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Hecke Operators on Modular Symbols

Let Γ = Γ1(N) or Γ0(N).
For any positive integer n, let

Xn =

„
a b
0 d

«
∈ Mat2(Z) : a ≥ 1, ad = n, and 0 ≤ b < d

ff
.

Note that the set Xn is in bijection with the set of subgroups of Z2 of index n,
where

`
a b
c d

´
corresponds to L = Z · (a, b) + Z · (0, d), as one can see using

Hermite normal form.

Definition (Hecke Operators on Modular Forms)

If f is a modular form of weight k , then

Tn(f ) =
X
g∈Xn

f [γ]k .

Definition (Hecke Operators on Modular Symbols)

For a modular symbol P{α, β} we define

Tn(x) =
X
g∈Xn

g(P{α, β}).
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Compatibility

Definition (Hecke Operators on Modular Forms)

If f is a modular form of weight k , then

Tn(f ) =
X
g∈Xn

f [γ]k .

Definition (Hecke Operators on Modular Symbols)

For a modular symbol P{α, β} we define

Tn(x) =
X
g∈Xn

g(P{α, β}).

Theorem

We have
〈Tn(f ), x〉 = 〈f , Tn(x)〉.

This is the integration pairing 〈(f ), P{α, β}〉 =
R β

α
f (z)P(z, 1) dz
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Example: Hecke Operators on Modular Symbols

When k = 2 and p is a prime not dividing N, we have

Tp({α, β}) =

„
p 0
0 1

«
{α, β}+

X
r mod p

„
1 r
0 p

«
{α, β}.

Example

For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5}+ {0, 1/10}+ {1/2, 3/5}
= −2{0, 1/5}.

Remark

Computing Hecke operators this way on modular symbols, as I described
them last time, is very slow since you have to convert everything back and
forth to Manin symbols.
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Example: Hecke Operator on Modular Symbols

sage: set_modsym_print_mode(’modular’)
sage: M = ModularSymbols(5,4); M.basis()
(X^2*{0,Infinity}, 4*X^2*{-1/2,0} + 4*X*Y*{-1/2,0} + Y^2*{-1/2,0},

9*X^2*{-1/3,0} + 6*X*Y*{-1/3,0} + Y^2*{-1/3,0}, 16*X^2*{-1/4,0}
+ 8*X*Y*{-1/4,0} + Y^2*{-1/4,0})

sage: t = M.T(2); t
Hecke operator T_2 on Modular Symbols space of dimension 4 for
Gamma_0(5) of weight 4 with sign 0 over Rational Field

sage: print M.0, ’|--->’, t(M.0)
X^2*{0,Infinity} |---> 9*X^2*{0,Infinity} + X^2*{-1/2,0}+X*Y*{-1/2,0}

+ 1/4*Y^2*{-1/2,0} + 27/4*X^2*{-1/3,0} + 9/2*X*Y*{-1/3,0}
+ 3/4*Y^2*{-1/3,0} - 16*X^2*{-1/4,0} - 8*X*Y*{-1/4,0}-Y^2*{-1/4,0}

sage: print M.1, ’|--->’, t(M.1)
4*X^2*{-1/2,0} + 4*X*Y*{-1/2,0} + Y^2*{-1/2,0} |---> 2*X^2*{-1/2,0}

+ 2*X*Y*{-1/2,0} + 1/2*Y^2*{-1/2,0} + 9/2*X^2*{-1/3,0}
+ 3*X*Y*{-1/3,0} + 1/2*Y^2*{-1/3,0} + 128*X^2*{-1/4,0}
+ 64*X*Y*{-1/4,0} + 8*Y^2*{-1/4,0}

sage: print M.2, ’|--->’, t(M.2)
9*X^2*{-1/3,0} + 6*X*Y*{-1/3,0} + Y^2*{-1/3,0} |---> 18*X^2*{-1/2,0}

+ 18*X*Y*{-1/2,0} + 9/2*Y^2*{-1/2,0} - 63/2*X^2*{-1/3,0}
- 21*X*Y*{-1/3,0} - 7/2*Y^2*{-1/3,0} + 128*X^2*{-1/4,0}
+ 64*X*Y*{-1/4,0} + 8*Y^2*{-1/4,0}
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Hecke Operators on Manin Symbols

If S is a subset of GL2(Q), let

S̃ = {g̃ : g ∈ S},

where

g̃ =

„
d −b

−c a

«
= det(g) · g−1.

