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What is Magma?

Magma is both a computer algebra system and a programming language.

� Magma commands are interpretted rather than compiled for dynamic interaction in a shell

(analogous to perl or python).

� Magma makes available a huge library of mathematical datastructures together with high per-

formance algorithms for their manipulation.

� Magma code, can be written in the Magma language as packages can be attached by users at

startup time to expand on the functionality.

Features include algorithms for group theory, noncommutative algebra, commutative algebra,

number theory, and algebraic geometry, etc.
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x1 The Magma shell

The most typical way to run Magma is interactively via the Magma shell. Every statement ends in

a semicolon. Output not assigned to a variable, using :=, is printed to the standard output. $1,

$2, and $3 refer three previous objects sent to standard output.

chipotle:~> magma

Magma V2.11-12 Sun Jan 30 2005 18:46:41 on chipotle

Type ? for help. Type <Ctrl>-D to quit.

Loading startup file "/home/kohel/.magma"

> 1;

1

> 2;

2

> $1; $2;

2 1



x1 The Magma shell [cont]

Notice that the Magma language can be expanded by users by automatically loading additional code

(or default preferences) at startup. A startup �le can be speci�ed with the MAGMA STARTUP FILE

environment variable.

E.g. in csh or tcsh:

setenv MAGMA_STARTUP_FILE /home/kohel/.magma

or in bash:

export MAGMA_STARTUP_FILE='/home/kohel/.magma'



x1 The Magma shell [cont]

Syntax. The assignment operator := is used to assign the value on the right to the variable

name on the left:

> x := 2;

> y := 3/4;

Every statement in Magma must end with a semicolon \;". A Magma statement may extend over

several lines:

> x := 2 *

> 3 * 5 * 7

> ;

> x;

210

Note that x; and print x; give the same result.
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x2 Parents and categories

Every object in Magma has a Parent structure to which it belongs. Generally it is necessary to

de�ne the parent structure before initializing an element.

> QQ := RationalField();

> x := 2*One(QQ);

> x;

2

> Parent(x);

Rational Field

> IsUnit(x);

true



x2 Parents and categories [cont]

Note that the same construction with the integer ring produces a di�erent element whose mem-

bership in Z rather than Q necessarily gives it di�erent properties.

> ZZ := IntegerRing();

> y := 2*One(ZZ);

> y;

2

> Parent(y);

Integer Ring

> IsUnit(y);

false

The boolean function IsUnit must address 2 as an element of Z, and since there is no element

1=2 2 Z, returns false.



x2 Parents and categories [cont]

Every object in Magma has an associated Category or Type. This is distinct from the concept of

Parent, and analogous to the concept of a mathematical category (e.g. of rings, groups, or sets):

> Parent(x);

Rational Field

> Parent(x) eq QQ;

true

> Type(x);

FldRatElt

> Type(QQ);

FldRat

� The category handle can be used for comparisons (with eq) of possibly imcompatible objects,

and for type checking, permitting function overloading.

� The formalism of the parent{element relationship facilitates the creation of maps between par-

ents, which can be applied to elements.
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x3 Primitive structures

Certain categories, such as the Integers() and the RationalField() (with the operator / as

an element constructor), are prede�ned as system-wide global structures, and do not have to be

constructed in which to create elements.

> n := 2^127-1;

> n;

170141183460469231731687303715884105727

> r := 2/31;

> r;

2/31

> Type(r);

FldRatElt

> Parent(r);

Rational Field

Note that we haven't formally created any parent structure in order to create these elements. The

parent object is global and a pointer to it automatically set up.



x3 Primitive structures [cont]

Other examples are the monoid of Strings()

> s := "Integer Ring";

> s;

Integer Ring

> Type(s);

MonStgElt

and the algebra of Booleans (ftrue; falseg):

> true;

true

> true xor false;

true

> true and false;

false
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x4 Aggregate structures

A. Sequences. A sequence is an indexed list of elements all of which have the same parent,

called the Universe of the sequence. A common pitfall is to construct empty sequences without

de�ning the universe.

> [];

[]

> Universe($1);

>> Universe($1);

^

Runtime error in 'Universe': Illegal null sequence

> [ ZZ | ];

[]

> Universe($1);

Integer Ring



x4 Aggregate structures [sequences]

If the universe of a sequence is not explicitly de�ned, then objects will be coerced into a common

structure, if possible.

