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1 Introduction

In this paper we describe the Birch and Swinnerton-Dyer conjecture in the
case of modular abelian varieties and how to use Magma to do computations
with some of the quantities that appear in the conjecture. We assume the
reader has some experience with algebraic varieties and number theory, but
do not assume the reader has proficiency working with elliptic curves, abelian
varieties, modular forms, or modular symbols.

In Section 2 we quickly survey abelian varieties, modular forms, Hecke
algebras, modular curves, and modular Jacobians, then discuss Shimura’s con-
struction of abelian varieties attached to modular forms. In Section 3 we sur-
vey many quantities associated to an abelian variety, including the Mordell-
Weil group, torsion subgroup, regulator, Tamagawa numbers, real volume, and
Shafarevich-Tate group, and use these to state the full Birch and Swinnerton-
Dyer conjecture for modular abelian varieties. Section 4 contains some com-
putational results from other papers about the Birch and Swinnerton-Dyer
conjecture.

The rest of the paper is about how to use the package that I wrote for
Magma to carry out an explicit computational study of modular abelian va-
rieties. Section 5 is about modular symbols and how to compute with them
in Magma. In Section 6 we state a theorem that allows us to use Magma

to compute subgroups of Shafarevich-Tate groups of abelian varieties. In Sec-
tion 7 we discuss computation of special values of L-functions. Section 8 is
about computing Tamagawa numbers, and in Section 9 we describe how to
compute a divisor and multiple of the order of the torsion subgroup. All these
computations are pulled together in Section 10 to obtain a conjectural divisor
and multiple of the order of the Shafarevich-Tate group of a modular abelian
variety of dimension 20. We finish with Section 11, which contains an example
in which the level is composite and elements of the Shafarevich-Tate group
only becomes “visible” at higher level.
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Taken together, these computations give evidence for the Birch and
Swinnerton-Dyer conjecture and increase our explicit understanding of mod-
ular abelian varieties.

2 Modular Abelian Varieties

An elliptic curve E over the rational numbers Q is a one-dimensional commu-
tative compact algebraic group. Such a curve is usually given as the projective
closure of an affine curve y2 = x3 +ax+ b, with a and b in Q. The points over
the real numbers R of y2 = x3 − x+1 are illustrated in Figure 1. If P and Q
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Fig. 1. Adding P = (0, 1) to Q = (1, 1) to get R = (−1,−1) on y2 = x3− x+1

are two distinct points on E, we find their sum as follows: draw the unique
line through them and let (x, y) be the third point of intersection of this line
with E. Then the sum of P and Q is R = (x,−y), as illustrated in Figure 1.
For more about elliptic curves, see [33, 34].

This paper is about abelian varieties, which are compact (commutative)
algebraic groups of dimension possibly greater than 1. For example, the Carte-
sian product of two elliptic curves is an abelian variety of dimension 2.

Explicit equations for abelian varieties are vastly more complicated than
for elliptic curves, so algorithms for computing with abelian varieties without
recourse to explicit algebraic equations are of great value. In this paper we
focus on such algorithms in the case when the abelian variety is endowed with
extra structure coming from modular forms.

A cuspidal modular form of weight 2 for
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Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) : N | c

}

is a holomorphic function f(z) on the upper half plane such that for all γ =
(

a b
c d

)

∈ Γ0(N) we have

f

(

az + b

cz + d

)

= (cz + d)2f(z),

and which satisfies certain vanishing conditions at the cusps (see [13, pg. 42]
for a precise definition). We denote the finite dimensional complex vector space
of all cuspidal modular forms of weight 2 for Γ0(N) by S2(Γ0(N)). Because
(

1 1
0 1

)

∈ Γ0(N), cuspidal modular forms have a Fourier series representation

f(z) =

∞
∑

n=1

anq
n =

∞
∑

n=1

ane
2πinz.

The Hecke algebra

T = Z[T1, T2, T3, . . .] ⊂ End(S2(Γ0(N)))

is a commutative ring that is free of rank equal to dimC S2(Γ0(N)) (for the
definition and basic properties of the Hecke operators Tn, see [13, §3] and the
references therein).

A newform is a modular form

f = q +
∑

n≥2

anq
n

that is a simultaneous eigenvector for every element of the Hecke algebra and
such that the coefficients {ap : p - N} are not the prime-index coefficients of
another eigenform of some level that strictly divides N .

The group Γ0(N) acts as a discrete group of linear fractional transfor-
mations on the upper half plane; the quotient of the upper half plane by
this action is a non-compact Riemann surface. Its compactification has the
structure of algebraic curve over Q, i.e., the compactification is the set of
complex points of an algebraic curve X0(N) defined by polynomial equations
with coefficients in Q.

A divisor on an algebraic curve X is an element of the free abelian group
generated by the points of X. For example, if f is a rational function on X
then

(f) = (formal sum of poles of f) − (formal sum of zeros of f)

is a divisor on X, where the sums are with multiplicity. Two divisors D1 and
D2 are linearly equivalent if there is a rational function f on X such that
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D1 −D2 = (f). The Jacobian J of an algebraic curve X is an abelian variety
of dimension equal to the genus (number of holes in the Riemann surface
X(C)) of X such that the underlying group of J is naturally isomorphic to
the group of divisor classes of degree 0 on X. Let J0(N) denote the Jacobian
of X0(N).