Also, for any ring R and any subset S ⊂ Mat2(Z), let R[S] denote the free
R-module with basis the elements of S, so the elements of R[S] are the finite
R-linear combinations of the elements of S.

Definition (Merel’s Condition Cn)

An element
h =

X
uM [M] ∈ C[Mat2(Z)n]

satisfies condition Cn if for every K ∈ Mat2(Z)n/ SL2(Z), we have thatX
M∈K

uM([M∞]− [M0]) = [∞]− [0] ∈ C[P1(Q)]. (2.1)
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Definition (Merel’s Condition Cn)

An element
h =

X
uM [M] ∈ C[Mat2(Z)n]

satisfies condition Cn if for every K ∈ Mat2(Z)n/ SL2(Z), we have thatX
M∈K

uM([M∞]− [M0]) = [∞]− [0] ∈ C[P1(Q)]. (2.2)

Suppose h satisfies condition Cn.

Theorem (Merel)

For any Manin symbol [P, g] ∈ Mk (Γ),

Tn([P, (u, v)]) =
X

M

uM [P(aX + bY , cX + dY ), (u, v)M]. (2.3)

Here (u, v) corresponds to a coset of Γ in SL2(Z), and if
(u′, v ′) = (u, v)M ∈ (Z/NZ)2, and gcd(u′, v ′, N) 6= 1, then we omit the
corresponding summand.
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Heilbronn Matrices

Proposition (Merel)

The element

Fn =
X

a>b≥0
d>c≥0

ad−bc=n

»„
a b
c d

«–
∈ Z[Mat2(Z)n]

satisfies condition Cn.

Merel’s proof is not too difficult (two pages). He also gives several other
examples of elements that satisfy condition Cn. They each have ∼ n log(n)
terms, which has implications for complexity of computing Hecke operators.

Remark

There is a map π : Z[Mat2(Z)p] → Z[Mat2(Z/NZ)p]. For fixed N, if you could
compute π(Fp) in time polynomial in log(p), then (I think) you would be able
to compute Hecke eigenvalues in extreme generality in polynomial time.
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Example: Matrices that Satisfy Cn

sage: list(HeilbronnMerel(2))
[[1, 0, 0, 2], [1, 0, 1, 2], [2, 0, 0, 1], [2, 1, 0, 1]]

sage: list(HeilbronnMerel(3))
[[1, 0, 0, 3], [1, 0, 1, 3], [1, 0, 2, 3], [2, 1, 1, 2],
[3, 0, 0, 1], [3, 1, 0, 1], [3, 2, 0, 1]]

sage: list(HeilbronnMerel(6))

[[1, 0, 0, 6], [1, 0, 1, 6], [1, 0, 2, 6], [1, 0, 3, 6],
[1, 0, 4, 6], [1, 0, 5, 6], [2, 0, 0, 3], [2, 1, 0, 3],
[2, 0, 1, 3], [2, 0, 2, 3], [2, 1, 2, 4], [2, 1, 4, 5],
[3, 0, 0, 2], [3, 1, 0, 2], [3, 2, 0, 2], [3, 0, 1, 2],
[3, 2, 3, 4], [4, 2, 1, 2], [4, 3, 2, 3], [5, 4, 1, 2],
[6, 0, 0, 1], [6, 1, 0, 1], [6, 2, 0, 1], [6, 3, 0, 1],
[6, 4, 0, 1], [6, 5, 0, 1]]
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Linear Functionals

Let T ⊂ End(Sk (Γ)) be the Hecke algebra.
Gabor explained that there is an isomorphism of vector spaces

Ψ : Sk (Γ)
∼=−−→ Hom(T, C) (3.1)

that sends f ∈ Sk (Γ) to the homomorphism

t 7→ a1(t(f )).