> S := [ 1, 2/31, 17 ];

> S;

[ 1, 2/31, 17 ]

> Universe(S);

Rational Field

> S[3];

17

> Parent($1);

Rational Field



x4 Aggregate structures [sequences]

The full syntax for sequence construction is:

[ Universe | Element : Loop | Predicate ]

As an example, we have the following sequence:

> FF<w> := FiniteField(3^6);

> [ FF | x : x in FiniteField(3^2) | Norm(x) eq 1 ];

[ 1, w^182, 2, w^546 ]

N.B. The �nite �elds F3, F
2

3
, and F36 are the unique �nite �elds of size 3, 32, and 36 (up to

isomorphism). In one line, we have enumerated the four elements of the kernel of the norm map

F�

32
! F�

3
, and coerced these elements into the larger �eld F36. Magma has a sophisticated system

for choosing compatible towers of embeddings of �nite �elds Fpn ! Fpnm.



x4 Aggregate structures [sets]

B. Sets. A set is an unordered collection of objects having the same parent, again, de�ned to

be its Universe.

> { FiniteField(2^8) | 1, 2, 3, 4 };

{ 1, 0 }

> Random($1);

0

The syntax for set construction is analogous to that for sequences:

{ Universe | Element : Loop | Predicate }

The enumeration operator # applies to both sequences and sets.

> #[ x^2 : x in FiniteField(3^3) | x ne 0 ];

26

> #{ x^2 : x in FiniteField(3^3) | x ne 0 };

13



x4 Aggregate structures [indexed sets]

C. Indexed sets. An indexed set is a collection of objects indexed by the positive integers. An

element is assigned the next available index at its �rst occurence.

> S := {@ 4, 3, 7 @};

> S;

{@ 4, 3, 7 @}

> T := {@ 1, 1, 11 @};

> S join T; /* Union operator. */

{@ 4, 3, 7, 1, 11 @}

> $1[4];

1

> #$2;

5

Indexed sets have advantages of fast hashed lookup (with the operator in or the function Index)

on top of the indexing.



x4 Aggregate structures [tuples]

D. Tuples. A tuple is analogous to a sequence, but unlike sets and sequences, the parent

structure { the set-theoretic product of the parents of the entries { stores the parent of each

component.

> <>;

<>

> Parent($1);

Cartesian Product<>

> <1,2/1>;

<1, 2>

> Parent($1);

Cartesian Product<Integer Ring, Rational Field>

The parent structure of a tuple is more important than in the case of sequences or sets.

> C := CartesianProduct(Integers(),RationalField());

> t := C!<1,1>;

> Parent(t[2]);

Rational Field



x4 Aggregate structures [vectors]

E. Vectors. Since there is a unique global free module Rn of rank n over any ring R, with

endomorphism algebra Mn(R), the following shorthand constructor for vectors is provided.

> Vector([2,11,7]);

( 2 11 7)

Note that in contrast to tuples, which are the set-theoretic product Rn, as a module, elements of

Rn support scalar multiplication by elements of R and addition.
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x5 Element creation and transmutation

The coercion operator ! is used to construct an element of a structure, or to map it into a

structure, where a nature mapping exists.

> QQ := RationalField();

> QQ!17;

17

> P<x> := PolynomialRing(QQ);

> P![2,-2,1];

x^2 - 2*x + 2

Since a polynomial ring R[x] is canonically de�ned by its base ring, elements can also be de�ned

directly:

> Polynomial([2,-2,1]);

x^2 - 2*x + 2

Other Magma objects are created almost exclusively by creating a parent structure and using the

! operator.



x5 Element creation and transmutation [cont]

Remember that the parent of a polynomial determines the interpretation of many functions which

operate on it:

> K<i> := QuadraticField(-1);

> PK<x> := PolynomialRing(K);

> Factorization(Polynomial([2,-2,1]));

[

<x^2 - 2*x + 2, 1>

]

> Factorization(Polynomial([K|2,-2,1]));

[

<x - i - 1, 1>,

<x + i - 1, 1>

]

In this case the sequence Universe determines the base ring of the parent polynomial ring.



x5 Element creation and transmutation [cont]

Automatic coercion occurs systematically throughout Magma. Consider the following examples:

> f := hom< QQ -> QQ | x :-> x >;

> f(2);

2

In this example, the input integer must be coerced into the domain (the �eld of rationals).

