
Pure and Applied Mathematics Quarterly
Volume 2, Number 2
(Special Issue: In honor of
John H. Coates, Part 2 of 2 )
617—636, 2006

The Manin Constant

Amod Agashe, Kenneth Ribet and William A. Stein

Abstract: The Manin constant of an elliptic curve is an invariant that
arises in connection with the conjecture of Birch and Swinnerton-Dyer. One
conjectures that this constant is 1; it is known to be an integer. After
surveying what is known about the Manin constant, we establish a new
sufficient condition that ensures that the Manin constant is an odd integer.
Next, we generalize the notion of the Manin constant to certain abelian
variety quotients of the Jacobians of modular curves; these quotients are
attached to ideals of Hecke algebras. We also generalize many of the results
for elliptic curves to quotients of the new part of J0(N), and conjecture
that the generalized Manin constant is 1 for newform quotients. Finally an
appendix by John Cremona discusses computation of the Manin constant
for all elliptic curves of conductor up to 130000.

1. Introduction

Let E be an elliptic curve over Q, and and let N be the conductor of E.
By [BCDT01], we may view E as a quotient of the modular Jacobian J0(N).
After possibly replacing E by an isogenous curve, we may assume that the kernel
of the map J0(N) → E is connected, i.e., that E is an optimal quotient of J0(N).

Let ω be the unique (up to sign) rational 1-form on a minimal Weierstrass
model of E over Z that restricts to a nowhere-vanishing 1-form on the smooth
locus. The pullback of ω is a rational multiple of the differential associated to
the normalized new cuspidal eigenform fE ∈ S2(Γ0(N)) associated to E. The
Manin constant cE of is E is the absolute value of this rational multiple. The
Manin constant plays a role in the conjecture of Birch and Swinnerton-Dyer (see,
e.g., [GZ86, p. 310]) and in work on modular parametrizations (see [Ste89, SW04,
Vat05]). It is known that the Manin constant is an integer; this fact is important
to Cremona’s computations of elliptic curves (see [Cre97, pg. 45]), and algorithms
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for computing special values of elliptic curve L-functions. Manin conjectured that
cE = 1. In Section 2, we summarize known results about cE , and give the new
result that 2 - cE if 2 is not a congruence prime and 4 - N .

In Section 3, we generalize the definition of the Manin constant and many
of the results mentioned so far to optimal quotients of J0(N) and J1(N) of any
dimension associated to ideals of the Hecke algebra. The generalized Manin
constant comes up naturally in studying the conjecture of Birch and Swinnerton-
Dyer for such quotients (see [AS05, §4]), which is our motivation for studying
the generalization. We state what we can prove about the generalized Manin
constant, and make a conjecture that the constant is also 1 for quotients
associated to newforms. The proofs of the theorems stated in Section 3 are in
Section 4. Section 5 is an appendix written by J. Cremona about computational
verification that the Manin constant is 1 for many elliptic curves.

Acknowledgments. The authors are grateful to A. Abbes, K. Buzzard,
R. Coleman, B. Conrad, B. Edixhoven, A. Joyce, L. Merel, and R. Taylor for
discussions and advice regarding this paper. The authors wish to thank the
referee for helpful comments and suggestions.

2. Optimal Elliptic Curve Quotients

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of order N .
The Hecke algebra T of level N is the subring of the ring of endomorphisms
of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for all n ≥ 1.
Suppose f is a newform of weight 2 for Γ0(N) with integer Fourier coefficients,
and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .] that sends Tn
to an(f). Then the quotient E = J0(N)/IfJ0(N) is an elliptic curve over Q. We
call E the optimal quotient associated to f . Composing the embedding X0(N) ↪→
J0(N) that sends x to (∞) − (x) with the quotient map J0(N) → E, we obtain
a surjective morphism of curves φE : X0(N) → E. The modular degree mE of E
is the degree of φE.

Let EZ denote the Néron model of E over Z. A general reference for
Néron models is [BLR90]; for the special case of elliptic curves, see, e.g., [Sil92,
App. C, §15], and [Sil94]. Let ω be a generator for the rank 1 Z-module of
invariant differential 1-forms on EZ. The pullback of ω to X0(N) is a differential
φ∗Eω on X0(N). The newform f defines another differential 2πif(z)dz = f(q)dq/q
on X0(N). Because the action of Hecke operators is compatible with the map
X0(N) → E, the differential φ∗Eω is a T-eigenvector with the same eigenvalues
as f(z), so by [AL70] we have φ∗Eω = c · 2πif(z)dz for some c ∈ Q∗ (see also
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[Man72, §5]). The Manin constant cE of E is the absolute value of the rational
number c defined above.

The following conjecture is implicit in [Man72, §5].

Conjecture 2.1 (Manin). We have cE = 1.

Significant progress has been made towards this conjecture. In the following
theorems, p denotes a prime and N denotes the conductor of E.

Theorem 2.2 (Edixhoven [Edi91, Prop. 2]). The constant cE is an integer.

Edixhoven proved this using an integral q-expansion map, whose existence
and properties follow from results in [KM85]. We generalize his theorem to
quotients of arbitrary dimension in Theorem 3.4.

Theorem 2.3 (Mazur, [Maz78, Cor. 4.1]). If p | cE, then p2 | 4N .

Mazur proved this by applying theorems of Raynaud about exactness
of sequences of differentials, then using the “q-expansion principle” in
characteristic p and a property of the Atkin-Lehner involution. We generalize
Mazur’s theorem in Corollary 3.7.

The following two results refine the above results at p = 2.

Theorem 2.4 (Raynaud [AU96, Prop. 3.1]). If 4 | cE, then 4 | N .

Theorem 2.5 (Abbes-Ullmo [AU96, Thm. A]). If p | cE, then p | N .

