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What Kedlaya’s algorithm does

Given a genus g curve, Kedlaya’s algorithm uses
Monsky-Washnitzer cohomology of an affine subcurve to
compute the zeta function of its reduction over finite fields
Fpr .

In the situation of g = 1 (elliptic curves), this is not the best
way to compute zeta functions.
For higher genus (and relatively small p), this algorithm is
great.

However, as an intermediate step in the algorithm, one
computes the matrix of absolute Frobenius, which is useful
for computing the cyclotomic p-adic height pairing (Mazur,
Stein, Tate).
I’ll explain the underlying theory behind Kedlaya’s
algorithm and compute an example of this matrix.
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How it works

Three main steps of Kedlaya’s algorithm:
Initialization
Compute the action of Frobenius on differentials
Apply a reduction algorithm
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Part I: Initialization

E: elliptic curve y2 = Q(x) over Zp in Weierstrass form
p > 5: prime of good ordinary reduction
Q(x): the reduction of Q(x) over Fp

CQ: affine curve over Zp defined by y2 = Q(x)

C ′
Q = CQ \ {zeros of y}

A = Qp[x, y, z]/(y2 − Q(x), yz − 1): coordinate ring of C ′
Q

over Qp
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The hyperelliptic involution

Let ι : (a, b) 7→ (a, −b) denote the hyperelliptic involution.
ι gives an automorphism of the curves CQ and C ′

Q.
This induces automorphisms ι∗ of algebraic de Rham
cohomology H1(C ′

Q) and H1(CQ), decomposing them into
eigenspaces on which ι∗ acts as 1 and −1.
In particular, H1(C ′

Q) = H1(C ′
Q)+ ⊕ H1(C ′

Q)−.

Goal: compute the action of Frobenius on H1(C ′
Q
)−.
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The Qp-vector space H1(C ′
Q)−

As a good “first guess,” we consider the Qp-vector space
H1(C ′

Q)−:
It’s spanned by the classes of differentials {[zdx], [xzdx]}.
However, the underlying coordinate ring A does not admit
the proper lift of Frobenius.
So we restrict to the “dagger ring”:

A† =

∑
i,j

ai,jxiyj : ai,j ∈ Qp, lim inf
|j|→∞

vp(ai,j)

|j|
> 0

 .
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Monsky-Washnitzer cohomology

The de Rham complex of A† is given by

d : A† −→ A† zdx
2∑

i,j

ai,jxizj 7→
∑

i,j

ai,jd(xizj)

=
∑

i,j

ai,j(2ixi−1zj−1 − jxiQ ′zj+1)
zdx
2

.
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Monsky-Washnitzer cohomology

We denote the cohomology groups of this complex by
Hi

MW(C ′
Q).

As before, they are Qp-vector spaces split into eigenspaces
by the hyperelliptic involution.
Passing from A to A† does not change the presentation of
cohomology.
Thus we work with H1

MW(C ′
Q)− and its basis zdx and xzdx

to compute the action of Frobenius.
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Part II: Action of Frobenius

We compute the action of Frobenius on H1
MW(C ′

Q)− by
computing its action on the basis elements:

Begin by letting G(x) =
Frobp(Q(x))−(Q(x))p

p .

Then Fp,i := Frobp
(
xizdx

)
=∑

06k<M

((−1/2
k

)
pk+1Gkxp(i+1)−1z(2k+1)p−1

)
zdx, with a

precision of N digits.
N determines the number of digits of precision of the
p-adic height to be computed (i.e., modulo pN).
M is the smallest integer such that
M − blogp(2M + 1)c > N.
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Part III: Reduction algorithm

As zdx and xzdx span H1
MW(C ′

Q)−, we must now be able to write
an arbitrary element in (A−)† zdx

2 , where

A− =
⊕

06i<3,j≡1(2)

Qpxizj,

as a linear combination of d(xizj), zdx, and xzdx.
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Monomial ordering

Definition
Given a multivariate polynomial f (x, y, z) in
Zp[x, y, z]/(y2 − Q(x), yz − 1), the highest monomial of f is the
one with smallest power of z and largest power of x.
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Example: monomial ordering

Example

Given Q(x) = x3 − x + 1
4 (our 37a example), the highest

monomial of

d(xizj) = 2ixi−1zj−1 − 3jxi+2zj+1 − jxizj+1

is xi−1zj−1 if 1 6 i < 3 and x2zj+1 if i = 0.
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The reduction algorithm

Begin by computing a list of differentials d(xizj), where
0 6 i < 3 and j ≡ 1 (mod 2).

Group the terms in Frobp(xizdx) as (
∑

ci,jzj)zdx, where
ci,j ∈ Zp[x] have degree less than 3.