Similarly, let

Γ1(N) =

{(

a b
c d

)

∈ SL2(Z) : N | c and a ≡ 1 (mod N)

}

,

define X1(N) similarly, and let J1(N) be the Jacobian of X1(N).
A modular abelian variety is an abelian variety A for which there exists

a surjective morphism J1(N) → A. Modular abelian varieties are appealing
objects to study. For example, it is a deep theorem that every elliptic curve
over Q is modular (see [7, 40, 41]), and this implies Fermat’s Last Theorem
(see [25, Cor. 1.2]). In [27], Ken Ribet conjectured that the simple abelian va-
rieties over Q of “GL2-type” are exactly the simple modular abelian varieties.
A closely related conjecture of Serre (see [29, pg. 179] and [28]) asserts that
every odd irreducible Galois representation

ρ : Gal(Q/Q)→ GL2(Fp)

is “modular”; this conjecture is equivalent to the assertion that ρ can be real-
ized (up to twist) as the action of Gal(Q/Q) on a subgroup of the points on
some J1(N) (see [28, §3.3.1] for a partial explanation). Though Serre’s conjec-
ture is still far from proved, it implies Ribet’s conjecture (see [27, Thm. 4.4]).

We now return to considering Γ0(N), though we could consider Γ1(N)
for everything in the rest of this section. The Hecke algebra T, which we
introduced above as a ring of linear transformations on S2(Γ0(N)), also acts
via endomophisms on J0(N).

In order to construct Galois representations attached to modular forms,
Goro Shimura (see [31, §1] and [32, §7.14]) associated to each newform f =
∑

anq
n a simple abelian variety Af defined over Q. Let If be the ideal of

elements of T that annihilate f . Then

Af = J0(N)/IfJ0(N).

The dimension of Af equals the degree of the field generated over Q by the
coefficients an of f . Note that Af need not be simple over Q.

We will frequently mention the dual A∨f below. The dual can be consid-
ered as an abelian subvariety of J0(N), by using that Jacobians are canoni-
cally self dual and the dual of the quotient map J0(N) → Af is an inclusion
A∨f ↪→ J0(N). Note that A∨f is the connected component of the intersection
of the kernels of all elements of If .

We say that a newform g is a Galois conjugate of f if there is σ in
Gal(Q/Q) such that g =

∑

σ(an)q
n. If g is a Galois conjugate of f , then
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Af = Ag; if g is not a conjugate of f then the only homomorphism from Af

to Ag is the zero map. (A nonzero homomorphism Af → Ag would induce
an isogeny of Tate modules, from which one could deduce that f and g are
Galois conjugate.)

We will concern ourselves almost entirely with these modular abelian va-
rieties attached to newforms, because, as mentioned above, there are a number
of algorithms for computing with them that do not require explicit algebraic
equations (see [2, 3, 9, 10, 15, 19, 37, 35]). Also, it follows from standard re-
sults about constructing spaces of cusp forms from newforms, which can be
found in [4, 22], that every modular abelian variety is isogenous to a prod-
uct of abelian varieties of the form Af . (An isogeny of abelian varieties is a
surjective homomorphism with finite kernel.)

3 The Birch and Swinnerton-Dyer Conjecture

In the 1960s Bryan Birch and Peter Swinnerton-Dyer did computations with
elliptic curves at Cambridge University on the EDSAC computer (see, e.g.,
[5]). These computations led to earth-shattering conjectures about the arith-
metic of elliptic curves over Q. Tate [39] formulated their conjectures in a
more functorial way that generalized them to abelian varieties over global
fields (such as the rational numbers). We now state their conjectures below
for modular abelian varieties over Q.

Let Af be a modular abelian variety. Mordell and Weil proved that the
abelian group Af (Q) of rational points on Af is finitely generated, so it is
isomorphic to Zr × T where T is the finite group Af (Q)tor of all elements of
finite order in Af (Q). The exponent r is called the Mordell-Weil rank of Af .

If f is a newform, the L-function of f is defined by the Dirichlet series
L(f, s) =

∑

n≥1 ann
−s. Hasse showed that L(f, s) has an analytic continuation

to a holomorphic function on the whole complex plane. The Hasse-Weil L-
function of Af is

L(Af , s) =
∏

L(g, s)

where the product is over the Galois conjugates g of f . The analytic rank of
Af is ords=1L(Af , s).

We are now ready to state the first part of the conjecture.

Conjecture 3.1 (Birch and Swinnerton-Dyer) The analytic rank of Af

is equal to the Mordell-Weil rank of Af .

Remark 1.

1. It is an open problem to give, with proof, an example of an elliptic curve
with analytic rank at least 4. No examples with analytic rank at least 3
were known until the deep theorem of [16, Prop. 7.4].
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2. When Af is an elliptic curve, Conjecture 3.1 is the Clay Mathematics
Institute Millennium Prize Problem from arithmetic geometry [17], so it
has received much publicity.

In order to explain the conjecture of Birch and Swinnerton-Dyer about
the leading coefficient of L(Af , s) at s = 1, we introduce the regulator, real
volume, Tamagawa numbers, and Shafarevich-Tate group of Af . Most of what
we say below is true for a general abelian variety over a global field; the
notable exceptions are that we do not know that the L-function is defined on
the whole complex plane, and there are hardly any cases in general when the
Shafarevich-Tate group is known to be finite.

Let Af (Q)/tor denote the quotient of Af (Q) by its torsion subgroup,
so Af (Q)/tor is isomorphic to Zr, where r is the Mordell-Weil rank of Af .
The height pairing is a nondegenerate bilinear pairing h on Af (Q)/tor. The
regulator RegAf

of Af is the absolute value of the determinant of a matrix
who entries are h(Pi, Pj), where P1, . . . , Pr are a basis for Af (Q)/tor. When
Af (Q) has rank zero, the regulator is 1.