We generalize Theorem 2.4 in Theorem 3.10. However, it is not clear if
Theorem 2.5 generalizes to dimension greater than 1. It would be fantastic if the
theorem could be generalized. It would imply that the Manin constant is 1 for
newform quotients Af of J0(N), with N odd and square free, which be useful for
computations regarding the conjecture of Birch and Swinnerton-Dyer.

B. Edixhoven also has unpublished results (see [Edi89]) which assert that the
only primes that can divide cE are 2, 3, 5, and 7; he also gives bounds that are
independent of E on the valuations of cE at 2, 3, 5, and 7. His arguments rely
on the construction of certain stable integral models for X0(p2).

See Section 5 for more details about the following computation:

Theorem 2.6 (Cremona). If E is an optimal elliptic curve over Q with conductor
at most 130000, then cE = 1.

To the above list of theorems we add the following:

Theorem 2.7. If p | cE then p2 | N or p | mE.
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This theorem is a special case of Theorem 3.11 below. In view of Theorem 2.3,
our new contribution is that if mE is odd and ord2(N) = 1, then cE is odd. This
hypothesis is very stringent—of the optimal elliptic curve quotients of conductor
≤ 120000, only 56 of them satisfy the hypothesis.

3. Quotients of arbitrary dimension

For N ≥ 4, let Γ a subgroup of Γ1(N) that contains Γ0(N), let X be the
modular curve over Q associated to Γ, and let J be the Jacobian of X. Let I be
a saturated ideal of the corresponding Hecke algebra T, so T/I is torsion free.
Then A = AI = J/IJ is an optimal quotient of J .

For a newform f =
∑
an(f)qn ∈ S2(Γ), consider the ring homomorphism

T → Z[. . . , an(f), . . .] that sends Tn to an(f). The kernel If ⊂ T of this
homomorphism is a saturated prime ideal of T. The newform quotient Af
associated to f is the quotient J/IfJ . Shimura introduced Af in [Shi73] where
he proved that Af is an abelian variety over Q of dimension equal to the degree
of the field Q(. . . , an(f), . . .). He also observed that there is a natural map
T → End(Af ) with kernel If .

For the rest of this section, fix a quotient A associated to a saturated ideal I
of T; note that A may or may not be attached to a newform.

3.1. Generalization to quotients of arbitrary dimension. If R is a subring
of C, let S2(R) = S2(Γ;R) denote the T-submodule of S2(Γ;C) of modular forms
whose Fourier expansions have all coefficients in R.

Lemma 3.1. The Hecke operators leave S2(R) stable.

Proof. If Γ = Γ0(N), then by the explicit description of the Hecke operators
on Fourier expansions (e.g., see [DI95, Prop. 3.4.3]), it is clear that the Hecke
operators leave S2(R) stable. For a general Γ, by [DI95, (12.4.1)], one just has to
check in addition that the diamond operators also leave S2(R) stable, which in
turn follows from [DI95, Prop. 12.3.11]. ¤
Lemma 3.2. We have S2(R) ∼= S2(Z)⊗R.

Proof. This is [DI95, Thm. 12.3.2] when our spaces S2(R) and S2(Z) are replaced
by their algebraic analogues (see [DI95, pg. 111]). Our spaces and their algebraic
analogues are identified by the natural q-expansion maps according to [DI95,
Thm. 12.3.7]. ¤

If B is an abelian variety over Q and S is a Dedekind domain with field of
fractions Q, then we denote by BS the Néron model of B over S; also, for ease
of notation, we will abbreviate H0(BS ,Ω1

BS/S
) by H0(BS ,Ω1

B/S).
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The inclusion X ↪→ J that sends the cusp ∞ to 0 induces an isomorphism

H0(X,Ω1
X/Q) ∼= H0(J,Ω1

J/Q).

Let φ2 be the optimal quotient map J → A. Then φ∗2 induces an inclusion
ψ : H0(AZ,Ω1

A/Z) ↪→ H0(J,Ω1
J/Q)[I] ∼= S2(Q)[I], and we have the following

commutative diagram:

H0(A,Ω1
A/Q) Â Ä ∼= // H0(J,Ω1

J/Q)[I]
∼= // S2(Q)[I]

H0(AZ,Ω1
A/Z)

?Â

OO

% ¦ ψ

33gggggggggggggggggggggggggg
S2(Z)[I]

?Â

OO

Definition 3.3. The Manin constant of A is the (lattice) index

cA = [S2(Z)[I] : ψ(H0(AZ,Ω1
A/Z))].

Theorem 3.4 below asserts that cA ∈ Z, so we may also consider the Manin
module of A, which is the quotient M = S2(Z)[I]/ψ(H0(AZ,Ω1

A/Z)), and the
Manin ideal of A, which is the annihilator of M in T.

If A is an elliptic curve, then cA is the usual Manin constant. The
constant c as defined above was also considered by Gross [Gro82, 2.5, p.222] and
Lang [Lan91, III.5, p.95]. The constant cA was defined for the winding quotient
in [Aga99], where it was called the generalized Manin constant. A Manin constant
is defined in the context of Q-curves in [GL01].

3.2. Motivation: connection with the conjecture of Birch and
Swinnerton-Dyer. On a Néron model, the global differentials are the
same as the invariant differentials, so H0(AZ,Ω1

A/Z) is a free Z-module of
rank d = dim(A). The real measure ΩA of A is the measure of A(R) with respect
to the volume given by a generator of

∧dH0(AZ,Ω1
A/Z) ' H0(AZ,Ωd

AZ/Z
).

This quantity is of interest because it appears in the conjecture of Birch and
Swinnerton-Dyer, which expresses the ratio L(r)(A, 1)/ΩA, in terms of arithmetic
invariants of A, where r = ords=1 L(A, s) (see, e.g., [Lan91, Chap. III, §5] and
[AS05, §2.3]).

