Exact Linear Algebra for SAGE

William Stein

Department of Mathematics
University of Washington

August 7, 2006 / MSRI Workshop

Outline

(1) Echelon Forms of Matrices
(2) Computing Echelon Forms
(3) Decomposing Spaces Under the Action of Matrix

The Wiki Page

http://sage.math.washington.edu:9000/linalg

Coding sprint this week: Me, Robert Bradshaw, Soroosh Yazdani.

Extremely difficult: We need more help.

Reduced Row Echelon Form

Definition (Reduced Row Echelon Form)

A matrix is in (reduced row) echelon form if each row in the matrix has more zeros at the beginning than the row above it, the first nonzero entry of every row is 1 , and the first nonzero entry of any row is the only nonzero entry in its column.

- Given a matrix A, there is another matrix E such that E is obtained from A by left multiplication by an invertible matrix and E is in reduced row echelon form.
- This matrix E is called the echelon form of A. It is unique.
- A pivot column of A is a column of A such that the reduced row echelon form of A contains a leading 1 .

Echelon form example 1

Example

The following matrix is not in reduced row echelon form:

$$
\left(\begin{array}{rrrrr}
14 & 2 & 7 & 228 & -224 \\
0 & 0 & 3 & 78 & -70 \\
0 & 0 & 0 & -405 & 381
\end{array}\right)
$$

The reduced row echelon form of the above matrix is

$$
\left(\begin{array}{ccccc}
1 & \frac{1}{7} & 0 & 0 & -\frac{1174}{9945} \\
0 & 0 & 1 & 0 & \frac{155}{135} \\
0 & 0 & 0 & 1 & -\frac{132}{135}
\end{array}\right)
$$

Echelon form example 2

Example

Notice that the entries of the reduced row echelon form can be rationals with large denominators even though the entries of the original matrix A are integers. Another example is the simple looking matrix

$$
\left(\begin{array}{rrrrrrrr}
-9 & 6 & 7 & 3 & 1 & 0 & 0 & 0 \\
-10 & 3 & 8 & 2 & 0 & 1 & 0 & 0 \\
3 & -6 & 2 & 8 & 0 & 0 & 1 & 0 \\
-8 & -6 & -8 & 6 & 0 & 0 & 0 & 1
\end{array}\right)
$$

whose echelon form is

$$
\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & \frac{42}{1025} & -\frac{92}{1025} & \frac{1}{25} & -\frac{9}{205} \\
0 & 1 & 0 & 0 & \frac{716}{305} & -\frac{641}{3075} & -\frac{2}{75} & -\frac{1}{615} \\
0 & 0 & 1 & 0 & -\frac{873}{1035} & \frac{133}{1025} & \frac{1}{25} & -\frac{23}{410} \\
0 & 0 & 0 & 1 & \frac{184}{1025} & -\frac{159}{1025} & \frac{2}{25} & \frac{9}{410}
\end{array}\right) .
$$

Linear Algebra Problems and Echelon Form

Linear algebra class: Convert some standard algorithmic problems into computing echelon forms.

- Kernel of A : Kernel of the reduce row echelon form E of A is the same as the kernel of A. Easy to write down kernel of a matrix in echelon form.
- Intersection of Subspaces:
(1) W_{1} and W_{2} subspace of V.
(2) Let A_{1} and A_{2} be matrices whose columns form a basis for W_{1} and W_{2}, respectively.
(3) Let $A=\left[A_{1} \mid A_{2}\right]$ be the augmented matrix formed from A_{1} and A_{2}.
(4) Let K be the kernel of the linear transformation defined by A. Then K is isomorphic to the desired intersection.
To write down the intersection explicitly, suppose that $\operatorname{dim}\left(W_{1}\right) \leq \operatorname{dim}\left(W_{2}\right)$ and do the following: For each b in a basis for K, write down the linear combination of a basis for W_{1} got by taking the first $\operatorname{dim}\left(W_{1}\right)$ entries of the vector b. So $\sum a_{i} w_{1, i}+\sum b_{j} w_{2, j}=0$, i.e., an element of that kernel is $\sum a_{i} w_{1, i}=\sum-b_{j} w_{2, j}$.