We use a certain integral model of Af to define the real volume and
Tamagawa numbers of Af . The Néron model A of Af , whose existence was
established by Néron in [24] (see also [6, Ch. 1]), is a canonical object associ-
ated to Af that is defined over Z. The Néron model can be reduced modulo p
for every prime p, and when base extended to Q, the Néron model is isomor-
phic to Af . The Néron model A is determined, up to unique isomorphism, by
the following properties, which the reader unfamiliar with schemes can safely
ignore: A is a smooth commutative group scheme over Z such that whenever S
is a smooth scheme over Z the restriction map

Hom(S,A)→ HomQ(SQ, A)

is a bijection.
The real volume ΩAf

of Af is the absolute value of the integral over
Af (R) of h1 ∧ · · · ∧ hd where h1, . . . , hd are a basis for the holomorphic 1-
forms on A. Using various identifications as in [1, §2.2.2] one sees that the
Z-span M of h1, . . . , hd can be viewed as a submodule of

W = S2(Γ0(N),Z) ∩ (Cf1 ⊕ · · · ⊕Cfd)

where f1, . . . , fd are the Gal(Q/Q) conjugates of f . We call the index of M
in W the Manin constant of Af , and conjecture (see [1]) that the Manin
constant is 1. This conjecture would imply that a basis h1, . . . , hd can be
computed, since W can be computed.

The reduction modulo p of A is an algebraic group AFp
over the finite

field Fp with p elements. If p does not divide N , then this group is connected,
but when p divides N , the reduction AFp

need not be connected. Let

ΦA,p = AFp
/A0

Fp
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be the finite group of components. The Tamagawa number of Af at p, denoted
cp, is the number of Fp-rational components of the reduction of A modulo p,
so cp = #ΦA,p(Fp).

The only object left to define before we state the second part of the Birch
and Swinnerton-Dyer conjecture is the Shafarevich-Tate group of Af . This is
a group that measures the failure of a certain local-to-global principle for Af .
To give an exact description, we let H1(Q, Af ) be the first Galois cohomology
group of Af , which is a torsion group with infinitely many elements of any
order bigger than 1 (see [30] for a proof in the case when Af is an elliptic curve;
the top of page 278 of [8] also purports to contain a proof). More precisely,
H1(Q, Af ) is the set of equivalence classes of maps c : Gal(Q/Q) → Af (Q),
with finite image, such that c(στ) = c(σ) + σc(τ), and two classes c1 and c2
are equivalent if there exists P in Af (Q) such that c1(σ)− c2(σ) = σ(P )− P
for all σ ∈ Gal(Q/Q). For each prime p we define H1(Qp, Af ) analogously,
but with the rational numbers Q replaced by the p-adic numbers Qp. Also,
we allow p =∞, in which case Qp = R. Then

X(Af ) = ker



H1(Q, Af ) −→
⊕

primes p≤∞

H1(Qp, Af )



 .

We are now ready to state the full Birch and Swinnerton-Dyer conjecture
for modular abelian varieties Af .

Conjecture 3.2 Let A = Af be a modular abelian variety attached to a new-
form, and let r = ords=1L(A, s) be the analytic rank of A. Then

L(r)(A, 1)

r!
=

∏

cp ·ΩA · RegA
#A(Q)tor ·#A∨(Q)tor

·#X(A).

Recall that L(r)(Af , 1) makes sense at s = 1 because Af is attached to
a modular form. Also Kato established in [18, Cor. 14.3] that if L(Af , 1) 6= 0
then X(Af ) is finite, and Kolyvagin-Logachev ([20, Thm. 0.3]) proved that
if f is a modular form in S2(Γ0(N)) and ords=1L(f, s) ≤ 1, then X(Af ) is
finite. When the theorems of Kato, Kolyvagin, and Logachev do not apply,
we do not know even one example of a modular abelian variety Af for which
X(Af ) is provably finite. John Tate once remarked that Conjecture 3.2 (for
arbitrary abelian varieties) relates the value of a function where it is not known
to be defined to the order of a group that is not known to be finite.

The rest of this paper is about how to use Magma to gather computa-
tional evidence for Conjecture 3.2, a task well worth pursuing. Elliptic curves
are naturally surrounded by modular abelian varieties, so we want to under-
stand modular abelian varieties well in order to say something about Conjec-
tures 3.1–3.2 for elliptic curves. Doing explicit computations about these con-
jectures results in stimulating tables of data about modular abelian varieties,
which could never be obtained except by direct computation. Until [2, 15]
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there were very few nontrivial computational examples of Conjecture 3.2 for
abelian varieties in the literature, so it is important to test the conjecture since
we might find a counterexample. Trying to compute information about a con-
jecture stimulates development of algorithms and theorems about that con-
jecture. Finally, our computations may lead to refinements of Conjecture 3.2
in the special case of modular abelian varieties; for example, most objects in
Conjecture 3.2 are modules over the Hecke algebra so there should be more
precise module-theoretic versions of the conjecture.

4 Some Computational Results

In [2] we use Magma to compute some of the arithmetic invariants of the
19608 abelian variety quotients Af of J0(N) with N ≤ 2333. Over half of these
Af have analytic rank 0, and for these we compute a divisor and a multiple
of the order of X(Af ) predicted by Conjecture 3.2. We find that there are
at least 168 abelian varieties Af such that the Birch and Swinnerton-Dyer
Conjecture implies that #X(Af ) is divisible by an odd prime, and we use
Magma to show that for 37 of these the odd part of the conjectural order
of X(Af ) divides #X(Af ) by constructing nontrivial elements of X(Af )
using visibility theory. The challenge remains to show that the remaining 131
abelian varieties Af have odd part of X(Af ) divisible by the odd part of the
conjectural order of X(Af ) (we successfully take up this challenge for one
example of level 551 in Section 11 of the present paper).

In [9, §2 and §7] we investigate Conjecture 3.1–3.2 when Af is a quotient
of J1(p) with p prime. In particular, we compute some of the invariants of
every Af for p ≤ 71.