If we take a Z-basis of S2(Z)[I] and take the inverse image via the top chain of
arrows in the commutative diagram above, we get a Q-basis of H0(A,Ω1

A/Q); let
Ω′A denote the volume of A(R) with respect to the wedge product of the elements
in the latter basis (this is independent of the choice of the former basis). In doing
calculations or proving formulas regarding the ratio in the Birch and Swinnerton-
Dyer conjecture mentioned above, it is easier to work with the volume Ω′A instead
of working with ΩA. If one works with the easier-to-compute volume Ω′A instead
of ΩA, it is necessary to obtain information about cA in order to make conclusions
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regarding the conjecture of Birch and Swinnerton-Dyer, since ΩA = cA ·Ω′A. For
example, see [AS05, §4.2] when r = 0 and [GZ86, p. 310–311] when r = 1;
in each case, one gets a formula for computing the Birch and Swinnerton-Dyer
conjectural order of the Shafarevich-Tate group, and the formula contains the
Manin constant (see, e.g., [Mc91]).

The method of Section 5 for verifying that cA = 1 for specific elliptic
curves is of little use when applied to general abelian varieties, since there is
no simple analogue of the minimal Weierstrass model (but see [GL01] for Q-
curves). This emphasizes the need for general theorems regarding the Manin
constant of quotients of dimension bigger than one.

3.3. Results and a conjecture. We start by giving several results regarding
the Manin constant for quotients of arbitrary dimension. The proofs of most of
the theorems are given in Section 4.

Let Γ be a subgroup of Γ0(N) that contains Γ1(N). We have the following
generalization of Edixhoven’s Theorem 2.2.

Theorem 3.4. The Manin constant cA is an integer. (In the notation of
Section 3.1 we even have that ψ(H0(AZ,Ω1

A/Z)) ⊆ S2(Z)[I].)

Proof. Let J = Jac(XΓ) and J ′ = J1(N). Suppose A is an optimal quotient of J .
We have natural maps H0(J ′Z,Ω

1
J ′/Z) ↪→ H0(J ′,Ω1

J ′/Q)
∼=→ S2(Γ1(N);Q); from

the proof of Lemma 6.1.6 of [CES03], the image of the composite is contained
in S2(Γ1(N);Z). The maps J ′ → J → A induce a chain of inclusions

H0(AZ,Ω1
A/Z) ↪→ H0(JZ,Ω1

J/Z) ↪→ H0(J ′Z,Ω
1
J ′/Z) ↪→ S2(Γ1(N);Z) ↪→ Z[[q]].

Combining this chain of inclusions with commutativity of the diagram

S2(Γ1(N))
F -exp

&&LLLLLLLLLL

S2(Γ)

f(q)7→f(q)
99rrrrrrrrrr F -exp // C[[q]],

where F -exp is the Fourier expansion map, we see that the image of H0(AZ,Ω1
A/Z)

lies in S2(Z)[I], as claimed. ¤

For the rest of the paper, we take Γ = Γ0(N). For each prime ` | N with
ord`(N) = 1, let W` be the `th Atkin-Lehner operator. Let J = J0(N) and
A = AI = J/IJ be an optimal quotient of J attached to a saturated ideal I. If `
is a prime, then as usual, Z(`) will denote the localization of Z at `.
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Theorem 3.5. Suppose that ` is an odd prime such that `2 - N , and that if ` | N ,
then A∨ ⊂ J is stable under W`. Then ` | cA if and only if ` | N and S2(Z(`))[I]
is not stable under the action of W`.

We will prove this theorem in Section 4.2.

Remark 3.6. The condition that S2(Z(`))[I] is stable under W` can be verified
using standard algorithms. Thus in light of Theorem 3.5, if A is stable under all
Atkin-Lehner operators and N is square free, then one can compute the set of
odd primes that divide cA. It would be interesting to refine the arguments of this
paper to find an algorithm to compute cA exactly.

Let Jold denote the abelian subvariety of J generated by the images of the
degeneracy maps from levels that properly divideN (see, e.g., [Maz78, §2(b)]) and
let Jnew denote the quotient of J by Jold. A new quotient is a quotient J → A
that factors through the map J → Jnew. The following corollary generalizes
Mazur’s Theorem 2.3:

Corollary 3.7. If A = Af is an optimal newform quotient of J0(N) and ` | cA

is a prime, then ` = 2 or `2 | N .

Proof. Since f is a newform, W` acts as either 1 or −1 on A hence on S2(Z(`))[I].
Thus S2(Z(`))[I] is W`-stable. ¤
Corollary 3.8. If A = J0(N)new is the new subvariety of J0(N) and ` | cA is
a prime, then ` = 2 or `2 | N . (In particular, if N is prime then the Manin
constant of J0(N) is a power of 2, since A = J0(N)[I] for I = 0.)

Proof. We have W` = −T` on A (e.g., see the end of [DI95, §6.3]). Also the new
subspace S2(Z)new of S2(Γ0(N)) is T`-stable. ¤
Remark 3.9. If A = J0(33), then

W3 =




1 0 0
1
3

1
3 −4

3
1
3 −2

3 −1
3




with respect to the basis

f1 = q − q5 − 2q6 + 2q7 + · · · ,
f2 = q2 − q4 − q5 − q6 + 2q7 + · · · ,
f3 = q3 − 2q6 + · · ·

for S2(Z). Thus W3 does not preserve S2(Z(3)). In fact, the Manin constant of
J0(33) is not 1 in this case (see Section 3.4).

The hypothesis of Theorem 3.5 sometimes holds for non-new A. For example,
take J = J0(33) and ` = 3. Then W3 acts as an endomorphism of J , and
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a computation shows that the characteristic polynomial of W3 on S2(33)new is
x − 1 and on S2(33)old is (x − 1)(x + 1), where S2(33)old is the old subspace of
S2(33). Consider the optimal elliptic curve quotient A = J/(W3 + 1)J , which
is isogenous to J0(11). Then A is an optimal old quotient of J , and W3 acts
as −1 on A, so W3 preserves the corresponding spaces of modular forms. Thus
Theorem 3.5 implies that 3 - cA.

