
IRREDUCIBLE SPECIALIZATION IN GENUS 0

BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

Abstract. For irreducible f(T ) ∈ Z[T ], a classical conjecture predicts how often f has
prime values. The frequency of these prime values is believed to be controlled by local
obstructions. We discuss an analogue of this conjecture for irreducible f(T ) ∈ κ[u][T ],
with κ a finite field. Local obstructions are no longer sufficient. When f is inseparable
over κ(u), there is a new obstruction that is global, and it is quantified and effectively
computable through the average of the Möbius function on specializations of f(T ).

We build on some results of Swan to prove the surprising fact that the “Möbius average”
of f(g) with g ∈ κ[u] of large degree n has periodic behavior in n when f is inseparable
over κ(u), and that the periodicity is governed by the extrinsic geometry of the plane curve
f = 0 over κ. We use the periodic Möbius average behavior in two ways: it enables us to
show in specific examples that f(g) is not irreducible as often as analogies with the classical
case suggest, and we incorporate the Möbius periodicity into a modified conjecture for how
often f(g) is irreducible. The modified conjecture matches numerical data well.

1. Introduction

A well-known conjecture going back to Bouniakowsky [6] says that a nonconstant irre-
ducible polynomial in Z[T ] has infinitely many prime values in Z unless there is a divisibility
obstruction, meaning that all values of the polynomial on Z are divisible by a nontrivial
common factor. For example, 3T 2 − T + 2 is irreducible in Z[T ] but 3n2 − n + 2 is always
even (and thus hardly ever prime) for n ∈ Z.

Quantitatively, when f(T ) ∈ Z[T ] is nonconstant and irreducible with no divisibility
obstructions, it is expected that

(1.1) #{1 ≤ n ≤ x : f(n) prime} ?∼ C(f)
deg f

x

log x
,

where the constant C(f) is a certain (nonzero) infinite product whose definition will be
recalled in §2. The notation ?∼ denotes a conjectural asymptotic relation. It is traditional to
assume that f has a positive leading coefficient, but if negative prime values are allowed then
this positivity condition on the leading coefficient of f(T ) is unnecessary. (The sampling
range 1 ≤ n ≤ x is also traditional. It could be replaced with |n| ≤ x, after making an
obvious change on the right side.)

The relation (1.1) is a conjecture due to Hardy and Littlewood [16] in special cases
and Bateman and Horn [1, 2] more generally. The only proved case of (1.1) is in degree
1: the prime number theorem is the case f(T ) = T and Dirichlet’s theorem is the case
f(T ) = aT + b with a and b nonzero and relatively prime. While (1.1) can be extended
to allow for several polynomials, such as twin-prime pairs, no version of the conjecture for
several polynomials has been proved, even qualitatively.
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In this paper, we discuss an analogue of (1.1) in κ[u][T ] with κ a finite field. An extension
of this work, with κ[u] replaced by the coordinate ring of any smooth affine curve over κ
with one geometric point at infinity, will be the subject of [10]. The proofs in [10] do not
supersede the material here, but rather depend upon it, and in the case of higher genus we
shall have to use geometric techniques that are not helpful in the case of genus 0.

The usual dictionary between Z and κ[u] suggests that a polynomial f(T ) in κ[u][T ] that
is nonconstant in T should have infinitely many prime (i.e., irreducible) specializations on
κ[u] if and only if f is irreducible and f has no divisibility obstructions (i.e., values of f(T )
on κ[u] do not all share a common nontrivial factor). For the rest of this Introduction, it is
assumed that f ∈ κ[u][T ] satisfies the previous three conditions: it has positive T -degree,
it is irreducible in κ[u][T ], and it has no divisibility obstructions. We will call these the
Bouniakowsky conditions. Setting q = #κ, it is natural to guess that for such f ,

(1.2) #{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ C(f)
degT f

(q − 1)qn

log(qn)

as n → ∞, where the constant C(f) 6= 0 is similar to the classical paradigm over Z. (For
the definition of C(f), see (2.4).) Note that sampling in (1.2) is over all polynomials in κ[u]
of degree n, not just monics; this is why q − 1 occurs in (1.2). Although it is traditional to
believe that problems over Z become more accessible when they are reformulated over κ[u],
the only proved instance of (1.2) is degT f = 1, just as in the classical situation. Counting g
in (1.2) with deg g ≤ n (or (deg g)|n) instead of deg g = n does not simplify matters, and in
fact we shall see that counting by separate degrees is essential for a proper understanding
of the situation.