It was once thought by some mathematicians that Shafarevich-Tate
groups of abelian varieties would have order a perfect square (or at least
twice a perfect square). This is false, as we showed in the paper [36], where we
use Magma to prove that for every odd prime p < 25000 there is an abelian
variety whose Shafarevich-Tate group has order pn2 with n an integer.

Much of the data mentioned above is of interest even if the full Birch
and Swinnerton-Dyer conjecture were known since this data could probably
never be discovered without considerable computation, even assuming the
conjectures were true.

The rest of this paper is about how to use Magma to do computations
with newform quotients Af of J0(N) as in [2]. These computations involve
modular symbols, which underly most algorithms for working with modular
abelian varieties. (I hope to add functionality to a future release of Magma for
computing directly with modular abelian varieties, so that no explicit mention
of modular symbols is required.)

Remark 2. From a computational point of view, it is difficult to give evidence
for Conjecture 3.1 when the dimension is greater than 1 in cases not covered by
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the general theorems of Kato, Kolyvagin, and Logachev. To give new evidence
we would have to consider a modular abelian variety Af with either f a
newform in S2(Γ0(N)) and ords=1L(f, s) > 1, or f a newform in S2(Γ1(N))
but not in S2(Γ0(N)) and ords=1L(f, s) > 0. We would then show that Af (Q)
is infinite, and more precisely that it has the rank predicted by Conjecture 3.1.
In the above 2 cases the only known way to show that Af (Q) is infinite
is to exhibit a point of infinite order in Af (Q), and this seems to require
knowing equations for Af . Also when L(Af , 1) = 0, Conjecture 3.2 involves
a regulator term, which we do not know how to compute without explicitly
finding the points on a model for Af . Thus we will focus on giving evidence
for Conjecture 3.2 in the case when L(f, 1) 6= 0.

5 Modular Symbols

In this section we describe how modular symbols are related to homology
of modular curves, and illustrate how to compute with modular symbols in
Magma. We also discuss computing decomposition of modular symbols spaces
and, for efficiency reasons, computing in the +1 quotient.

Let N be a positive integer. The integral homology H1(X0(N),Z) of the
modular curve X0(N) is a free abelian group of rank equal to the genus of
X0(N). The Hecke algebra T = Z[T1, T2, T3, . . .] acts on a H1(X0(N),Z) as
a ring of homomorphisms and makes H1(X0(N),Z) into a T-module. This
section is concerned with how to compute with this module using Magma.
Section 12 contains a complete log of all Magma computations given below.

Modular symbols provide a finite computable presentation for the homol-
ogy of X0(N) along with the action of the Hecke algebra T on this homology.
The relative rational homology H1(X0(N),Q, cusps) is the rational homology
of X0(N) relative to the cusps; it is the finitely generated free abelian group
of homology equivalence classes of geodesic paths from α to β, where α and
β lie in P1(Q) = Q∪{∞}. A finite presentation for H1(X0(N),Q, cusps) can
be found in [23]. For simplicity, we typically compute H1(X0(N),Q, cusps)
first, then find H1(X0(N),Z) inside H1(X0(N),Q, cusps) if it is needed.
By definition, We now illustrate how Magma can compute a basis for
H1(X0(N),Q, cusps), and, given arbitrary α and β in P1(Q), find an equiva-
lent linear combination of basis elements.

M := ModularSymbols(389) ;
BASIS(M ) ;

The output of BASIS(M ) begins with the symbol {−1/337, 0}. Figure 2 on
page 10 illustrates how the expression {−1/337, 0} represents the relative
rational homology class determined by a geodesic path from −1/337 to 0 in
the upper half plane. The cusps determined by −1/337 and 0 are equivalent
by an element of Γ0(389), so the image of the geodesic path in the 32 holed
torus X0(389)(C) is a closed loop.
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Fig. 2. The Modular Symbol {−1/337, 0}

The following Magma code illustrates how to find the image in the rel-
ative homology of an arbitrary path between cusps. The extra < and > are
needed because we are considering modular symbols of weight k = 2; in gen-
eral there is a coefficient which is a homogenous polynomial of degree k − 2,
which is the first argument to the coercion. The CUSPS()| part of the expres-
sion is needed so that the sequence is a sequence of cusps (this is not required
if both cusps are rational numbers).

M ! <1, [CUSPS() | −1/337, INFINITY()] > ;

For more about computing with modular symbols, see [11, 12, 23, 37, 35].
Precise relationships between H1(X0(N),Q) and S2(Γ0(N)), along with

some linear algebra, make it possible for us to compute a basis of S2(Γ0(N))
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from knowledge about H1(X0(N),Q) as a T-module. The following code,
which computes a basis for S2(Γ0(389)), computes H1(X0(389),Q) and uses
it to deduce the basis.

S := CUSPFORMS(389) ;
SETPRECISION(S , 40) ;
BASIS(S) ;

The SETPRECISION command sets the output precision for q-expansions. The
computed basis consists of q-expansions with coefficients in Z.

Using NEWFORMDECOMPOSITION, we find the submodules of H1(X0(389),Q)
that correspond to Galois-conjugacy classes of newforms. These in turn cor-
respond to the modular abelian varieties Af attached to newforms. Magma

excels at dense linear algebra over Q and is highly optimized for computing
these decompositions. The following commands compute a decomposition of
the new subspace of H1(X0(389),Q) corresponding to newforms.

M := ModularSymbols(389) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
NEWFORMDECOMPOSITION(N ) ;

Since 389 is prime, the NEWSUBSPACE command is not necessary since every-
thing is automatically new (there are no nonzero cusp forms of level 1 and
weight 2). The decomposition consists of five factors of dimensions 2, 4, 6, 12,
and 40; these correspond to newforms defined over fields of degrees 1, 2, 3, 6,
and 20, respectively, which in turn correspond to abelian varieties over Q of
dimensions 1, 2, 3, 6, and 20, respectively.