The following theorem generalizes Raynaud’s Theorem 2.4 (see also [GL01]
for generalizations to Q-curves).

Theorem 3.10. If f ∈ S2(Γ0(N)) is a newform and ` is a prime such that
`2 - N , then ord`(cAf

) ≤ dimAf .

Note that in light of Theorem 3.5, this theorem gives new information only
at ` = 2, when 2 ‖ N . We prove the theorem in Section 4.4

Let π denote the natural quotient map J → A. When we compose π with
its dual A∨ → J∨ (identifying J∨ with J using the inverse of the principal
polarization of J), we get an isogeny φ : A∨ → A. The modular exponent mA of
A is the exponent of the group ker(φ). When A is an elliptic curve, the modular
exponent is just the modular degree of A (see, e.g., [AU96, p. 278]).

Theorem 3.11. If f ∈ S2(Γ0(N)) is a newform and ` | cAf
is a prime, then

`2 | N or ` | mA.

Again, in view of Corollary 3.7, this theorem gives new information only at
` = 2, when ord2(N) ≤ 1. We prove the theorem in Section 4.3.

The theorems above suggest that the Manin constant is 1 for quotients
associated to newforms of square-free level. In the case when the level is not
square free, computations of [FpS+01] involving Jacobians of genus 2 curves that
are quotients of J0(N)new show that cA = 1 for 28 two-dimensional newform
quotients. These include quotients having the following non-square-free levels:

32 · 7, 32 · 13, 53, 33 · 5, 3 · 72, 52 · 7, 22 · 47, 33 · 7.

The above observations suggest the following conjecture, which generalizes
Conjecture 2.1:

Conjecture 3.12. If f is a newform on Γ0(N) then cAf
= 1.

It is plausible that cAf
= 1 for any newform on any congruence subgroup

between Γ0(N) and Γ1(N). However, we do not have enough data to justify
making a conjecture in this context.
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3.4. Examples of nontrivial Manin constants. We present two sets of
examples in which the Manin constant is not 1.

Using results of [Kil02], Adam Joyce [Joy05] proves that there is a new
optimal quotient of J0(431) with Manin constant 2. Joyce’s methods also produce
examples with Manin constant 2 at levels 503 and 2089. For the convenience of
the reader, we breifly discuss his example at level 431. There are exactly two
elliptic curves E1 and E2 of prime conductor 431, and E1∩E2 = 0 as subvarieties
of J0(431), so A = E1 × E2 is an optimal quotient of J0(431) attached to a
saturated ideal I. If fi is the newform corresponding to Ei, then one finds that
f1 ≡ f2 (mod 2), and so g = (f1 − f2)/2 ∈ S2(Z)[I]. However g is not in the
image of H0(AZ,Ω1

A/Z). Thus the Manin constant of A is divisible by 2.

As another class of examples, one finds by computation for each prime ` ≤ 100
that W` does not leave S2(Γ0(11`);Z(`)) stable. Theorem 3.5 (with I = 0) then
implies that the Manin constant of J0(11`) is divisible by ` for these values of `.

4. Proofs of some of the Theorems

In Sections 4.2, 4.3, and 4.4, we prove Theorems 3.5, 3.11, and 3.10
respectively. In Section 4.1, we state two lemmas that will be used in these
proofs. The proofs of the theorems may be read independently of each other,
after reading Section 4.1.

4.1. Two lemmas. The following lemma is a standard fact; we state it as a
lemma merely because it is used several times.

Lemma 4.1. Suppose i : A ↪→ B is an injective homomorphism of torsion-free
abelian groups. If p is a prime, then B/i(A) has no nonzero p-torsion if and only
if the induced map A⊗ Fp → B ⊗ Fp is injective.

Proof. Let Q denote the quotient B/i(A). Tensor the exact sequence 0 → A →
B → Q → 0 with Fp. The associated long exact sequences reveal that ker(A ⊗
Fp → B ⊗ Fp) ∼= Qtor[p]. ¤

Suppose ` is a prime such that `2 - N . In what follows, we will be stating
some standard facts taken from [Maz78, §2(e)] (which in turn relies on [DR73]).
Let XZ(`)

be the minimal regular resolution of the coarse moduli scheme associated
to Γ0(N) (as in [DR73, § VI.6.9]) over Z(`), and let ΩX/Z(`)

denote the relative
dualizing sheaf of XZ(`)

over Z(`). The Tate curve over Z(`)[[q]] gives rise to a
morphism from Spec Z(`)[[q]] to the smooth locus of XZ(`)

→ Spec Z(`). Since the
module of completed Kahler differentials for Z(`)[[q]] over Z(`) is free of rank 1 on
the basis dq, we obtain a map q-exp : H0(XZ(`)

,ΩX/Z(`)
) → Z(`)[[q]].
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The natural morphism Pic0
X/Z(`)

→ JZ(`)
identifies Pic0

X/Z(`)
with the identity

component of JZ(`)
(see, e.g., [BLR90, §9.4–9.5]). Passing to tangent spaces along

the identity section over Z(`), we obtain an isomorphism H1(XZ(`)
,OXZ(`)

) ∼=
Tan(JZ(`)

). Using Grothendieck duality, one gets an isomorphism Cot(JZ(`)
)
∼=→

H0(XZ(`)
,ΩX/Z(`)

), where Cot(JZ(`)
) is the cotangent space at the identity section.

On the Néron model JZ(`)
, the group of global differentials is the same as the group

of invariant differentials, which in turn is naturally isomorphic to Cot(JZ(`)
). Thus

we obtain an isomorphism H0(JZ(`)
,Ω1

J/Z(`)
) ∼= H0(XZ(`)

,ΩX/Z(`)
).