Now consider what must happen in this call to eq:

> 1 eq 15/77;

false

> FiniteField(2)!1 eq 15/77;

true

A common superstructure, either Q or F2, is found where 17 and 17=1 can be compared, and

both elements are coerced into this structure.
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x6 New structures from old

The construction of objects in Magma is recursive, we can create a rational function �eld F over

a �nite �eld, and create a quaternion algebra B over this function �eld.

> K<u> := FiniteField(3);

> F<x> := FunctionField(K);

> B<i,j,k> := QuaternionAlgebra< F | -1, x >;

> B;

Quaternion Algebra with base ring Univariate rational function field over GF(3)

> [ x*y : x, y in [i,j,k] ];

[ 2, k, 2*j, 2*k, x, 2*x*i, j, x*i, x ]

We can then form a sequence of products of elements in the algebra B.

> [ x*y : x, y in [i,j,k] ];

[ 2, k, 2*j, 2*k, x, 2*x*i, j, x*i, x ]
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x7 Built-in operators

We've already seen the assignment := and coercion ! operators.

Eltseq. In many instances, the coercion operator ! can accept a de�ning sequence for an object.

In such circumstances, the de�nition of ElementToSequence (or its shorthand Eltseq) should

be such that ! is an inverse operation.

Arithmetic operations. The standard arithmetic operators +, -, *, /, ^ are de�ned for

many categories. Where they exist, the standard assignment versions also exist +:=, -:=, *:=,

/:=, ^:=.

N.B. In noncommutative rings, like matrix algebras, or in nonabelian groups or semigroups, the

assignment operator *:= is a right multiplication assignment; no syntax exists for left multiplica-

tion assignment operator presently exists.



x7 Built-in operators [cont]

Integral division and remainder. The operators mod and div are de�ned such that n equals

(n div m)*m + (n mod m) and n mod m is a nonegative number at less than the absolute value

of m.

Boolean operators. The unary operator not and the binary operators and and or operate

on the booleans true and false.

Comparison operators. The operator eq tests for equality of objects in Magma, returning a

boolean, and for objects which have a ordering or partial ordering, the comparison operators are

le, lt, gt, and ge.

Sequence and string operators. Strings and sequences are elements of free monoids for

which cat or * serve as the binary operation.

Set operators. Sets admit the operators join and meet, as well as boolean operators subset

and in.



x7 Built-in operators [cont]

Recursion on operators Any of the above binary operators, say op, which sati�es an asso-

ciative law gives rise to a recursive operator &op which applies to sequences. If the operation is

also commutative, then a recursion operator applies to sets.

> s := &*[ "I", "n", "t", "e", "g", "e", "r" ];

> t := &*[ "R", "i", "n", "g" ];

> s cat " " cat t;

Integer Ring



x7 Built-in operators [cont]

N.B. There are no functions Sum or Product in Magma, because the recursion operators &+ and

&* �ll these voids. The recursion operators &op can be very useful, as demonstrated by this one

line implementation of the subset operator.

> X := {1..100};

> Y := { a : a in X | IsOdd(a) };

> &and[ a in X : a in Y ];

true

> Y subset X;

true

Membership and enumeration operators. The operator in is overloaded as both an

membership operator and as an enumeration operator, as demonstrated in the above example.
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x8 Language syntax

A. Language conventions. Functions in Magma are upper case and should refer to the noun

which they return. For example, instead of the verb Factor, Magma uses the noun form:

> Factorization(2^(2^7)+1);

[ <59649589127497217, 1>, <5704689200685129054721, 1> ]

Syntax bugs. There exist exeptions to this convention, e.g. there exists a function named

Evaluate rather than Evaluation.

B. Loops and ow control. The most commonly used ow control routines are if, for, and

while loops.

if P in S then

...;

end if;

while P in S do

...;

end while;

for P in S do

...;

end for;

The if statement also permits elif..then and else clauses. Note the two distinct in operators

in the for, if, and while routines.
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x9 Functions and procedures

Consider the �le my function.m with content:

function X(A,B)

A +:= B;

return A;

end function;

and the �le my procedure.m with content:

procedure X(~A,B)

A +:= B;

end procedure;

Back in the Magma shell we load and use these functions.

> load "my_function.m";

Loading "my_function.m"

> A := 2; B := 7;

> X(A,B);

9



x9 Functions and procedures [cont]

But notice that the global variable A remains unchanged by the function.