Remark 3. When information about the powers of 2 appearing in Conjec-
ture 3.2 is not needed, we can instead do all computations in the “+1 quotient”
of the space of modular symbols, which has half the dimension.

M := ModularSymbols(389, 2,+1) ; // the plus one quotient

6 Visibility Theory

Mazur introduced the notion of visibility to unify diverse ideas for constructing
elements of Shafarevich-Tate groups. In this section we define what it means
for an element of the Shafarevich-Tate group to be visible, state a theorem
that allows us to compute pieces of this visible subgroup in some cases, and
illustrate the theorem with a 20 dimensional abelian variety of level 389.

Suppose i : A → J is an injective morphism of abelian varieties over Q.
Then the visible subgroup of X(A) is the kernel of the induced map X(A)→
X(J).

Our interest in visibility in the present paper is that it allows us to obtain
a provable divisor of #X(A), which is useful in giving evidence for Conjec-
ture 3.2. The following theorem is proved in [3, Thm. 3.1] for abelian varieties
over number fields.
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Theorem 6.1 Let A and B be abelian subvarieties of an abelian variety J
over Q such that A(Q)∩B(Q) is finite. (Note that J need not be a Jacobian.)
Let N be an integer divisible by the residue characteristics of primes of bad
reduction for B (so if A and B are modular then N is the level). Suppose p
is an odd prime and that

p - N ·#(J/B)(Q)tor ·#B(Q)tor ·
∏

p

cA,p · cB,p,

where cA,p = #ΦA,p(Fp) (resp., cB,p) is the Tamagawa number of A (resp.,
B) at p. Suppose furthermore that B(Q)[p] ⊂ A(Q), where both are viewed as
subgroups of J(Q). Then there is a natural map

ϕ : B(Q)/pB(Q)→X(A)[p]

such that
dimFp

ker(ϕ) ≤ dimQ A(Q)⊗Q.

In particular, if A has Mordell-Weil rank 0, then ϕ is injective.

Let A be the 20 dimensional quotient of J0(389) attached to a newform
and B the elliptic curve quotient of J0(389). We use Magma to verify the
hypothesis of Theorem 6.1 for J = A∨+B∨ ⊂ J0(389) with p = 5, and hence
deduce that B(Q)/5B(Q) = (Z/5Z)× (Z/5Z) injects into X(A).

Since A and B are quotients of J0(389), we have N = 389. Next we
construct the corresponding spaces A and B of modular symbols.

M := ModularSymbols(389) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
A := D [5] ; B := D [1] ;

The command INTERSECTIONGROUP computes the group structure of the inter-
section of two abelian subvarieties. In our case these are the abelian varieties
A∨ and B∨, and we find that A∨ ∩ B∨ = (Z/20Z) × (Z/20Z). In particu-
lar, B∨[5] = (Z/5Z) × (Z/5Z) is contained in A∨ as abelian subvarieties of
J0(389).

INTERSECTIONGROUP(A, B) ;

Using the TORSIONBOUND command (see Section 9 below), we obtain a multiple
of the order of the torsion subgroup of B (it is 1) and of J/B (it is 97).

TORSIONBOUND(A, 7) ;
TORSIONBOUND(B , 7) ;

Neither torsion subgroup has order divisible by 5, as required to apply The-
orem 6.1. The reason that TORSIONBOUND(A, 7) is a multiple of the order of
the torsion subgroup of J/B is because TORSIONBOUND is an isogeny invariant
and A is isogenous to J/B. (The kernel of the natural map from A to J/B is
A ∩B = (Z/20Z)× (Z/20Z), which is finite.)
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Finally, we compute the Tamagawa numbers of A and B and obtain 97
and 1, respectively (see Section 8 below).

TAMAGAWANUMBER(A, 389) ;
TAMAGAWANUMBER(B , 389) ;

Putting everything together we see that B(Q)/5B(Q) is a subgroup of X(A).
Finally, using the RANK command on the elliptic curve attached to B, we see
that B(Q)/5B(Q) = (Z/5Z)× (Z/5Z).

E := ELLIPTICCURVE(B) ;
RANK(E ) ;

Thus 25 divides #X(A), which gives evidence for Conjecture 3.2, as we will
see in Section 10.

Frequently not all of X(A) can be constructed using Theorem 6.1
and abelian subvarieties B of J0(N). One obstruction to visibility arises
from a canonical homomorphism from A∨ to A. Jacobians of curves are
canonically isomorphic to their dual abelian variety and the composition
A∨ → J0(389)

∨ ∼= J0(389) → A defines a homomorphism from A∨ to A.
According to [3, §5.3], if p does not divide the kernel of A∨ → A, then no el-
ement of order p in X(A) is visible in J0(N). The command MODULARKERNEL

computes the group structure of the kernel of A∨ → A.

G := MODULARKERNEL(A) ;
FACTORIZATION(#G) ;

We find that the modular kernel has order 22452, so any element of X(A∨)
that is visible in J0(389) has order divisible only by 2 and 5.

7 Computing Special Values of Modular L-function

This section is about computing the quotient L(Af , 1)/ΩAf
. We discuss the

Manin constant and the LRATIO command.
Let A = Af for some newform f and assume that L(A, 1) 6= 0. We can

then rewrite Conjecture 3.2 as follows:

L(A, 1)

ΩA

=

∏

cp ·#X(A)

#A(Q)tor ·#A∨(Q)tor
.