Let G be a T-module equipped with an injection G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) of

T-modules such that G is annihilated by I. If ` | N , assume moreover that G is a
T[W`]-module and that the inclusion in the previous sentence is a homomorphism
of T[W`]-modules. As a typical example, G = H0(AZ(`)

,Ω1
A/Z(`)

), with the

injection π∗ : H0(AZ(`)
,Ω1

A/Z(`)
) ↪→ H0(JZ(`)

,Ω1
J/Z(`)

). Let Φ be the composition
of the inclusions

(1) G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) ∼= H0(XZ(`)

,ΩX/Z(`)
)

q-exp−−−−→ Z(`)[[q]],

and let ψ′ be the composition of

G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
)[I] ↪→ S2(Z(`))[I],

where the last inclusion follows from a “local” version of Theorem 3.4. The maps
Φ and ψ′ are related by the commutative diagram

(2) S2(Z(`))[I]
F -exp

&&MMMMMMMMMM

G

ψ′
::vvvvvvvvvv Φ // Z(`)[[q]],

where F -exp is the Fourier expansion map (at infinity), as before.

We say that a subgroup B of an abelian group C is saturated (in C) if the
quotient C/B is torsion free.

Lemma 4.2. Recall that ` is a prime such that `2 - N . If ` divides N , suppose
that S2(Z(`))[I] is stable under the action of W`; if ` = 2 assume moreover that
W` acts as a scalar on A. Consider the map

G⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`,

which is obtained by tensoring the inclusion G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) with F`. If

this map is injective, then the image of G under the map Φ of (2) is saturated
in Z(`)[[q]].
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Proof. By Lemma 4.1, it suffices to prove that the map

Φ` : G⊗ F` → Z(`)[[q]]⊗ F` = F`[[q]]

obtained by tensoring (1) with F` is injective. Let XF`
denote the special fiber

of XZ(`)
and let ΩX/F`

denote the relative dualizing sheaf of XF`
over F`.

First suppose that ` does not divide N . Then XZ(`)
is smooth and proper over

Z(`). Thus the formation of H0(XZ(`)
,ΩXZ(`)

) is compatible with any base change
on Z(`) (such as reduction modulo `). The injectivity of Φ` now follows since by
hypothesis the induced map G⊗ F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗ F` is injective, and

H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F` ∼= H0(XZ(`)

,ΩX/Z(`)
)⊗ F` ∼= H0(XF`

,ΩX/F`
) → F`[[q]]

is injective by the q-expansion principle (which is easy in this setting, since XF`

is a smooth and geometrically connected curve).

Next suppose that ` divides N . First we verify that ker(Φ`) is stable underW`.
Suppose ω ∈ ker(Φ`). Choose ω′ ∈ G such that the image of ω′ in G ⊗ F` is ω,
and let f = ψ′(ω′). Because Φ`(ω) = 0 in F`[[q]], there exists h ∈ Z(`)[[q]] such
that `h = F -exp(f). Let f ′ = f/` ∈ S2(Q); then f ′ is actually in S2(Z(`)) (since
F -exp(f/`) = h ∈ Z(`)[[q]]). Now `f ′ = f is annihilated by every element of I,
hence so is f ′; thus f ′ ∈ S2(Z(`))[I]. By hypothesis, W`(f ′) ∈ S2(Z(`))[I]. Then

Φ(W`ω
′) = F -exp(W`f) = ` · F -exp(W`f

′) ∈ `Z(`)[[q]].

Reducing modulo `, we get Φ`(W`ω) = 0 in F`[[q]]. Thus W`ω ∈ ker(Φ`), which
proves that ker(Φ`) is stable under W`.

Since W` is an involution, and by hypothesis either ` is odd or W` is a scalar,
the space ker(Φ`) breaks up into a direct sum of eigenspaces under W` with
eigenvalues ±1. It suffices to show that if ω ∈ ker(Φ`) is an element of either
eigenspace, then ω = 0. For this, we use a standard argument that goes back to
Mazur (see, e.g., the proof of Prop. 22 in [MR91]); we give some details to clarify
the argument in our situation.

Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

H0(XZ(`)
,ΩX/Z(`)

)⊗ F` ∼= H0(XF`
,ΩX/F`

).

In the following, we shall think of G⊗F` as a subgroup of H0(XF`
,ΩX/F`

), which
we can do by the hypothesis that the induced map G⊗F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗
F` is injective and that

H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F` ∼= H0(XZ(`)

,ΩX/Z(`)
)⊗ F` ∼= H0(XF`

,ΩX/F`
).

Suppose ω ∈ ker(Φ`) is in the ±1 eigenspace (we will treat the cases of
+1 and −1 eigenspaces together). We will show that ω is trivial over XF`

, the
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base change of XF`
to an algebraic closure F`, which suffices for our purposes.

Since `2 - N , we have ` || N , and so the special fiber XF`
is as depicted on

p. 177 of [Maz77]: it consists of the union of two copies of X0(N/`)F`
identified

transversely at the supersingular points, and some copies of P1, each of which
intersects exactly one of the two copies of X0(N/`)F`

and perhaps another P1,
all of them transversally. All the singular points are ordinary double points, and
the cusp ∞ lies on one of the two copies of X0(N/`)F`

.

