s)
from which it came (H for Hasegawa [Ha], W for Wang [Wan]). Throughout the
paper, the curves are denoted CN (or CN,A, CN,B).

In Table 2, we list the curve CN simply by N , the level from which it arose.
Let r denote the rank. We list lims→1(s− 1)−rL(J, s) where L(J, s) is the L-series
for the Jacobian J of CN and round off the results to five digits. The symbol Ω
was defined in Section 3.5 and is also rounded to five digits. Let Reg denote the
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N Equation Source

23 y2 + (x3 + x+ 1)y = −2x5 − 3x2 + 2x− 2 HW
29 y2 + (x3 + 1)y = −x5 − 3x4 + 2x2 + 2x− 2 HW
31 y2 + (x3 + x2 + 1)y = −x5 − 5x4 − 5x3 + 3x2 + 2x− 3 HW
35 y2 + (x3 + x)y = −x5 − 8x3 − 7x2 − 16x− 19 H
39 y2 + (x3 + 1)y = −5x4 − 2x3 + 16x2 − 12x+ 2 H
63 y2 + (x3 − 1)y = 14x3 − 7 W
65,A y2 + (x3 + 1)y = −4x6 + 9x4 + 7x3 + 18x2 − 10 W
65,B y2 = −x6 + 10x5 − 32x4 + 20x3 + 40x2 + 6x− 1 W
67 y2 + (x3 + x+ 1)y = x5 − x HW
73 y2 + (x3 + x2 + 1)y = −x5 − 2x3 + x HW
85 y2 + (x3 + x2 + x)y = x4 + x3 + 3x2 − 2x+ 1 H
87 y2 + (x3 + x+ 1)y = −x4 + x3 − 3x2 + x− 1 HW
93 y2 + (x3 + x2 + 1)y = −2x5 + x4 + x3 HW
103 y2 + (x3 + x2 + 1)y = x5 + x4 HW
107 y2 + (x3 + x2 + 1)y = x4 − x2 − x− 1 HW
115 y2 + (x3 + x+ 1)y = 2x3 + x2 + x HW
117,A y2 + (x3 − 1)y = 3x3 − 7 W
117,B y2 + (x3 + 1)y = −x6 − 3x4 − 5x3 − 12x2 − 9x− 7 W
125,A y2 + (x3 + x+ 1)y = x5 + 2x4 + 2x3 + x2 − x− 1 HW
125,B y2 + (x3 + x+ 1)y = x6 + 5x5 + 12x4 + 12x3 + 6x2 − 3x− 4 W
133,A y2 + (x3 + x+ 1)y = −2x6 + 7x5 − 2x4 − 19x3 + 2x2 + 18x+ 7 W
133,B y2 + (x3 + x2 + 1)y = −x5 + x4 − 2x3 + 2x2 − 2x HW
135 y2 + (x3 + x+ 1)y = x4 − 3x3 + 2x2 − 8x− 3 W
147 y2 + (x3 + x2 + x)y = x5 + 2x4 + x3 + x2 + 1 HW
161 y2 + (x3 + x+ 1)y = x3 + 4x2 + 4x+ 1 HW
165 y2 + (x3 + x2 + x)y = x5 + 2x4 + 3x3 + x2 − 3x H
167 y2 + (x3 + x+ 1)y = −x5 − x3 − x2 − 1 HW
175 y2 + (x3 + x2 + 1)y = −x5 − x4 − 2x3 − 4x2 − 2x− 1 W
177 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 HW
188 y2 = x5 − x4 + x3 + x2 − 2x+ 1 W
189 y2 + (x3 − 1)y = x3 − 7 W
191 y2 + (x3 + x+ 1)y = −x3 + x2 + x HW

Table 1. Levels, integral models and sources for curves

regulator, also rounded to five digits. We list the cp’s by primes of increasing order
dividing the level N . We denote J(Q)tors = Φ and list its size. We use X? to
denote the size of (lims→1(s− 1)−rL(J, s)) · (#J(Q)tors)2/(Ω ·Reg ·

∏
cp), rounded

to the nearest integer. We will refer to this as the conjectured size of X(J,Q).
For rank 0 optimal quotients this integer equals the (a priori) rational number
(L(J, 1)/(k ·Ω)) · ((#J(Q)tors)2/

∏
cp); of course there is no rounding error in this

computation. For all other cases the last column gives a bound on the accuracy of
the computations; all values of X? were at least this close to the nearest integer
before rounding.
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N r lim
s→1