We do not know an algorithm, in general, to compute L(A, 1)/ΩA. How-
ever, we can compute cA ·L(A, 1)/ΩA, where cA is the Manin constant, which
is defined in [1, §2.2]. We conjecture that cA = 1, and prove in [1, §2.2.2] that
if f is a newform on Γ0(N) then cA is an integer divisible only by primes whose
square divides 4N . Moreover, if N is odd then 2dimA is the largest power of 2
that can divide cA. See also [14] for results when A has dimension 1, and [9,
§6.1.2] for a proof that cA is an integer when Γ0(N) is replaced by Γ1(N).
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The algorithm described in [9, §2.1.3], [2, §4] and [37, §3.10] to compute
cA · L(A, 1)/ΩA is implemented in Magma via the LRATIO command. For
example, if A is as in Section 6, then cA · L(A, 1)/ΩA = 211 · 52/97.

LRATIO(A, 1)

8 Computing Tamagawa Numbers

In this section we discuss computing Tamagawa numbers when p || N and
some bounds when p2 | N . We also discuss issues that arise in going from the
order of the component group to the Tamagawa number when p || N .

Let A = Af be a modular abelian variety attached to a newform
f ∈ S2(Γ0(N)). When p || N , [10, §2.1] contains a computable formula for
#ΦA,p(Fp) and for cp = #ΦA,p(Fp), where the latter formula is in some cases
only valid up to a bounded power of 2. Also [19] is about how to compute
these orders. Note that the Tamagawa number of A at p is the same as the
Tamagawa number of A∨ at p.

When p2 | N the authors do not know an algorithm to compute cp.
However, in this case Lenstra and Oort proved in [21, Cor. 1.15] that

∑

`6=p

(`− 1)ord`(#ΦA,p(Fp)) ≤ 2 dim(Af ),

so if ` | #ΦA,p(Fp) then ` ≤ 2 · dim(Af ) + 1 or ` = p. (Here ord`(x) denotes
the exponent of the largest power of ` that divides x.)

Using [10], when p || N we know how to compute the order of the com-
ponent group over the algebraic closure, but not its structure as a group.
The command COMPONENTGROUPORDER computes the order of ΦA,p(Fp). The
command TAMAGAWANUMBER computes cp = #ΦA,p(Fp) when the subgroup
of elements of ΦA,p(Fp) fixed by the Galois group has order that does not
depend on the underlying group structure. By computing the Atkin-Lehner
involution on modular symbols, we can decide whether the Galois group acts
trivially or by −1 on ΦA,p(Fp) since the Atkin-Lehner involution acts as the
negative of the canonical generator Frobenius of Gal(Fp/Fp). We can thus
compute #ΦA,p(Fp) when the Galois group acts trivially. When the Galois
group acts nontrivially, ΦA,p(Fp) is the 2-torsion subgroup of ΦA,p(Fp), whose
order we know as long as 4 does not divide #ΦA,p(Fp). It is an open problem
to given an algorithm to compute the group structure of ΦA,p(Fp) or the order
of ΦA,p(Fp) in general.

Section 11 contains an example of an abelian variety of dimension 18 in
which the author is only able to find the Tamagawa number up to a controlled
power of 2.
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9 Computing the Torsion Subgroup

In this section we describe how to compute a divisor and multiple of the order
of the torsion subgroup and explain how knowing a divisor of #Af (Q)tor
yields a divisor of #A∨f (Q)tor.

The papers [2, §3.5–3.6] and [9, §2.1.1] contain discussions of how to
compute a divisor and multiple of the order of the torsion subgroup Af (Q)tor
of Af (Q), and likewise for A∨f (Q)tor. (The multiple of #A∨f (Q)tor is the same
as for Af (Q)tor, and the divisor can be computed as described below.) We
compute the multiple by using that Af (Q)tor injects into Af (Fp) for all p
not dividing 2N , and that #Af (Fp) is fairly easy to compute, though we
do not know how to compute the group structure. We compute the lower
bound by considering the subgroup of elements of J0(N)(Q)tor generated by
rational cusps on X0(N) (see [38, §1.3]), and taking its image in Af (Q)tor
or intersecting its image with A∨f (Q)tor ⊂ J0(N)(Q)tor. Note that there is
no reason for the subgroup generated by rational cusps to equal the rational
subgroup of the group generated by all cusps, and one might want to compute
and work with this possibly larger group instead.

Let A and B be as in Section 6, where we showed that the torsion sub-
group of B is trivial and the order of B(Q) and B∨(Q) divides 97. In Sec-
tion 10, we give an example in which the divisor and multiple of the order of
the torsion subgroup differ by a power of 2.

RATIONALCUSPIDALSUBGROUP(A) ; // subgroup of A(Q)

As mentioned in Section 6, there is a homomorphism A∨ → A of degree
224 · 52, which implies that 97 also divides #A∨f (Q)tor. Thus #Af (Q)tor =
#A∨f (Q)tor = 97.

Remark 4. Computation of a nontrivial divisor of #A∨f (Q)tor directly using
rational cusps is not yet implemented in Magma, though in principle this
should not be difficult to implement.

10 A Divisor and Multiple of the Order of the

Shafarevich-Tate Group

In this section we substitute the values computed above into Conjecture 3.2
to obtain a conjectural divisor and multiple of the order of a Shafarevich-
Tate group. We then remark that the visibility computation of Section 6 gives
evidence for Conjecture 3.2. This example is also discussed in [3, §4.2].

To obtain evidence for Conjecture 3.2, we consider an abelian variety Af

with L(Af , 1) 6= 0 and combine the invariants whose computation is described
above with Conjecture 3.2 to obtain a conjectural divisor and multiple of the
order of X(Af ). We then observe that this divisor and multiple is consistent
with Conjecture 3.2.
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We now combine the computations from the previous sections for the 20
dimensional quotient A of J0(389). Recall that Conjecture 3.2 asserts that

L(A, 1)

ΩA

=

∏

cp ·#X(A)

#A(Q)tor ·#A∨(Q)tor
.