In particular, XF`
→ SpecF` is locally a complete intersection, hence

Gorenstein, and so by [DR73, § I.2.2, p. 162], the sheaf ΩX/F`
= ΩX/F`

⊗ F`
is invertible. Since ω ∈ ker(Φ`), the differential ω vanishes on the copy
of X0(N/`)F`

containing the cusp ∞ by the q-expansion principle (which is easy
in this case, since all that is being invoked here is that on an integral curve,
the natural map from the group of global sections of an invertible sheaf into
the completion of the sheaf’s stalk at a point is injective). The two copies
of X0(N/`)F`

are swapped under the action of the Atkin-Lehner involution W`,
and thus W`(ω) vanishes on the other copy that does not contain the cusp ∞.
Since W`(ω) = ±ω, we see that ω is zero on both copies of X0(N/`)F`

. Also,
by the description of the relative dualizing sheaf in [DR73, § I.2.3, p. 162],
if π : X̃F`

→ XF`
is a normalization, then ω correponds to a meromorphic

differential ω̃ on X̃F`
which is regular outside the inverse images (under π) of the

double points on XF`
and has at worst a simple pole at any point that lies over a

double point on XF`
. Moreover, on the inverse image of any double point on XF`

,
the residues of ω̃ add to zero. For any of the P1’s, above a point of intersection
of the P1 with a copy of X0(N/`)F`

, the residue of ω̃ on the inverse image of the
copy of X0(N/`)F`

is zero (since ω is trivial on both copies of X0(N/`)F`
), and

thus the residue of ω̃ on the inverse image of P1 is zero. Thus ω̃ restricted to the
inverse image of P1 is regular away from the inverse image of any point where
the P1 meets another P1 (recall that there can be at most one such point). Hence
the restriction of ω̃ to the inverse image of the P1 is either regular everywhere or
is regular away from one point where it has at most a simple pole; in the latter
case, the residue is zero by the residue theorem. Thus in either case, ω̃ restricted
to the inverse image of the P1 is regular, and therefore is zero. Thus ω is trivial
on all the copies of P1 as well. Hence ω = 0, as was to be shown. ¤

4.2. Proof of Theorem 3.5. We continue to use the notation of Section 4.1.

First suppose that ` | N and S2(Z(`))[I] is not stable under the action of W`.
Relative differentials and Néron models are functorial, so H0(AZ(`)

,Ω1
A/Z(`)

) is

W`-stable. Thus the map H0(AZ(`)
,Ω1

A/Z(`)
) → S2(Z(`))[I] is not surjective. But

cA is the order of the cokernel, so ` | cA.
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Next we prove the other implication, namely that if ` | cA, then ` | N
and S2(Z(`))[I] is not stable under W`. We will prove this by proving the
contrapositive, i.e., that if either ` - N or S2(Z(`))[I] is stable under W`, then
` - cA.

We now follow the discussion preceding Lemma 4.2, taking G =
H0(AZ(`)

,Ω1
A/Z(`)

). To show that ` - cA, we have to show that cA is a unit in Z(`).

For this, it suffices to check that in diagram (2), the image of H0(AZ(`)
,Ω1

A/Z(`)
)

in Z(`)[[q]] under Φ is saturated, since the image of S2(Γ0(N);Z(`))[I] under
F -exp is saturated in Z(`)[[q]]. In view of Lemma 4.2, it suffices to show that the
map

H0(AZ(`)
,Ω1

A/Z(`)
)⊗ F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗ F`

is injective.

Since A is an optimal quotient, ` 6= 2, and J has good or semistable reduction
at `, [Maz78, Cor 1.1] yields an exact sequence

0 → H0(AZ(`)
,Ω1

A/Z(`)
) → H0(JZ(`)

,Ω1
J/Z(`)

) → H0(BZ(`)
,Ω1

B/Z(`)
) → 0

where B = ker(J → A). Since H0(BZ(`)
,Ω1

B/Z(`)
) is torsion free, by Lemma 4.1

the map H0(AZ(`)
,Ω1

A/Z(`)
)⊗F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗F` is injective, as was to
be shown.

4.3. Proof of Theorem 3.11. We continue to use the notation and hypotheses
of Section 4.1 (so `2 - N) and assume in addition that A is a newform quotient,
and that ` - mA. We have to show that then ` - cA. Just as in the previous proof,
it suffices to check that the image of H0(AZ(`)

,Ω1
A/Z(`)

) in Z(`)[[q]] is saturated.
Since A is a newform quotient, if ` | N , then W` acts as a scalar on A and
on S2(Γ0(N);Z(`))[I]. So again, using Lemma 4.2, it suffices to show that the
map H0(AZ(`)

,Ω1
A/Z(`)

)⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F` is injective.

The composition of pullback and pushforward in the following diagram is
multiplication by the modular exponent of A:

H0(JZ(`)
,Ω1

J/Z(`)
)

π∗

))RRRRRRRRRRRRR

H0(AZ(`)
,Ω1

A/Z(`)
)

π∗
55lllllllllllll

mA // H0(AZ(`)
,Ω1

A/Z(`)
)

Since mA ∈ Z(`)
×, the map π∗ is a section to the map π∗ up to a unit and hence

its reduction modulo ` is injective, which is what was left to be shown.
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4.4. Proof of Theorem 3.10. Theorem 3.10 asserts that if A = Af is a quotient
of J = J0(N) attached to a newform f , and ` is a prime such that `2 - N , then
ord`(cA) ≤ dim(A). Our proof follows [AU96], except at the end we argue using
lattice indices instead of multiples.

Let B denote the kernel of the quotient map J → A. Consider the exact
sequence 0 → B → J → A→ 0, and the corresponding complex BZ(`)

→ JZ(`)
→

AJZ(`)
of Néron models. Because JZ(`)

has semiabelian reduction (since `2 - N),
Theorem A.1 of the appendix of [AU96, pg. 279–280], due to Raynaud, implies
that there is an integer r and an exact sequence

0 → Tan(BZ(`)
) → Tan(JZ(`)

) → Tan(AZ(`)
) → (Z/`Z)r → 0.

Here Tan is the tangent space at the 0 section; it is a finite free Z(`)-module of
rank equal to the dimension. In particular, we have r ≤ d = dim(A). Note that
Tan is Z(`)-dual to the cotangent space, and the cotangent space is isomorphic
to the space of global differential 1-forms. The theorem of Raynaud mentioned
above is the generalization to e = `−1 of [Maz78, Cor. 1.1], which we used above
in the proof of Theorem 3.5.