Matrix Multiplication

Strassen-Winograd: Multiply two $n \times n$ matrices (with n a 2 -power). Complexity is $O\left(n^{\log _{2}(7)}\right)=O\left(n^{2.807}\right)$.

```
Input matrices [A00 A01] [B00 B01]
    [A10 A11] [B10 B11]
# 8 Pre-Additions
S0 = A10 + A11, T0 = B01 - B00
S1 = S0 - A00, T1 = B11 - T0
S2 = A00 - A10, T2 = B11 - B01
S3 = A01 - S1, T3 = T1 - B10
# 7 (Potentially) Recursive Multiplications
P0 = A00*B00
P1 = A01*B10
P2 = S0*T0
P3 = S1*T1
P4 = S2*T2
P5 = S3*B11
P6 = A11*T3
# 7 Post Additions
U0 = P0 + P1
U1 = P0 + P3
U2 = U1 + P4
U3 = U2 + P6
U4 = U2 + P2
U5 = U1 + P2
U6 = U5 + P5
```

Answer is U0 U6
U3 U4

Example: Fast Matrix Multiplication Over \mathbb{F}_{5} (this weekend)

```
sage: from sage.ext.dense_matrix_pyx import Matrix_modint
sage: n = 512
sage: A = Matrix_modint(5, n,n, range(n^2))
sage: B = Matrix_modint(5, n, n, list(reversed(range(n^2))))
sage: C = B._mul_submatrices_strassen(A, 0, 0, n, 0,0,64) # CPU time:
sage: C = A*B # CPU time: 1.51
sage: n = 1024
sage: A = Matrix_modint(5, n,n, range(n^2))
sage: B = Matrix_modint(5, n, n, list(reversed(range(n^2))))
sage: C = B._mul_submatrices_strassen(A, 0, 0, n, 0,0,64) # CPU time:
sage: C = A*B # CPU time:
sage: n = 2048
sage: A = Matrix_modint(5, n,n, range(n^2))
sage: B = Matrix_modint(5, n, n, list(reversed(range(n^2))))
sage: C = B._mul_submatrices_strassen(A, 0, 0, n, 0,0,64) # CPU time:
sage: time C = A*B # CPU time:
sage: n = 4096
sage: A = Matrix_modint(5, n, n, range(n^2))
sage: B = Matrix_modint(5, n, n, list(reversed(range(n^2))))
sage: time C= B._mul_submatrices_strassen(A, 0, 0, n, 0,0,64)
CPU time: 155.61 s
```


Notes

Remark

- There is also an approach called FFLAS-FFPACK that works just like above, but for the small finite field matrices, does the matrices using a general floating point BLAS (=Basic Linear Algebra System), e.g., ATLAS.
- This can result in additional speedups, but requires that a BLAS be installed.
- This is not yet implemented in SAGE, because SAGE does not include an optimized BLAS.

Rational Reconstruction

Rational reconstruction is a process that allows one to sometimes lift an integer modulo m uniquely to a bounded rational number.

Algorithm (Rational Reconstruction)

Given an integer $a \geq 0$ and an integer $m>1$, this algorithm efficiently computes the numerator n and denominator d of the unique rational number n / d, if it exists, with

$$
\begin{equation*}
|n|, d \leq \sqrt{\frac{m}{2}} \quad \text { and } \quad n \equiv a d \quad(\bmod m) \tag{2.1}
\end{equation*}
$$