This equation becomes

2n · 211 · 52

97
=

97 ·#X(A)

972

where 0 ≤ n ≤ 20 (using the bound from [1, Thm. 2.7]). Thus the conjecture
asserts that #X(A) = 52 ·211+n, and we have computed a conjectural divisor
52 · 211 and a conjectural multiple 52 · 231 of #X(A). Using visibility theory
from Section 6 we have proved that 52 | #X(A), which provides evidence for
Conjecture 3.2.

11 An Element of the Shafarevich-Tate Group that

Becomes Visible at Higher Level

We finish this paper by considering the 18-dimensional newform quotient A of
J0(551). In this example, the level 551 = 19 ·29 is composite, the Shafarevich-
Tate group is conjecturally nontrivial, and the methods of Section 6 do not
produce nontrivial elements of the Shafarevich-Tate group at level 551.

This example is striking because it is, in some sense, the simplest known
example of “visibility only at a higher level”; more precisely, the methods of
Section 6 do produce a nontrivial element at the rather small level 1102. For
a similar example, see [3, §4.3], where the levels involved are much larger.

We first compute the space of modular symbols corresponding to A:

M := ModularSymbols(551) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
A := D [8] ;

Next we compute a divisor and a multiple of the order of the torsion subgroup
of A(Q) and A∨(Q). Using odd primes p ≤ 7 we obtain the multiple 160, and
using the rational cuspidal subgroup we obtain the divisor 40.

TORSIONBOUND(A, 7) ;
RATIONALCUSPIDALSUBGROUP(A) ;

Since the divisor and multiple are different, we try more finite fields. For
p ≤ 29 the multiple we obtain is still 160; however, for p = 31 the multiple is
80, which is where it appears to stabilize.

TORSIONBOUND(A, 31) ;
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We conclude that 40 | #A(Q)tor | 80 and 5 | #A∨(Q)tor | 80. We know that
5 divides #A∨(Q)tor because, as we will see below, there is a homomorphism
A∨ → A of degree not divisible by 5.

Next we compute the modular kernel, which is of order 244 · 134.

FACTORIZATION(#MODULARKERNEL(A)) ;

The only possible elements of X(A) that we can construct using Theorem 6.1
at level 551 are of order 13.

The level 551 is not prime, so computation of the Tamagawa numbers
involves certain relatively slow algorithms (a minute rather than seconds)
that involve arithmetic in quaternion algebras. Also, in this example, we are
unable to determine the exact power of 2 that divides the Tamagawa number
at 19.

TAMAGAWANUMBER(A, 19) ; // takes over a minute; gives an error
TAMAGAWANUMBER(A, 29) ;

We find that c29 = 40. We also deduce that c19 = 2 or 4 by noting that the
component group over F19 has order 22 · 132 by using the command

COMPONENTGROUPORDER(A, 19) ;

and noting that the Galois generator Frobenius acts as −1 because

ATKINLEHNEROPERATOR(A, 19)[1, 1] ;

returns 1. Finally note that the 2 torsion in any group of order 22 · 132 is a
subgroup of order either 2 or 4.

Next we find that L(A, 1)/ΩA = 2n · 22 · 32/5, with 0 ≤ n ≤ 18, using the
command

LRATIO(A, 1)

and the fact that the Manin constant divides 2dimA (see [1, Thm. 2.7]).
Putting these computations together we find that Conjecture 3.2 asserts

that
2n · 22 · 32

5
=

2m · 40 ·#X(A)

40 · 2r · 5 · 2s
,

where 0 ≤ n ≤ 18, 1 ≤ m ≤ 2, 0 ≤ r ≤ 1, and 0 ≤ s ≤ 4. Solving for #X(A),
we see that Conjecture 3.2 predicts that

#X(A) = 2t · 32

with 2 ≤ t ≤ 24.
Theorem 6.1 does not construct elements of order 2 (yet), so we do not

consider the factor 2t further. As mentioned above, we cannot construct any
elements of X(A) of order 3 using visibility at level 551. We can, however,
consider the images of A in J0(2 · 551) under various natural maps. These
natural maps are the degeneracy maps δ1 and δ2, which correspond to the
maps f(q) 7→ f(q) and f(q) 7→ f(q2) from S2(Γ0(551)) to S2(Γ0(2 · 551)).
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We next compute the space of modular symbols that corresponds to the
sum C = δ1(A)+δ2(A) of the images of A at level 2·551 by the two degeneracy
maps δ1 and δ2.

M := ModularSymbols(2∗551, 2) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
M551 := ModularSymbols(M , 551) ;
N551 := NEWSUBSPACE(CUSPIDALSUBSPACE(M551)) ;
D551 := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N551)) ;
A551 := D551[#D551] ;
C := M !! A551 ; // sum of images under degeneracy maps

The sum C contains the 3-torsion of the rank 2 elliptic curve B defined by
y2 + xy = x3 + x2 − 29x+ 61, as the following computation shows.

INTERSECTIONGROUP(C , D [1]) ;
B := ELLIPTICCURVE(D [1]) ; B ;

It follows that B[3] is contained in C. The following computation shows that
the Tamagawa numbers of B are 2, 2, and 1 and B(Q) ≡ Z× Z:

TAMAGAWANUMBER(B , 2) ;
TAMAGAWANUMBER(B , 19) ;
TAMAGAWANUMBER(B , 29) ;
MORDELLWEILGROUP(B) ;

Theorem 6.1 implies that B(Q)/3B(Q) = Z/3Z × Z/3Z is a subgroup of
X(C). By [26, §2], there is an isogeny ϕ from A × A to C whose kernel is
isomorphic to the intersection of A with the Shimura subgroup of J0(551). The
Shimura subgroup Σ is a subgroup of J0(N) that, according to [26, Prop. 2],
is annihilated by Tp − (p + 1) for all primes p - 551. Using Magma we find
that 3 - det(T3|A− 4) = 12625812402998886400, so the degree of ϕ is coprime
to 3.