Numerical evidence supports (1.2) when f is separable over κ(u), e.g., when f is irre-
ducible in κ[T ]. The raison d’être of this paper is the discovery that (1.2) can be wrong
when f is inseparable over κ(u), e.g., when f(T ) = T p + u. Thus, we call the right side of
(1.2) the naive estimate. The rest of this Introduction provides compelling numerical evi-
dence that (1.2) is not generally true and describes both proved counterexamples to (1.2)
and our proposed correction to (1.2), relying on new nontrivial theorems about polynomials
over finite fields.

Example 1.1. In Table 1.1, we count prime values of f(g), where f(T ) = T 12+(u+1)T 6+u4

and g runs over polynomials of degree n in F3[u], with 9 ≤ n ≤ 17. (Here and in later
examples, checking the Bouniakowsky conditions for f is left to the reader. All computations
in this paper were carried out using PARI, NTL, and MAGMA, with deterministic primality
testing.) An estimate for C(f) is 3.52138375. Our range of degrees in Table 1.1 is small,
but the sampling sets are substantial; e.g., there are 9,565,938 polynomials of degree 14 in
F3[u]. After each count of prime values in the table, we give the naive estimate for that
count according to (1.2) and we give the ratio of these quantities. These data suggest the
ratio tends to a number ≈ 1.33 rather than to 1. Incidentally, there is no point in searching
for prime values of f(g) in F9[u] since f(T ) factors non-trivially in F9(u)[T ] as follows:

f(T ) = (T 6 − 2i(u + 2)T 3 + u2)(T 6 + 2i(u + 2)T 3 + u2),

where i2 = −1. Obviously f(g) is reducible in F9[u] for all g ∈ F9[u].

Remark 1.2. To keep the presentation of data in our tables clean and informative, we
round naive estimates (that is, the right side of (1.2)) to one digit after the decimal point
— as a simple reminder that they are only estimates — and we round ratios between the two
sides of (1.2) to three digits after the decimal point. Our policy has been to compute C(f)
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to high enough accuracy to convince ourselves that we have correctly rounded all estimates
presented in the tables; we have not worried about giving rigorous proofs of the correctness
of the rounding in these tables, since the data in the tables merely serve to illustrate and
motivate theorems and conjectures.

n Count Naive Est. Ratio
9 1624 1168.3 1.390

10 4228 3154.5 1.340
11 11248 8603.2 1.307
12 31202 23658.7 1.319
13 87114 65516.5 1.330
14 244246 182510.2 1.338
15 683408 511028.6 1.337
16 1914254 1437268.0 1.332
17 5409728 4058168.4 1.333

Table 1.1. T 12 + (u + 1)T 6 + u4 over F3[u]

Example 1.3. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 over F3[u]. Here
C(f) ≈ 1.115866. Table 1.2 suggests (1.2) is wrong if n ≡ 1 or 3 mod 4: no irreducible
values seem to occur when n ≡ 1 mod 4, while about twice as many irreducible values
seem to occur as predicted by (1.2) when n ≡ 3 mod 4. The absence of prime f(g) for
deg g ≡ 1 mod 4 is proved in Example 7.8.

If we look at irreducible values of f(g) as g runs over F9[u] instead of F3[u], then data
suggest the ratio of the two sides in (1.2) falls into a pattern of 2 interlaced convergent
sequences rather than 4 as in Table 1.2.

n Count Naive Est. Ratio
5 0 11.0 0
6 28 27.4 1.022
7 146 70.5 2.071
8 173 185.1 0.935
9 0 493.6 0

10 1345 1332.8 1.009
11 7348 3634.9 2.022
12 10138 9996.1 1.014
13 0 27681.4 0
14 77288 77112.5 1.002
15 432417 215915.0 2.003

Table 1.2. T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 over F3[u]

Example 1.4. Consider T 8 + u3 over F2[u]. Although (1.2) predicts an exponentially
growing number of prime values in each degree, T 8 +u3 has no prime values on F2[u]! This
is a special case of an example of Swan [22, p. 1102] from 1962, but the context of Swan’s
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work was sufficiently different from questions related to a κ[u]-analogue of (1.1) that a link
between the two was not identified until now. In Example 3.13 we will give an example like
Swan’s in κ[u] for any finite field κ.

Example 1.4 is surprising from a classical point of view, but we regard Example 1.3
as more instructive because it suggests that the ratio of the two sides of (1.2) can have
interlaced limiting values as a periodic function of n.