Let C be the cokernel of Tan(BZ(`)
) → Tan(JZ(`)

). We have a diagram

(3) 0 // Tan(BZ(`)
) // Tan(JZ(`)

) //

%% %%LLL
LLL

Tan(AZ(`)
) // (Z/`Z)r // 0.

C
+ ®

88rrrrrr

Since C ⊂ Tan(AZ(`)
), so C is torsion free, we see that C is a free Z(`)-module

of rank d. Let C∗ = HomZ(`)
(C,Z(`)) be the Z(`)-linear dual of C. Applying the

HomZ(`)
(−,Z(`)) functor to the two short exact sequences in (3), we obtain exact

sequences

0 → C∗ → H0(JZ(`)
,Ω1

J/Z(`)
) → H0(BZ(`)

,Ω1
B/Z(`)

) → 0,

and

(4) 0 → H0(AZ(`)
,Ω1

A/Z(`)
) → C∗ → (Z/`Z)r → 0.

The (Z/`Z)r on the right in (4) occurs as Ext1Z(`)
((Z/`Z)r,Z(`)).

Since H0(BZ(`)
,Ω1

B/Z(`)
) is torsion free, by Lemma 4.1, the induced map

C∗ ⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`

is injective. Since A is a newform quotient, if ` | N then W` acts as a scalar on C∗
and on S2(Γ0(N);Z(`))[I]. Using Lemma 4.2, with G = C∗, we see that the image
of C∗ in Z(`)[[q]] under the composite of the maps in (1) is saturated. The Manin
constant for A at ` is the index of the image via q-expansion of H0(AZ(`)

,Ω1
A/Z(`)

)
in Z(`)[[q]] in its saturation. Since the image of C∗ in Z(`)[[q]] is saturated, the



The Manin Constant 631

image of C∗ is the saturation of the image of H0(AZ(`)
,Ω1

A/Z(`)
), so the Manin

constant at ` is the index of H0(AZ(`)
,Ω1

A/Z(`)
) in C∗, which is `r by (4), hence is

at most `d.

5. Appendix by J. Cremona: Verifying that c = 1

Let f be a normalised rational newform for Γ0(N). Let Λf be its period
lattice; that is, the lattice of periods of 2πif(z)dz over H1(X0(N),Z).

We know that Ef = C/Λf is an elliptic curve Ef defined over Q and of
conductor N . This is the optimal quotient of J0(N) associated to f . Our goal
is two-fold: to identify Ef (by giving an explicit Weierstrass model for it with
integer coeffients); and to show that the associated Manin constant for Ef is 1.
In this section we will give an algorithm for this; our algorithm applies equally
to optimal quotients of J1(N).

As input to our algorithm, we have the following data:

(1) a Z-basis for Λf , known to a specific precision;
(2) the type of the lattice Λf (defined below); and
(3) a complete isogeny class of elliptic curves {E1, . . . , Em} of conductor N ,

given by minimal models, all with L(Ej , s) = L(f, s).

So Ef is isomorphic over Q to Ej0 for a unique j0 ∈ {1, . . . ,m}.
The justification for this uses the full force of the modularity of elliptic curves

defined over Q: we have computed a full set of newforms f at level N , and the
same number of isogeny classes of elliptic curves, and the theory tells us that
there is a bijection between these sets. Checking the first few terms of the L-
series (i.e., comparing the Hecke eigenforms of the newforms with the traces of
Frobenius for the curves) allows us to pair up each isogeny class with a newform.

We will assume that one of the Ej , which we always label E1, is such that
Λf and Λ1 (the period lattice of E1) are approximately equal. This is true in
practice, because our method of finding the curves in the isogeny class is to
compute the coefficients of a curve from numerical approximations to the c4 and
c6 invariants of C/Λf ; in all cases these are very close to integers which are the
invariants of the minimal model of an elliptic curve of conductor N , which we
call E1. The other curves in the isogeny class are then computed from E1. For
the algorithm described here, however, it is irrelevant how the curves Ej were
obtained, provided that Λ1 and Λf are close (in a precise sense defined below).

Normalisation of lattices: every lattice Λ in C which defined over R has a
unique Z-basis ω1, ω2 satisfying one of the following:

• Type 1: ω1 and (2ω2 − ω1)/i are real and positive; or
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• Type 2: ω1 and ω2/i are real and positive.

For Λf we know the type from modular symbol calculations, and we know
ω1, ω2 to a certain precision by numerical integration; modular symbols provide
us with cycles γ1, γ2 ∈ H1(X0(N),Z) such that the integral of 2πif(z)dz over
γ1, γ2 give ω1, ω2.

For each curve Ej we compute (to a specific precision) a Z-basis for its period
lattice Λj using the standard AGM method. Here, Λj is the lattice of periods
of the Néron differential on Ej . The type of Λj is determined by the sign of
the discriminant of Ej : type 1 for negative discriminant, and type 2 for positive
discriminant.

For our algorithm we will need to know that Λ1 and Λf are approximately
equal. To be precise, we know that they have the same type, and also we verify,
for a specific positive ε, that

(*)
∣∣∣∣
ω1,1

ω1,f
− 1

∣∣∣∣ < ε and
∣∣∣∣
im(ω2,1)
im(ω2,f )

− 1
∣∣∣∣ < ε.

Here ω1,j , ω2,j denote the normalised generators of Λj , and ω1,f , ω2,f those of Λf .

Pulling back the Néron differential on Ej0 to X0(N) gives c ·2πif(z)dz where
c ∈ Z is the Manin constant for f . Hence

cΛf = Λj0 .

Our task is now to

(1) identify j0, to find which of the Ej is (isomorphic to) the “optimal” curve
Ef ; and

(2) determine the value of c.

Our main result is that j0 = 1 and c = 1, provided that the precision bound
ε in (*) is sufficiently small (in most cases, ε < 1 suffices). In order to state this
precisely, we need some further definitions.