L(J,s)
(s−1)r Ω Reg cp’s Φ X? error

23 0 0.24843 2.7328 1 11 11 1
29 0 0.29152 2.0407 1 7 7 1
31 0 0.44929 2.2464 1 5 5 1
35 0 0.37275 2.9820 1 16,2 16 1 < 10−25

39 0 0.38204 10.697 1 28,1 28 1 < 10−25

63 0 0.75328 4.5197 1 2,3 6 1
65,A 0 0.45207 6.3289 1 7,1 14 2
65,B 0 0.91225 5.4735 1 1,3 6 2
67 2 0.23410 20.465 0.011439 1 1 1 < 10−50

73 2 0.25812 24.093 0.010713 1 1 1 < 10−49

85 2 0.34334 9.1728 0.018715 4,2 2 1 < 10−26

87 0 1.4323 7.1617 1 5,1 5 1
93 2 0.33996 18.142 0.0046847 4,1 1 1 < 10−49

103 2 0.37585 16.855 0.022299 1 1 1 < 10−49

107 2 0.53438 11.883 0.044970 1 1 1 < 10−49

115 2 0.41693 10.678 0.0097618 4,1 1 1 < 10−50

117,A 0 1.0985 3.2954 1 4,3 6 1
117,B 0 1.9510 1.9510 1 4,1 2 1
125,A 2 0.62996 13.026 0.048361 1 1 1 < 10−50

125,B 0 2.0842 2.6052 1 5 5 4
133,A 0 2.2265 2.7832 1 5,1 5 4
133,B 2 0.43884 15.318 0.028648 1,1 1 1 < 10−49

135 0 1.5110 4.5331 1 3,1 3 1
147 2 0.61816 13.616 0.045400 2,2 2 1 < 10−50

161 2 0.82364 11.871 0.017345 4,1 1 1 < 10−47

165 2 0.68650 9.5431 0.071936 4,2,2 4 1 < 10−26

167 2 0.91530 7.3327 0.12482 1 1 1 < 10−47

175 0 0.97209 4.8605 1 1,5 5 1
177 2 0.90451 13.742 0.065821 1,1 1 1 < 10−45

188 2 1.1708 11.519 0.011293 9,1 1 1 < 10−44

189 0 1.2982 3.8946 1 1,3 3 1
191 2 0.95958 17.357 0.055286 1 1 1 < 10−44

Table 2. Conjectured sizes of X(J,Q)

In Table 3 are generators of J(Q)/J(Q)tors for the curves whose Jacobians have
Mordell-Weil rank 2. The generators are given as divisor classes. Whenever pos-
sible, we have chosen generators of the form [P − Q] where P and Q are rational
points on the curve. Curve 167 is the only example where this is not the case, since
the degree zero divisors supported on the (known) rational points on C167 generate
a subgroup of index two in the full Mordell-Weil group. Affine points are given
by their x and y coordinates in the model given in Table 1. There are two points
at infinity in the normalization of the curves described by our equations, with the
exception of curve C188. These are denoted by ∞a, where a is the value of the
function y/x3 on the point in question. The (only) point at infinity on curve C188

is simply denoted ∞.
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N Generators of J(Q)/J(Q)tors

67 [(0, 0)−∞−1] [(0, 0)− (0,−1)]
73 [(0,−1)−∞−1] [(0, 0)−∞−1]
85 [(1, 1)−∞−1] [(−1, 3)−∞0]
93 [(−1, 1)−∞0] [(1,−3)− (−1,−2)]
103 [(0, 0)−∞−1] [(0,−1)− (0, 0)]
107 [∞−1 −∞0] [(−1,−1)−∞−1]
115 [(1,−4)−∞0] [(1, 1)− (−2, 2)]
125,A [∞−1 −∞0] [(−1, 0)−∞−1]
133,B [∞−1 −∞0] [(0,−1)−∞−1]
147 [∞−1 −∞0] [(−1,−1)−∞0]
161 [(1, 2)− (−1, 1)] [( 12 ,−3)− (1, 2)]
165 [(1, 1)−∞−1] [(0, 0)−∞0]
167 [(−1, 1)−∞0] [(i, 0) + (−i, 0)−∞0 −∞−1]
177 [(0,−1)−∞0] [(0, 0)− (0,−1)]
188 [(0,−1)−∞] [(0, 1)− (1,−2)]
191 [∞−1 −∞0] [(0,−1)−∞0]