If Fp,i has a term (xizj)zdx with j > 0:
Consider the term (ci,jzj)zdx where j is maximal.
Take the unique linear combination of the d(xkzj−1) such
that when this linear combination is subtracted off of Fp,i,
the resulting “Fp,i” no longer has terms of the form
(xmzj)zdx.
Repeat this process until Fp,i (or, in more precise terms, the
resulting “Fp,i” at each step minus linear combinations of
differentials) has no terms (xmzj)zdx with j > 0.
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Consider the term (ci,jzj)zdx where j is maximal.
Take the unique linear combination of the d(xkzj−1) such
that when this linear combination is subtracted off of Fp,i,
the resulting “Fp,i” no longer has terms of the form
(xmzj)zdx.
Repeat this process until Fp,i (or, in more precise terms, the
resulting “Fp,i” at each step minus linear combinations of
differentials) has no terms (xmzj)zdx with j > 0.
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The reduction algorithm, continued
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Let (xkzl)zdx be the term such that d(xkzl) has highest term
(xmzj)zdx and subtract off the appropriate multiple of
d(xkzl) such that the resulting Fp,i no longer has terms of the
form (xmzj)zdx with j , 0.
Repeat this process until the resulting Fp,i is of the form
(a0i + a1ix) zdx.

Jennifer Balakrishnan Kedlaya’s Algorithm



Introduction
Theory

Example: 37a at p = 5
Workshop problems

Part I: Initialization
Part II: Action of Frobenius
Part III: Reduction algorithm

The reduction algorithm, continued

If Fp,i has terms with j 6 0:

Let (xmzj)zdx be the term with the highest monomial of Fp,i.
Let (xkzl)zdx be the term such that d(xkzl) has highest term
(xmzj)zdx and subtract off the appropriate multiple of
d(xkzl) such that the resulting Fp,i no longer has terms of the
form (xmzj)zdx with j , 0.
Repeat this process until the resulting Fp,i is of the form
(a0i + a1ix) zdx.

Jennifer Balakrishnan Kedlaya’s Algorithm



Introduction
Theory

Example: 37a at p = 5
Workshop problems

Part I: Initialization
Part II: Action of Frobenius
Part III: Reduction algorithm

The reduction algorithm, continued

If Fp,i has terms with j 6 0:

Let (xmzj)zdx be the term with the highest monomial of Fp,i.
Let (xkzl)zdx be the term such that d(xkzl) has highest term
(xmzj)zdx and subtract off the appropriate multiple of
d(xkzl) such that the resulting Fp,i no longer has terms of the
form (xmzj)zdx with j , 0.
Repeat this process until the resulting Fp,i is of the form
(a0i + a1ix) zdx.

Jennifer Balakrishnan Kedlaya’s Algorithm



Introduction
Theory

Example: 37a at p = 5
Workshop problems

Part I: Initialization
Part II: Action of Frobenius
Part III: Reduction algorithm

The reduction algorithm, continued

If Fp,i has terms with j 6 0:

Let (xmzj)zdx be the term with the highest monomial of Fp,i.
Let (xkzl)zdx be the term such that d(xkzl) has highest term
(xmzj)zdx and subtract off the appropriate multiple of
d(xkzl) such that the resulting Fp,i no longer has terms of the
form (xmzj)zdx with j , 0.
Repeat this process until the resulting Fp,i is of the form
(a0i + a1ix) zdx.

Jennifer Balakrishnan Kedlaya’s Algorithm



Introduction
Theory

Example: 37a at p = 5
Workshop problems

Part I: Initialization
Part II: Action of Frobenius
Part III: Reduction algorithm

Result: The matrix of absolute Frobenius

Now we take the two reduced Fp,0 = (a00 + a10x) zdx and
Fp,1 = (a01 + a11x) zdx and form the matrix of absolute
Frobenius: (

a00 a01
a10 a11

)
.
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Example: 37a at p = 5

We compute the matrix of absolute Frobenius for the elliptic
curve 37a (with minimal model y2 + y = x3 − x) at p = 5:

Step 1 Put the curve into Weierstrass form y2 = x3 + a4x + a6, via
the transformation

a4 = −
c4

24 · 3
,

a6 = −
c6

25 · 33 .

In our case, we obtain the curve

y2 = x3 − x +
1
4

.

Let
Q(x) = x3 − x +

1
4

.
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Example: 37a at p = 5

Step 2 Fix the precision N and compute M. In our case, N = 2 and
M = 3.

Step 3 Compute the action of Frobenius on zdx and xzdx as an
element of Zp[x, y, z]/(y2 − Q(x), yz − 1) with a precision of
N digits and group the terms of Frobp(xizdx) as

∑
(ci,jzj)zdx.