Further numerical work leads to more non-constant polynomials f(T ) that do not appear
to satisfy (1.2). We observed the following three common features of such polynomials:

• f(T ) is a polynomial in T p, where p is the characteristic of κ.
• The ratio of the two sides in (1.2) appears to have 1, 2, or 4 limiting values as a

function of n mod 4 when n →∞.
• The numbers µ(f(g)), where µ is the Möbius function on κ[u] (see Definition 3.1)

and g runs over κ[u], exhibit unusual statistics. Essentially, this means the nonzero
values of µ(f(g)) are not equally often 1 and −1. We call this idea the Möbius bias.
One of the basic results in this paper is a theorem that lets us rigorously prove such
a bias can occur for polynomials in T p when p 6= 2 and in T 4 when p = 2.

For an algebraist, it is comforting to find apparent counterexamples to (1.2) only among
polynomials in T p, since irreducible polynomials in T p are already well-known to exhibit
peculiar algebraic properties in characteristic p. These are the irreducible f ∈ κ[u][T ]
that have positive degree in T and are inseparable over the field κ(u). While inseparable
irreducibles have no classical analogue, there is no reason to dismiss them from consideration
in (1.2). For instance, the nonvanishing of C(f) in (1.2) is unrelated to whether or not f(T )
is inseparable in T . Moreover, (1.2) does look good for many inseparable irreducibles. A
simple example is T p + u2 (see Example 3.12 and Table 7.1).

By studying apparent counterexamples to (1.2) in the context of our three observations
above, we were led to a new heuristic idea: statistics for irreducible values of f(g) as g
varies are influenced by an appropriate average value of µ(f(g)) as g varies. Averaging the
Möbius bias in the right way enables us to predict the 1, 2, or 4 apparent limits suggested
in all numerical examples that we have examined, and moreover these predicted values are
effectively computable rational numbers. Whereas Bouniakowsky’s divisibility obstruction
is of a local character (a divisibility obstruction, by its definition, comes from divisibility
by a common prime), the consideration of Möbius averages is fundamentally global. We
are not aware of an explanation of the above phenomena in κ[u] by a heuristic use of the
circle method in characteristic p, and Möbius bias is not expected to occur for any primitive
polynomial in Z[T ] that is separable with positive degree in Q[T ] (nor do we expect it to
occur for any primitive polynomial in κ[u][T ] that is separable with positive T -degree in
κ(u)[T ]).

To illustrate our Möbius-bias heuristic for Example 1.1, let f(T ) = T 12 + (u + 1)T 6 + u4

over F3[u]. In Example 4.2 we will show

(1.3) µ(f(g)) =
(

g(0)2(g(1)2 + 1)
3

)
for all g in F3[u], where ( ·3) is the Legendre symbol. (The term g(0)2 should not be omitted
from the Legendre symbol, since it could be 0.) As g runs over polynomials of a given
degree ≥ 2 in F3[u], (1.3) shows that µ(f(g)) is −1 twice as often as it is 1. The average
nonzero value of µ(f(g)) in each degree ≥ 2 is therefore (−1 − 1 + 1)/3 = −1/3 (not
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just asymptotically, but exactly). Note that 1 − (−1/3) = 4/3 = 1.33 . . . seems to fit the
deviation from (1.2) in Table 1.1. Such agreement is purely numerical; we have no proof
linking µ(f(g)) to the primality statistics of f(g).

Remark 1.5. Since the Möbius bias is a global parity condition on squarefree factorizations
(with the squarefreeness of f(g) considered to be a preliminary local condition), it is natural
to ask if there are higher-order heuristic global obstructions to primality, such as a mod-3
condition on squarefree factorizations. We have studied many examples over small finite
fields (of characteristics 2, 3, 5, and 7) and have found that the Möbius bias leads to a
correction factor that gives an excellent numerical fit to all observed deviations from (1.2).
Without guidance provided by examples giving evidence to the contrary, the Möbius-bias
heuristic provides a satisfactory theory to account for all deviations from (1.2).

To convert our heuristic into a correction term in (1.2), we now describe some new
theorems about the Möbius function on κ[u]. More accurately, our results concern the
behavior of µ(f(g)), where f(T ) is fixed in κ[u][T p] and g runs through κ[u]. Our study
of µ(f(g)) is inspired by counterexamples to (1.2), but we do not require that f(T ) be
irreducible in κ[u][T ]: we only need f(T ) to be squarefree, and (unlike irreducibility) this
is a stable property under extension of the finite constant field (f(T ) in Example 1.1 is
reducible in F9[u][T ], but still squarefree). Therefore we now fix f(T ) ∈ κ[u][T p] that is
squarefree in κ[u][T ] and, to avoid trivialities, we assume f 6∈ κ.