A result of Stevens says that in the isogeny class there is a curve, say Ej1 ,
whose period lattice Λj1 is contained in every Λj ; this is the unique curve in
the class with minimal Faltings height. (It is conjectured that Ej1 is the Γ1(N)-
optimal curve, but we do not need or use this fact. In many cases, the Γ0(N)-
and Γ1(N)-optimal curves are the same, so we expect that j0 = j1 often; indeed,
this holds for the vast majority of cases.)

For each j, we know therefore that aj = ω1,j1/ω1,j ∈ N and also bj =
im(ω2,j1)/im(ω2,j) ∈ N. Let B be the maximum of a1 and b1.

Proposition 5.1. Suppose that (*) holds with ε = B−1; then j0 = 1 and c = 1.
That is, the curve E1 is the optimal quotient and its Manin constant is 1.
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Proof. Let ε = B−1 and λ = ω1,1

ω1,f
, so |λ− 1| < ε. For some j we have cΛf = Λj .

The idea is that lcm(a1, b1)Λ1 ⊆ Λj1 ⊆ Λj = cΛf ; if a1 = b1 = 1, then the
closeness of Λ1 and Λf forces c = 1 and equality throughout. To cover the
general case it is simpler to work with the real and imaginary periods separately.

Firstly,
ω1,j

ω1,f
= c ∈ Z.

Then
c =

ω1,1

ω1,f

ω1,j

ω1,1
=
a1

aj
λ.

Hence

0 ≤ |λ− 1| = |ajc− a1|
a1

< ε.

If λ 6= 1, then ε > |λ − 1| ≥ a−1
1 ≥ B−1 = ε, contradiction. Hence λ = 1, so

ω1,1 = ω1,f . Similarly, we have

im(ω2,j)
im(ω2,f )

= c ∈ Z

and again we can conclude that im(ω2,1) = im(ω2,f ), and hence ω2,1 = ω2,f .

Thus Λ1 = Λf , from which the result follows. ¤
Theorem 5.2. For all N < 60000, every optimal elliptic quotient of J0(N) has
Manin constant equal to 1. Moreover, the optimal curve in each class is the one
whose identifying number on the tables [Cre] is 1 (except for class 990h where the
optimal curve is 990h3).

Proof. For all N < 60000 we used modular symbols to find all newforms f and
their period lattices, and also the corresponding isogeny classes of curves. In all
cases we verified that (*) held with the appropriate value of ε. (The case of 990h
is only exceptional on account of an error in labelling the curves several years
ago, and is not significant.) ¤
Remark 5.3. In the vast majority of cases, the value of B is 1, so the precision
needed for the computation of the periods is very low. For N < 60000, out
of 258502 isogeny classes, only 136 have B > 1: we found a1 = 2 in 13 cases,
a1 = 3 in 29 cases, and a1 = 4 and a1 = 5 once each (for N = 15 and N = 11
respectively); b1 = 2 in 93 cases; and no larger values. Class 17a is the only one
for which both a1 and b1 are greater than 1 (both are 2).

Finally, we give a slightly weaker result for 60000 < N < 130000; in this
range we do not know Λf precisely, but only its projection onto the real line.
(The reason for this is that we can find the newforms using modular symbols for
H+

1 (X0(N),Z), which has half the dimension of H1(X0(N),Z); but to find the
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exact period lattice requires working in H1(X0(N),Z).) The argument is similar
to the one given above, using B = a1.

Theorem 5.4. For all N in the range 60000 < N < 130000, every optimal
elliptic quotient of J0(N) has Manin constant equal to 1.

Proof. We continue to use the notation above. We do not know the lattice Λf
but only (to a certain precision) a positive real number ω+

1,f such that either Λf
has type 1 and ω1,f = 2ω+

1,f , or Λf has type 2 and ω1,f = ω+
1,f . Curve E1 has

lattice Λ1, and the ratio λ = ω+
1,1/ω

+
1,f satisfies |λ− 1| < ε. In all cases this holds

with ε = 1
3 , which will suffice.

First assume that a1 = 1.

If the type of Λf is the same as that of Λ1 (for example, this must be the
case if all the Λj have the same type, which will hold whenever all the isogenies
between the Ej have odd degree) then from cΛf = Λj we deduce as before that
λ = 1 exactly, and c = a1/aj = 1/aj , hence c = aj = 1. So in this case we have
that c = 1, though there might be some ambiguity in which curve is optimal if
aj = 1 for more than one value of j.

Assume next that Λ1 has type 1 but Λf has type 2. Now λ = ω1,1/2ω1,f .
The usual argument now gives caj = 2. Hence either c = 1 and aj = 2, or c = 2
and aj = 1. To see if the latter case could occur, we look for classes in which
a1 = 1 and Λ1 has type 1, while for some j > 1 we also have aj = 1 and Λj of
type 2. This occurs 28 times for 60000 < N < 130000, but for 15 of these the
level N is odd, so we know that c must be odd. The remaining 13 cases are

62516a, 67664a, 71888e, 72916a, 75092a, 85328d, 86452a, 96116a,
106292b, 111572a, 115664a, 121168e, 125332a;

we have been able to eliminate these by carrying out the extra computations
necessary as in the proof of Theorem 5.2. We note that in all of these 13 cases,
the isogeny class consists of two curves, E1 of type 1 and E2 of type 2, with
[Λ1 : Λ2] = 2, so that E2 rather than E1 has minimal Faltings height.

Next suppose that Λ1 has type 2 but Λf has type 1. Now λ = 2ω1,1/ω1,f .
The usual argument now gives 2caj = 1, which is impossible; so this case cannot
occur.

Finally we consider the cases where a1 > 1. There are only three of these for
60000 < N < 130000: namely, 91270a, 117622a and 124973b, where a1 = 3. In
each case the Λj all have the same type (they are linked via 3-isogenies) and the
usual argument shows that caj = 3. But none of these levels is divisible by 3, so
c = 1 in each case. ¤
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