Table 3. Generators of J(Q)/J(Q)tors in rank 2 cases

N Prime Type Prime Type N Prime Type Prime Type

23 23 I3−2−1 117,A 3 III− III∗ − 0 13 I1−1−1

29 29 I3−1−1 117,B 3 I∗3−1−1 13 I1−1−0

31 31 I2−1−1 125,A 5 VIII− 1
35 5 I3−2−2 7 I2−1−0 125,B 5 IX− 3
39 3 I6−2−2 13 I1−1−0 133,A 7 I2−1−1 19 I1−1−0

63 3 2I∗0 − 0 7 I1−1−1 133,B 7 I1−1−0 19 I1−1−0

65,A 3 I0 − I0 − 1 5 I3−1−1 135 3 III 5 I3−1−0

65,A 13 I1−1−0 147 3 I2−1−0 7 VII
65,B 2 I0 − I0 − 1 5 I3−1−0 161 7 I2−2−0 23 I1−1−0

65,B 13 I1−1−1 165 3 I2−2−0 5 I2−1−0

67 67 I1−1−0 165 11 I2−1−0

73 73 I1−1−0 167 167 I1−1−0

85 5 I2−2−0 17 I2−1−0 175 5 II− II− 0 7 I2−1−1

87 3 I2−1−1 29 I1−1−0 177 3 I1−1−0 59 I1−1−0

93 3 I2−2−0 31 I1−1−0 188 2 IV − IV − 0 47 I1−1−0

103 103 I1−1−0 189 3 II− IV∗ − 0 7 I1−1−1

107 107 I1−1−0 191 191 I1−1−0

115 5 I2−2−0 23 I1−1−0

Table 4. Namikawa and Ueno classification of special fibers

In Table 4 are the reduction types, from the classification of [NU], of the special
fibers of the minimal, proper, regular models of the curves for each of the primes
of singular reduction for the curve. They are the same as the primes dividing the
level except that curve C65,A has singular reduction at the prime 3 and curve C65,B

has singular reduction at the prime 2.
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6. Discussion of Shafarevich-Tate groups and evidence for the

second conjecture

From Section 3.2 we have dimX(J,Q)[2] = dimSel2(J,Q) − r − dim J(Q)[2].
With the exception of curves C65,A, C65,B , C125,B , and C133,A we have dimX(J,Q)[2] =
0. Thus we expect #X(J,Q) to be an odd square. In each case, the conjec-
tured size of X(J,Q) is 1. For curves C65,A, C65,B , C125,B and C133,A we have
dimX(J,Q)[2] = 1, 1, 2 and 2 and the conjectured size of X(J,Q) = 2, 2, 4 and 4,
respectively. We see that in each case, the (conjectured) size of the odd part of
X(J,Q) is 1 and the 2-part is accounted for by its 2-torsion.

Recall that for rank 0 optimal quotients we are able to exactly determine the
value which the second Birch and Swinnerton-Dyer conjecture predicts for X(J,Q).
From the previous paragraph, we then see that equation (1.1) holds if and only if
X(J,Q) is killed by 2.

It is also interesting to consider deficient primes. A prime p is deficient with
respect to a curve C of genus 2, if C has no degree 1 rational divisor over Qp.
From [PSt], the number of deficient primes has the same parity as dimX(J,Q)[2].
Curve C65,A has one deficient prime 3. Curve C65,B has one deficient prime 2.
Curve C117,B has two deficient primes 3 and ∞. The rest of the curves have no
deficient primes.

Since we have found r (analytic rank) independent points on each Jacobian, we
have a direct proof that the Mordell-Weil rank must equal the analytic rank if
dimX(J,Q)[2] = 0. For curves C65,A and C65,B , the presence of an odd number

of deficient primes gives us a similar result. For C125,B we used a
√
5-Selmer group

to get a similar result. Thus, we have an independent proof of equality between
analytic and Mordell-Weil ranks for all curves except C133,A.

The 2-Selmer groups have the same dimensions for the pairs C125,A, C125,B and
C133,A, C133,B . For each pair, the Mordell-Weil rank is 2 for one curve and the 2-
torsion of the Shafarevich-Tate group has dimension 2 for the other. In addition, the
two Jacobians, when canonically embedded into J0(N), intersect in their 2-torsion
subgroups, and one can check that their 2-Selmer groups become equal under the
identification of H1(Q, JN,A[2]) with H1(Q, JN,B [2]) induced by the identification
of the 2-torsion subgroups. Thus these are examples of the principle of a ‘visible
part of a Shafarevich-Tate group’ as discussed in [CM].