The key result, to be made precise in Theorem 1.7 below, is that µ(f(g)) is essentially a
periodic function of g and we can provide a formula for a modulus of periodicity. When f(T )
is monic in T , for instance, a modulus of periodicity is the radical of the κ[u]-resultant (this
means the resultant of polynomials in T with coefficients in κ[u]) of f(T ) and the u-partial
derivative (∂uf)(T ). As an example, let f(T ) be the polynomial in Example 1.1. The F3[u]-
resultant of f and ∂uf is u18(u−1)18, whose radical is u(u−1). This is consistent with (1.3),
where we see that µ(f(g)) depends on g modulo u(u− 1). To give a modulus of periodicity
for µ(f(g)) without a T -monicity restriction on f (and to prepare for the viewpoint that
works in higher genus), we use geometric language as follows. Let Zf = {f(u, T ) = 0} be
the affine plane curve corresponding to f ∈ κ[u, T ]. The projection from Zf to the T -axis
is flat and generically étale, so this projection is non-étale at a finite set of points on Zf ,
say at the set B. Projecting B onto the u-axis gives a finite set of points. Define Mgeom

f

to be the monic polynomial in κ[u] whose roots are this finite set on the u-axis, each root
having multiplicity 1 (that is, Mgeom

f is squarefree). We label this polynomial Mgeom
f since

it is not affected by replacing κ with a finite extension. In this monic case, this recovers the
preceding κ[u]-resultant construction.

Remark 1.6. Concretely, an element u0 in an algebraic closure of κ is a root of Mgeom
f

precisely when the specializations f(u0, T ) and (∂uf)(u0, T ) have a common T -root. This
condition is the same as u0 being a root of the κ[u]-resultant of f and ∂uf only when the
u0-specialization of either f or ∂uf has the same respective T -degree as f or ∂uf . An
equivalent description of this latter condition is: u0 is not a double root of the leading
coefficient of f as a polynomial in T .

For example, if f(T ) is monic in T then we conclude that Mgeom
f is indeed the radical of

the κ[u]-resultant of f and ∂uf . For a contrast, let f = u2T p + u + 1 with p 6= 2; note that
the leading coefficient of f as a polynomial in T has a double root at u = 0. The projection
from Zf to the T -axis is non-étale only at (u0, t0) = (−2, 1/4), so Mgeom

f = u+2. However,
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the κ[u]-resultant of f and ∂uf is −up(u+2), and this has an extra root at 0 in comparison
with Mgeom

f .

The following theorem explains how Mgeom
f is essentially a modulus of periodicity for

µ(f(g)), and that it is a minimal modulus of periodicity after a suitable finite extension
of the constant field. In the theorem, the quadratic character of κ× is denoted χ, with
χ(0) = 0. (A more accurate notation than µ(f(g)) and χ is µκ[u](f(g)) and χκ, since the
Möbius function and the quadratic character are sensitive to the choice of constant field κ.)

Theorem 1.7. Let κ have odd characteristic p and f(T ) ∈ κ[u][T p] be squarefree in κ[u][T ]
and not lie in κ.

There is a nonzero polynomial Mf,κ in κ[u] such that for g1 = c1u
n1 + · · · and g2 =

c2u
n2 + · · · in κ[u] with sufficiently large degrees n1 and n2,

(1.4) g1 ≡ g2 mod Mf,κ, n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2)).

If −1 is a square in κ or degT f is even, the second congruence in (1.4) may be relaxed to
n1 ≡ n2 mod 2.

One choice for the modulus Mf,κ is Mgeom
f . Using this choice, there is a lower bound on

n1 and n2 beyond which (1.4) holds when κ is replaced by any finite extension.
The monic modulus Mmin

f,κ of minimal degree in κ[u] that makes (1.4) true for large n1

and n2 is a factor of any other Mf,κ. Moreover, there is a finite extension κ′/κ such that
Mmin

f,κ′′ = Mgeom
f whenever κ′′ is a finite extension of κ′.

Motivated by our examples and the technical needs of proofs, throughout the paper we
will keep track of the behavior of bounds and other parameters with respect to replacing κ
with an arbitrary finite extension κ′ while using the same f . In Example 4.9 we will give
an f and κ such that Mmin

f,κ 6= Mgeom
f .