or reports that there is no such number.
(1) [Reduce mod m] Let a be the least integer between 0 and $m-1$ that is congruent to a modulo m.
(2) [Trivial cases] If $a=0$ or $a=1$, return a.
(3) [Initialize] Let $b=\sqrt{m / 2}, u=m, v=a$, and set $U=(1,0, u)$ and $V=(0,1, v)$. Use the notation U_{i} and V_{i} to refer to the i th entries of U, V, for $i=0,1,2$.
(4) [Iterate] Do the following as long as $\left|V_{2}\right|>b$: Set $q=\left\lfloor U_{2} / V_{2}\right\rfloor$, set $T=U-q V$, set $U=V$ and $V=T$.
(5) [Numerator and Denominator] Set $d=\left|V_{1}\right|$ and $n=V_{2}$.
(6) [Good?] If $d \leq b$ and $\operatorname{gcd}(n, d)=1$ return n / d, otherwise report that there is no rational number as in (2.1).

Example

We compute an example using SAGE.

```
sage: p = 389
sage: k = GF (p)
sage: a = k(7/13)
210
sage: a.rational_reconstruction()
7/13
```


Example

```
sage: R = Integers(432392082039)
sage: a = R(-1983/17)
sage: print a
178043798370
sage: a.rational_reconstruction()
-1983/17
```


Multimodular Algorithm (Good for Sparse Matrices)

Algorithm (Multimodular Echelon Form)

(1) Rescale input matrix A to have integer entries.
(2) Let c be a guess for the height of the echelon form.
(3) List successive primes p_{1}, p_{2}, \ldots such that the product of the p_{i} is bigger than $n \cdot c \cdot H(A)+1$, where n is the number of columns of A.
(4) Compute the echelon forms B_{i} of the reduction $A\left(\bmod p_{i}\right)$ using, e.g., any other echelon algorithm.
(5) Discard any B_{i} whose pivot column list is not maximal among pivot lists of all B_{j} found so far.
(6) Use the Chinese remainder theorem to find a matrix B with integer entries such that $B \equiv B_{i}\left(\bmod p_{i}\right)$ for all p_{i}.
(7) Use Algorithm 5 to try to find a matrix C whose coefficients are rational numbers n / r such that $|n|, r \leq \sqrt{M / 2}$, where $M=\prod p_{i}$, and $C \equiv B_{i}\left(\bmod p_{i}\right)$ for each prime p. If rational reconstruction fails, use a few more primes. Let E be the matrix over \mathbb{Q} so obtained.
(8) Compute the denominator d of E, i.e., the smallest positive integer such that $d E$ has integer entries. If $H(d E) \cdot H(A) \cdot n<\prod p_{i}$, then E is the reduced row echelon form of A. If not, repeat the above steps with a few more primes.

Jen B. and I: This also all generalizes to number fields.

Echelon Form Example

Example

sage: A = MatrixSpace (QQ, 2000,2000, sparse=True).random_elemen sage: time B = A.echelon_form() CPU time: 1.19 s , Wall time: 1.42 s
sage: $A=$ MatrixSpace $(Q Q, 2000,2100$, sparse=True).random_elemen sage: set_verbose(2)
sage: time $B=A . e c h e l o n _f o r m\left(h e i g h t _g u e s s=100\right) ~$
verbose 2 (2969: matrix.py, echelon_form) height_guess = 100 verbose 2 (2969: matrix.py, echelon_form) echelon modulo $\mathrm{p}=200$ verbose 2 (2969: matrix.py, echelon_form) time to reduce matri verbose 1 (2969: matrix.py, sparse_matrix_pyx matrix_modint ec verbose 2 (2969: matrix.py, echelon_form) time to put reduced

CPU time: 15.79 s

Matrix Inverse

Algorithm (Inverse Using Matrix Multiplication)