In our case, we compute

Frob5(zdx) ≡ (5xz2 + (5x + 5x2)z4)zdx (mod 25),

Frob5(xzdx) ≡ (10 + 10x + 5x3 + (20 + 5x + 15x2)z2+

(10 + 20x + 15x2)z4)zdx (mod 25).
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Example: 37a at p = 5

Step 4 Now we must reduce the Frob5(xizdx).
Using the relation

d(xizj) = 2ixi−1zj−1 − 3jxi+2zj+1 − jxizj+1,

compute the following list of differentials:

i j d(xizj) (mod 25)

0 1 (13z2 + 11z2x2)zdx
1 1 (12 + 16z2 + 24z2x)zdx
2 1 (13x + 16z2x + 24z2x2)zdx
0 3 (14z4 + 8z4x2)zdx
1 3 (9z2 + 23z4 + 22z4x)zdx
2 3 (10z2x + 23z4x + 22z4x2)zdx
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Example: 37a at p = 5

We begin by reducing F5,0 ≡ (5xz2 + (5x + 5x2)z4)zdx (mod 25):

i j d(xizj) (mod 25)
...

...
...

0 3 (14z4 + 8z4x2)zdx
1 3 (9z2 + 23z4 + 22z4x)zdx
2 3 (10z2x + 23z4x + 22z4x2)zdx

Write (5x + 5x2)z4 as a linear
combination of

14z4 + 8z4x2,

23z4 + 22z4x,

23z4x + 22z4x2.

Note: we ignore the lower
powers of z in the differentials.
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Example: 37a at p = 5

Taking

F5,0 − 5d(z3) − 10d(xz3) − 20d(x2z3) (mod 25)

leaves us with (10 + 5x)z2 zdx.
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Example: 37a at p = 5

Taking

(10 + 5x)z2 zdx − 10d(z) − 5d(xz) − 10d(x2z)

leaves us with
(15 + 20x)zdx.

We have finished reducing Frob5(zdx)!
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Example: 37a at p = 5

Now we reduce Frob5(xzdx):

(10+10x+5x3+(20+5x+15x2)z2+(10+20x+15x2)z4)zdx (mod 25).

We eliminate the x3 zdx term first:

F5,1−
1
3

d(x4z) = (13+2x+(13+10x+7x2)z2+(10+20x+15x2)z4) zdx.
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Example: 37a at p = 5

Now proceed as in the case of F5,0:

i j d(xizj) (mod 25)
...

...
...

0 3 (14z4 + 8z4x2)zdx
1 3 (9z2 + 23z4 + 22z4x)zdx
2 3 (10z2x + 23z4x + 22z4x2)zdx

Write (10 + 20x + 15x2)z4 as a
linear combination of

14z4 + 8z4x2,

23z4 + 22z4x,

23z4x + 22z4x2.
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Example: 37a at p = 5

Taking

(13 + 2x + (13 + 10x + 7x2)z2 + (10 + 20x + 15x2)z4) zdx

− (10d(z3) + 15d(xz3) + 5d(x2z3))

leaves us with

(13 + 2x + (3 + 10x + 7x2)z2) zdx.
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Example: 37a at p = 5

Taking

(13 + 2x + (3 + 10x + 7x2)z2 zdx − 20d(z) − 23d(xz) − 13d(x2z)

leaves us with
(12 + 8x)zdx.
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Example: 37a at p = 5

Thus we have that Frob5(xzdx) = (12 + 8x)zdx.
Step 5

Form the matrix F of the reduced differentials, where each
reduced differential gives us a column in the matrix of
absolute Frobenius.
In our case, as

Frob5(zdx) = (15 + 20x)zdx
Frob5(xzdx) = (12 + 8x)zdx,

we have

F =

(
15 12
20 8

)
.
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Example: 37a at p = 5

So the matrix of absolute Frobenius is

F =

(
15 12
20 8

)
.

As a consistency check, we see that F has trace 23, which is
a5 modulo 25 and determinant −120, which is p = 5
modulo 25.
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Summary

We used Kedlaya’s algorithm to compute the matrix of
absolute Frobenius.

Compute action of Frob on appropriate cohomology group.
Reduce differentials.

More details in the papers of Kedlaya (also, see exposition
by Edixhoven)
Applications:

For genus g > 1: compute zeta functions of hyperelliptic
curves
For genus g = 1: compute p-adic heights (Mazur, Stein,
Tate)
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Workshop problems

Some open problems we’d like to work on these next two
weeks:

Are there simplifications one could make to the above
algorithm taking into account the fact that we’re working
with elliptic curves (e.g., using group structure, etc.)?
Should we expect that the matrix of Frobenius be easier to
compute in the case of genus 1 curves?
A question of John Tate: how does the cyclotomic p-adic
height pairing change for families of elliptic curves, e.g.,
y2 = x3 + tx + 1? What about considering families with
constant j-invariant? Non-constant j-invariant? Curves
with complex multiplication? Curves without complex
multiplication?
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Workshop problems, continued

Even more problems:
Extend the above algorithm to implement the computation
of anticyclotomic p-adic heights, using new ideas of Mazur.
(From Christian Wuthrich.) For computational reasons it
would be interesting to also include the primes 2 and 3. It
should be possible to write a more complicated Kedlaya
algorithm at least for 3.
(From Christian Wuthrich.) There is a well-defined
supersingular theory explained by Perrin-Riou. The
Kedlaya algorithm can be used to compute the p-adic
heights also in this case.
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