Appendix: Other Hasegawa curves

In Table 5 is data concerning all 142 of Hasegawa’s curves in the order presented
in his paper. Let us explain the entries. The first column in each set of three
columns gives the level, N . The second column gives a classification of the cusp
forms spanning the 2-dimensional subspace of S2(N) corresponding to the Jacobian.
When that subspace is irreducible with respect to the action of the Hecke algebra
and is spanned by two newforms or two oldforms, we write 2n or 2o, respectively.
When that subspace is reducible and is spanned by two oldforms, two newforms or
one of each, we write oo, nn and on, respectively. The third column contains the
sign of the functional equation at the level M at which the cusp form is a newform.
This is the negative of εM (described in Section 4.1). The order of the two signs
in the third column agrees with that of the forms listed in the second column. We
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22 oo ++ 58 nn +− 87 2o ++ 129 on −− 198 2o +−
23 2n ++ 60 oo ++ 88 on +− 130 on −+ 204 2o +−
26 nn ++ 60 2o ++ 90 on ++ 132 oo ++ 205 2n −−
28 oo ++ 60 2o ++ 90 oo ++ 133 2n −− 206 2o −−
29 2n ++ 62 2o ++ 90 oo ++ 134 2o −− 209 2n −−
30 on ++ 66 nn ++ 90 oo ++ 135 on +− 210 on +−
30 oo ++ 66 2o ++ 91 nn −− 138 nn +− 213 2n −−
30 on ++ 66 2o ++ 93 2n −− 138 on +− 215 on −−
31 2n ++ 66 on ++ 98 oo ++ 140 oo ++ 221 2n −−
33 on ++ 67 2n −− 100 oo ++ 142 nn +− 230 2o −−
35 2n ++ 68 oo ++ 102 on +− 143 on +− 255 2o −−
37 nn +− 69 2o ++ 102 on +− 146 2o −− 266 2o −−
38 on ++ 70 on ++ 103 2n −− 147 2n −− 276 2o +−
39 2n ++ 70 2o ++ 104 2o ++ 150 on ++ 284 2o +−
40 on ++ 70 2o ++ 106 on −− 153 on +− 285 on −−
40 oo ++ 70 2o ++ 107 2n −− 154 on −− 286 on −−
42 on ++ 72 on ++ 110 on ++ 156 oo ++ 287 2n −−
42 oo ++ 72 oo ++ 111 oo +− 158 on −− 299 2n −−
42 on ++ 73 2n −− 112 on +− 161 2n −− 330 2o −−
42 oo ++ 74 oo +− 114 oo +− 165 2n −− 357 2n −−
44 2o ++ 77 on +− 115 2n −− 166 on −− 380 2o +−
46 2o ++ 78 oo ++ 116 2o +− 167 2n −− 390 on −−
48 on ++ 78 2o ++ 117 2o ++ 168 2o ++
48 oo ++ 80 oo ++ 120 oo ++ 170 2o −−
50 nn ++ 84 oo ++ 120 on ++ 177 2n −−
52 oo ++ 84 oo ++ 121 on +− 180 2o ++
52 oo ++ 84 oo ++ 122 on −− 184 on +−
54 on ++ 84 oo ++ 125 2n −− 186 2o −−
57 on +− 85 2n −− 126 oo ++ 190 on +−
57 on +− 87 2n ++ 126 on ++ 191 2n −−

Table 5. Spaces of cusp forms associated to Hasegawa’s curves

include this information for those who would like to further study these curves.
The curves with N < 200 classified as 2n appeared already in Table 1.

The smallest possible Mordell-Weil ranks corresponding to ++, +−, −+ and
−−, predicted by the first Birch and Swinnerton-Dyer conjecture, are 0, 1, 1 and 2
respectively. In all cases, those were, in fact, the Mordell-Weil ranks. This was de-
termined by computing 2-Selmer groups with a computer program based on [Sto2].
Of course, these are cases where the first Birch and Swinnerton-Dyer conjecture is
already known to hold. In the cases where the Mordell-Weil rank is positive, the
Mordell-Weil group has a subgroup of finite index generated by degree zero divisors
supported on rational points with x-coordinates with numerators bounded by 7 (in
absolute value) and denominators by 12 with one exception. On the second curve

with N = 138, the divisor class [(3+2
√
2, 80+56

√
2)+(3−2

√
2, 80−56

√
2)−2∞]

generates a subgroup of finite index in the Mordell-Weil group.
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