Given an $m \times m$ matrix M this algorithm computes the inverse of M (for m a 2-power).
(1) [Extend] Replace M with an augmented matrix $\left(\begin{array}{cc}M & 0 \\ 0 & I_{2}{ }^{n}-m\end{array}\right)$ where $I_{2^{n}-m}$ is the $\left(2^{n}-m\right) \times\left(2^{n}-m\right)$ identity matrix. Note that $\left(\begin{array}{cc}M & 0 \\ 0 & I_{2}{ }^{n}-m\end{array}\right)^{-1}=\left(\begin{array}{cc}M_{-1}^{-1} & 0 \\ 0 & I_{2 n-m}\end{array}\right)$, so it suffices to compute the inverse of this new matrix (which we call M for the rest of the algorithm).
(2) [Submatrices] Write $M=\left(\begin{array}{c}A \\ C \\ D\end{array}\right)$ with each of A, B, C, D a $2^{n-1} \times 2^{n-1}$ matrix.
(3) [Multiply and Invert] Compute each of $E=A^{-1} B, F=D-C E$ and $G=-F^{-1} C A^{-1}$. The inverses involve $2^{n-1} \times 2^{n-1}$ and we do them recursively using this algorithm, except if $n=2$. If either A or F is not invertible choose a random permutation σ of 2^{n}, apply this permutation to the rows of M, and go to Step 2 (or fall back to a standard matrix inverse algorithm).
(4) [Compute Inverse] Compute

$$
M^{\prime}=\left(\begin{array}{cc}
A^{-1}-E G & -E F^{-1} \\
G & F^{-1}
\end{array}\right) .
$$

(5) [Apply Permutation] Apply the permutation σ to the columns of M^{\prime}. Output the resulting matrix, which is M^{-1}. (If $m \neq 2^{n}$ output only the upper left $m \times m$ submatrix of this matrix.)

Echelon Forms via Matrix Multiplication

Algorithm (Asymptotically Fast Echelon Form)

Given a matrix A over the rational numbers (or a number field) this algorithm computes the echelon form of A.
(1) [Find pivots] Choose a random p, q compute the echelon form of $A(\bmod p)(e . g .$, using Gauss elimination). Let c_{0}, \ldots, c_{n-1} be the pivot columns of $A(\bmod p)$. When computing the echelon form save the positions r_{0}, \ldots, r_{n-1} of the rows used to clear each column.
(2) [Extract submatrix] Extract the $n \times n$ submatrix B of A whose entries are $A_{r_{i}, c_{j}}$ for $0 \leq i, j \leq n-1$.
(3) [Compute inverse] Using Algorithm 10 compute the inverse B^{-1} of B. Note that B must be invertible since its reduction modulo p is invertible.
4. [Multiply] Let C be the matrix whose rows are the rows r_{0}, \ldots, r_{n-1} of A. Compute $E=B^{-1} C$. If E is not in echelon form go to Step 1 .
(5) [Done?] Write down a matrix D whose columns are a basis for $\operatorname{ker}(E)$ as explained on page 7. Let F be the matrix whose rows are the rows of A other than rows r_{0}, \ldots, r_{n-1}. Compute the product $F D$. If $F D=0$ output E, which is the echelon form of A. If $F D \neq 0$ go to Step 1 and run the whole algorithm again.

The Problem

Suppose T is an $n \times n$ matrix with entries in a field K (typically a number field or finite field) and that the minimal polynomial of T is square free and has degree n. View T as acting on $V=K^{n}$.

Problem

Find a simple module decomposition $W_{0} \oplus \cdots \oplus W_{m}$ of V as a direct sum of simple $K[T]$-modules. Equivalently, find an invertible matrix A such that A^{-1} TA is a block direct sum of matrices T_{0}, \ldots, T_{m} such that the minimal polynomial of each T_{i} is irreducible.

Application: From this one can efficiently compute systems of eigenvalues, i.e., newforms.

Solution

(1) Compute $f=\operatorname{charpoly}(T)$
(2) Factor $f=\prod g_{i}(x)$.
(3) Compute a nonzero $v_{i} \in \operatorname{ker}\left(g_{i}(T)\right)$.
(4) Compute images of v_{i} under powers of T (Repeat on summands with multiplicity > 1.)