> A;

2

In contrast the variable A is passed by reference, with ~A, to the procedure X and can be changed.

> load "my_procedure.m";

Loading "my_procedure.m"

> X(~A,B);

> A;

9

Magma functions and procedures have no type checking of arguments, and overwrite any and

all functions or intrinsics of the same name.
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x10 Packages and intrinsics

Intrinsics include all functions or procedures with type checking and overloading which are

built into the kernel of Magma (written and compiled in C). It is possible to view the signature

of any such function from the Magma shell. E.g.

> HyperellipticCurve;

Intrinsic 'HyperellipticCurve'

Signatures:

(<RngUPolElt> f, <RngUPolElt> h) -> CrvHyp

Returns the hyperelliptic curve defined by the

equation y^2 + h(x) y = f(x).

(followed by many more signatures for the same function)



x10 Packages and intrinsics [cont]

More and more intrinsics are being written in the Magma language, as part of packages

distributed with the system. All such Magma code is in human readable form in the various

subdirectories of

$MAGMA ROOT/package/,

where $MAGMA ROOT is the root directory where Magma is installed.

> ls

Aggregate Geometry Lattice RepThry spec

Algebra Group LieThry Ring

Code HomAlg Module Semigroup

Commut Incidence Opt System

Additional source code for arithmetic geometry is available as share packages from from my web

page

http://magma.maths.usyd.edu.au/~kohel/magma/,



x10 Packages and intrinsics [cont]

Consider the �le my intrinsic.m with content:

intrinsic X(A::RngIntElt,B::RngIntElt) -> RngIntElt

{Returns the sum of A and B.}

A +:= B;

return A;

end intrinsic;

intrinsic X(~A::RngIntElt,B::RngIntElt)

{Assigns the sum of A and B to A.}

A +:= B;

end intrinsic;

The �le intrinsic.m constitutes an integer addition package. Two intrinsics are de�ned,

one is a function X and the second a procedure X. We use the package by means of the Attach

command.



x10 Packages and intrinsics [cont]

> Attach("my_intrinsic.m");

> A := 2; B := 7;

> X(A,B);

9

> X(~A,B);

> A;

9

In a Unix shell, we also notice that magma has created a new �le, called my intrinsic.sig �le

(and in V2.11 and prior, a second �le called my intrinsic.dat).

chipotle ~> ls my_intrinsic*

my_intrinsic.dat my_intrinsic.m my_intrinsic.sig

The former is the compiled �le, and the latter is a signature, which is checked at each carriage

return in the Magma shell, to see if the �le has changed and needs to be recompiled.



x10 Packages and intrinsics [cont]

> Attach("my_intrinsic.m");

> X;

Intrinsic 'X'

Signatures:

(<RngIntElt> A, <RngIntElt> B) -> RngIntElt

Returns the sum of A and B.

(<RngIntElt> ~A, <RngIntElt> B)

Assigns the sum of A and B to A.
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x11 An example of quaternions

We construct the order O of level 7 in the quaternion algebra B and enumerate representatives

of its ideal classes.

> O := QuaternionOrder(19,7);

> time S := LeftIdealClasses(O); S;

[

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring,

Quaternion Order of level (19, 7) with base ring Integer Ring,

Quaternion Ideal of level (19, 7) with base ring Integer Ring

]

Time: 0.680



x11 An example of quaternions

Elements of the orders in a quaternion algebra B print with respect to their embedding in the

algebra.

> B := QuaternionAlgebra(O);

> Basis(B);

[ 1, i, j, k ]

> Basis(MaximalOrder(B));

[ 1, i, j, k ]

> Basis(O);

[ 1, -2*i + j, 1 - i - j - k, -2*i - j + k ]

In particular, the right orders, which are also orders of level 7, will not generally have integral

coordinates with respect to the embedding in B.

> Basis(RightOrder(S[1]));

[ 1, -1/4 - 3/4*i - 1/2*j, -i + 2*k, 3/4 + 21/4*i - 3/2*j - k ]

x11 An example of quaternions

We can also determine Minkowski reduced representatives of left or right ideal classes.

> [ Norm(I) : I in S ];

[ 4, 2, 4, 4, 8, 8, 2, 2, 4, 4, 1, 4 ]



> [ Norm(ReducedLeftIdealClass(I)) : I in S ];

[ 4, 2, 4, 4, 5, 5, 2, 2, 3, 3, 1, 3 ]