Definition

For any C-linear map ϕ : TC → C, let

fϕ =
∞X

n=1

ϕ(Tn)qn ∈ C[[q]].

Lemma

The series fϕ is the q-expansion of Ψ−1(ϕ) ∈ Sk (Γ).
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Definition

For any C-linear map ϕ : TC → C, let

fϕ =
∞X

n=1

ϕ(Tn)qn ∈ C[[q]].

Lemma

The series fϕ is the q-expansion of Ψ−1(ϕ) ∈ Sk (Γ).

Conclusion: The cusp forms fϕ, as ϕ varies through a basis of HomC(TC, C),
form a basis for Sk (Γ). In particular:

We can compute Sk (Γ) by computing a basis for HomC(TC, C),
where we compute T in any way we want, e.g., using a space that
contains an isomorphic copy of Sk (Γ).
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Example: S2(Γ0(11))

The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11); M.basis()
((1,0), (1,8), (1,9))
sage: S = M.cuspidal_submodule(); S
Dimension 2 subspace of a modular symbols space of level 11

We compute a few Hecke operators, then read off a nonzero cusp form,
which forms a basis for S2(Γ0(11)):

sage: S.T(2).matrix()
[-2 0]
[ 0 -2]
sage: S.T(3).matrix()
[-1 0]
[ 0 -1]

Thus
f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11))

forms a basis for S2(Γ0(11)).
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Example: S2(Γ0(33))

We compute a basis for S2(Γ0(33)) to precision O(q6).

sage: M = ModularSymbols(33)
sage: S = M.cuspidal_submodule(); S
Dimension 6 subspace of a modular symbols space of level 33

Thus dim S2(Γ0(33)) = 3.

sage: R.<q> = PowerSeriesRing(QQ)
sage: a = [S.T(n).matrix()[0,0] for n in range(6)]
sage: f00 = sum(v[n]*q^n for n in range(6)) + O(q^6)
sage: f00
q - q^2 - q^3 + q^4 + O(q^6)

This gives us one basis element of S2(Γ0(33)). It remains to find two others.
We find

sage: a = [S.T(n).matrix()[0,1] for n in range(6)]
sage: f01 = sum(v[n]*q^n for n in range(1,6)) + O(q^6)
sage: f01
-2*q^3 + O(q^6)

and

sage: a = [S.T(n).matrix()[1,0] for n in range(6)]
sage: f10 = sum(v[n]*q^n for n in range(1,6)) + O(q^6)
sage: f10
q^3 + O(q^6)

This third one is (to our precision) a scalar multiple of the second, so we look
further.

sage: a = [S.T(n).matrix()[1,1] for n in range(6)]
sage: f11 = sum(v[n]*q^n for n in range(1,6)) + O(q^6)
sage: f11
q - 2*q^2 + 2*q^4 + q^5 + O(q^6)

This latter form is clearly not in the span of the first two. Thus we have the
following basis for S2(Γ0(33)) (to precision O(q6)):

f00 = q − q2 − q3 + q4 + · · ·

f11 = q − 2q2 + 2q4 + q5 + · · ·

f10 = q3 + · · ·
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Computing Eigenforms

1 Use the Atkin-Lehner theory of newforms to write Sk (N) in terms of new
subspaces of Sk (M) with M | N:

Sk (N) =
M
M|N

M
d|N/M

αd(Sk (M)new).

2 Compute the new subspace of V = Sk (M) using degeneracy maps,
which have an explicit description.

3 Decompose V as a direct sum of simple T-modules (using linear algebra
– charpolys, kernels, etc.)

4 Suppose W ⊂ V is a simple module and fix x ∈ W nonzero.
5 Define a surjective map φ : TQ → W given by t 7→ tx .
6 This endows W with an algebra structure (in which x corresponds to 1).

In particular, you can choose and fix an isomorphism
W → K = Q(a2, a3, . . .), given in terms of a power basis.

7 Store either the Tp(x) or Tn(x), depending on the intended application,
along with the isomorphism W → K .

8 (One can recover an for n composite from the ap for p prime via
arithmetic.)
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