Examples!

```
sage: m = ModularSymbols(389,2,sign=1).cuspidal_submodule()
sage: t2 = m.T(2).matrix()
sage: t2.charpoly().factor()
\((x+2) \star\left(x^{\wedge} 2-2\right) \star\left(x^{\wedge} 3-4 * x-2\right)\) *
    \(\left(x^{\wedge} 6+3 * x^{\wedge} 5-2 * x^{\wedge} 4-8 * x^{\wedge} 3+2 * x^{\wedge} 2+4 * x-1\right) *\left(x^{\wedge} 20-\ldots\right.\)
```

sage: kernel (t2^2-2)
Vector space of degree 32 and dimension 2 over Rational Field
Basis matrix:
$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrr}{[} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1\end{array}\right]$
sage: t2.decomposition()

Polynomial Factorization

Factorization of polynomials in $\mathbb{Q}[X]$ (or over number fields) is an important step in computing an explicit basis Hecke eigenforms for spaces of modular forms. The best algorithm is the van Hoeij method, which uses the LLL lattice basis reduction algorithm in a novel way to solve the optimization problems that come up in trying to lift factorizations $\bmod p$ to \mathbb{Z}. It has been generalized by Belebas, Hoeij, Klüners, and Steel to number fields.

This is in SAGE via both NTL and PARI.

Wiedemann's Minimal Algorithm

This gives a flavor for advanced charpoly algorithms.
Choose a random vector v and compute the iterates

$$
\begin{equation*}
v_{0}=v, \quad v_{1}=A(v), \quad v_{2}=A^{2}(v), \quad \ldots, \quad v_{2 n-1}=A^{2 n-1}(v) \tag{3.1}
\end{equation*}
$$

If $f=x^{m}+c_{m-1} x^{m-1}+\cdots+c_{1} x+c_{0}$ is the minimal polynomial of A, then

$$
A^{m}+c_{m-1} A^{m-1}+\cdots+c_{0} I_{n}=0
$$

where I_{n} is the $n \times n$ identity matrix. For any $k \geq 0$, by multiplying both sides on the right by the vector $A^{k} v$, we see that

$$
A^{m+k} v+c_{m-1} A^{m-1+k} v+\cdots+c_{0} A^{k} v=0
$$

hence

$$
v_{m+k}+c_{m-1} v_{m-1+k}+\cdots+c_{0} v_{k}=0, \quad \text { all } k \geq 0
$$

Any single component of the vectors $v_{0}, \ldots, v_{2 n-1}$ satisfies the linear recurrence with coefficients $1, c_{m-1}, \ldots, c_{0}$. The Berlekamp-Massey algorithm finds the minimal polynomial of a linear recurrence sequence $\left\{a_{r}\right\}$, which is a factor of the minimal polynomial of A.
This algorithm is especially good for sparse matrices.

p-adic Nullspace

Dixon's algorithm computes p-adic approximations to a solution to a linear equations over \mathbb{Q}. Rational reconstruction modulo p^{n} then allows us to recover the corresponding solutions over \mathbb{Q}.

Algorithm (p-adic Nullspace)

Given a matrix A with integer entries and nonzero kernel, this algorithm computes a nonzero element of $\operatorname{ker}(A)$.
(1) [Prime] Choose a random prime p.
(2) [Echelon] Compute the echelon form of A modulo p.
(3) [Done?] If A has full rank modulo p it has full rank, so we terminate the algorithm.
(4) [Setup] Let $b_{0}=0$.
(5) [Iterate] For each $m=0,1,2, \ldots, k$, use the echelon form of A modulo p to find a vector y_{m} with integer entries such that $A y_{m} \equiv b_{m}(\bmod p)$, then set $b_{m+1}=\frac{b_{m}-A y_{m}}{p}$.
(6) [p-adic Solution] Let $x=y_{0}+y_{1} p+y_{2} p^{2}+y_{3} p^{3}+\cdots+y_{k} p^{k}$.
(0) [Lift] Use rational reconstruction (Algorithm 5) to find a vector z with rational entries such that $z \equiv x\left(\bmod p^{k+1}\right)$, if such a vector exists. If the vector does not exist, increase k or use a different p.