T 3 := HECKEOPERATOR(A, 3) ;
d := DETERMINANT(T 3−4) ;
VALUATION(d , 3) ;

Since 3 | #X(C) it follows that 3 | #X(A). By [2, §5.3] the power of 3
that divides #X(A) is even, so 9 | #X(A), as predicted by the Birch and
Swinnerton-Dyer conjecture.

12 Complete Magma Log

This is a complete log of using MAGMA V2.10-6 to do all of the computations
discussed in this paper. The output has been edited slightly to save space.
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> M := ModularSymbols(389);

> Basis(M);

[

{-1/337, 0},{-1/237, 0},{-1/342, 0},{-1/266, 0},{-1/170, 0},

{-1/272, 0},{-1/333, 0},{-1/355, 0},{-1/270, 0},{-1/301, 0},

{-1/293, 0},{-1/87, 0},{-1/306, 0},{-1/205, 0},{-1/209, 0},

{-1/277, 0},{-1/383, 0},{-1/142, 0},{-1/178, 0},{-1/116, 0},

{-1/61, 0},{-1/127, 0},{-1/235, 0},{-1/240, 0},{-1/93, 0},

{-1/121, 0},{-1/221, 0},{-1/199, 0},{-1/213, 0},{-1/370, 0},

{-1/282, 0},{-1/379, 0},{-1/100, 0},{-1/286, 0},{-1/165, 0},

{-1/158, 0},{-1/376, 0},{-1/228, 0},{-1/125, 0},{-1/72, 0},

{-1/374, 0},{-1/140, 0},{-1/81, 0},{-1/186, 0},{-1/53, 0},

{-1/37, 0},{-1/175, 0},{-1/108, 0},{-1/183, 0},{-1/316, 0},

{-1/363, 0},{-1/250, 0},{-1/359, 0},{-1/162, 0},{-1/106, 0},

{-1/350, 0},{-1/216, 0},{-1/243, 0},{-1/111, 0},{-1/324, 0},

{-1/311, 0},{-1/97, 0},{-1/259, 0},{-1/194, 0},{oo, 0}

]

> M ! <1, [Cusps() | -1/337, Infinity()]>;

{-1/337, 0} + -1*{oo, 0}

> S := CuspForms(389);

> SetPrecision(S,40);

> Basis(S);

[

q + 474049571*q^32 + 480335856*q^33 + 984946270*q^34 +

1338756227*q^35 + 1246938503*q^36 - 29119245*q^37 +

1504020580*q^38 - 2463550751*q^39 + O(q^40),

...

]

> M := ModularSymbols(389);

> N := NewSubspace(CuspidalSubspace(M));

> NewformDecomposition(N);

[

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 2 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 4 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 6 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 12 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 40 over Rational Field ]

> M := ModularSymbols(389,2,+1);

> M := ModularSymbols(389);

> N := NewSubspace(CuspidalSubspace(M));

> D := NewformDecomposition(N);
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> A := D[5]; B := D[1];

> IntersectionGroup(A,B);

Abelian Group isomorphic to Z/20 + Z/20

> TorsionBound(A,7);

97

> TorsionBound(B,7);

1

> TamagawaNumber(A,389);

97

> TamagawaNumber(B,389);

1

> E := EllipticCurve(B);

> Rank(E);

2

> G := ModularKernel(A);

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 +

Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 +

Z/2 + Z/40 + Z/40

> Factorization(#G);

[ <2, 24>, <5, 2> ]

> LRatio(A,1);

51200/97

> RationalCuspidalSubgroup(A);

Abelian Group isomorphic to Z/97

> M := ModularSymbols(551);

> N := NewSubspace(CuspidalSubspace(M));

> D := NewformDecomposition(N);

> A := D[8];

> TorsionBound(A,7);

160

> RationalCuspidalSubgroup(A);

Abelian Group isomorphic to Z/2 + Z/20

> TorsionBound(A,31);

80

> Factorization(#ModularKernel(A));

[ <2, 44>, <13, 4> ]

> TamagawaNumber(A,19);

No algorithm known to compute the Tamagawa number at 2. Use

ComponentGroupOrder instead.

> TamagawaNumber(A,29);

40

> ComponentGroupOrder(A,19);

676

> AtkinLehnerOperator(A,19)[1,1];

1

> LRatio(A,1);

36/5

> M := ModularSymbols(2*551,2);

> N := NewSubspace(CuspidalSubspace(M));
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> D := SortDecomposition(NewformDecomposition(N));

> M551 := ModularSymbols(M,551);

> N551 := NewSubspace(CuspidalSubspace(M551));

> D551 := NewformDecomposition(N551);

> A551 := D551[#D551];

> C := M!!A551;

> IntersectionGroup(C,D[1]);

Abelian Group isomorphic to Z/32 + Z/32

> B := EllipticCurve(D[1]); B;

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 29*x + 61

> TamagawaNumber(B,2);

2

> TamagawaNumber(B,19);

2

> TamagawaNumber(B,29);

1

> MordellWeilGroup(B);

Abelian Group isomorphic to Z + Z

> MordellWeilGroup(B);

Abelian Group isomorphic to Z + Z

> T3 := HeckeOperator(A,3);

> d := Determinant(T3-4);

> Valuation(d,3);

0
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28. K.A. Ribet and W.A. Stein. Lectures on Serre’s conjectures. In Arithmetic
algebraic geometry (Park City, UT, 1999), volume 9 of IAS/Park City Math.
Ser., pages 143–232. Amer. Math. Soc., Providence, RI, 2001.

29. J-P. Serre. Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke
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