In the proof of Theorem 1.7, the importance of f(T ) being a polynomial in T p is that its
T -partial derivative is 0. That implies, for any g ∈ κ[u], the u-derivative of f(g(u)) ∈ κ[u] is
(∂uf)(g(u)). In other words, ∂u(f(u, g(u))) = (∂uf)(u, g(u)) if we consider f as a function
of two variables u and T . Therefore the u-derivative of f(g) is a polynomial in g with no
dependence on g′(u) in such cases.

Remark 1.8. From the geometric point of view, it is surprising to have an implication as
in (1.4) that can relate polynomials gj with different degrees. Since the quadratic nature
of −1 in κ× influences whether or not (1.4) depends on deg g mod 4 or on deg g mod 2, it
seems unlikely that there can be a purely geometric proof of (1.4), although geometric ideas
do play a prominent role in our proof.

Example 1.9. Let f(T ) = T 12 +(u+1)T 6 +u4 in F3[u][T ], as in Example 1.1. Remark 1.6
and an earlier calculation imply that Mgeom

f = u(u − 1) , so Theorem 1.7 says that, for
deg g � 0, 0 µ(f(g)) depends on g mod u(u− 1), deg g mod 4, and the quadratic character
of the leading coefficient of g. This is consistent with (1.3). Viewing (1.3) in the con-
text of Theorem 1.7, note that the mod-4 and quadratic-character conditions in (1.4) are
unnecessary and the condition deg g � 0 can be made explicit: deg g ≥ 2.

Remark 1.10. For both theoretical and numerical purposes, it would be useful to establish
an explicit lower bound on n1 and n2 beyond which (1.4) holds even if κ is replaced by a
finite extension. We do not have any theorems in this direction, but we expect that there
should be a sufficient lower bound with order of magnitude deg Mgeom

f .



IRREDUCIBLE SPECIALIZATION IN GENUS 0 7

Example 1.11. We return to the polynomial f(T ) in Example 1.3, but considered over
κ[u] for any finite κ of characteristic 3. As preparation for the proof of Theorem 1.7, in
Example 4.3 we will show

(1.5) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2)χ(g(2))

when g = cun + · · · , with n ≥ 1. Therefore µ(f(g)) depends on g mod (u − 1)(u − 2),
deg g mod 4, and the quadratic character of the leading coefficient c. (One checks that f
and ∂uf have κ[u]-resultant −(u − 1)6(u − 2)9 whose monic radical is (u − 1)(u − 2), so
(1.5) and Remark 1.6 recover Theorem 1.7 in this case.) Formula (1.5) shows that Möbius
behavior can change upon extension of the ground field: when −1 is a square in κ, the term
χ(−1)n(n−1)/2 drops out, so dependence of µ(f(g)) on deg g mod 4 drops to dependence on
deg g mod 2.

The case of characteristic 2 lies deeper than the case of odd characteristic. Our treatment
of characteristic 2 uses liftings to characteristic 0, via Witt vectors. (Readers not interested
in characteristic 2 can skip ahead to the paragraph after Remark 1.13.) Here is an analogue
of Theorem 1.7 in characteristic 2 for the case of polynomials in T 4; in §6 we will state and
prove a more technical theorem that applies to polynomials in T 2.

Theorem 1.12. Let κ be a finite field with characteristic 2. Fix a nonzero f(T ) ∈ κ[u][T 4]
that is squarefree in κ[u][T ] and assume f 6∈ κ. There is a nonzero Mf,κ in κ[u] such
that for g ∈ κ[u] with sufficiently large degree, µ(f(g)) is determined by g mod Mf,κ and
deg g mod 2. If [κ : F2] is even or degT f ≡ 0 mod 8, then there is no dependence on
deg g mod 2.

Let W (κ) be the Witt vectors of κ. The modulus Mf,κ may be chosen to be a polynomial
that is the reduction of a certain geometrically-constructed squarefree polynomial in W (κ)[u].
For this choice of modulus, the “sufficient largeness” on deg g in the previous paragraph may
be chosen uniformly with respect to finite extensions of κ.

An interesting example of Theorem 1.12 is f(T ) = T 8 + (u3 + u)T 4 + u with κ of
characteristic 2. For g ∈ κ[u], the proof of Theorem 1.12 implies Mf,κ = 1 and µ(f(g)) = 1
for deg g � 0. Thus, (1.2) fails in this example. See Example 6.13 for further information.

It seems likely that the modulus Mf,κ in Theorem 1.12 need not be squarefree, which is
a contrast with Theorem 1.7. For example, when κ has characteristic 2 and

f(T ) = T 16 + (u9 + u4 + u2 + u)T 8 + u5 + u3 ∈ κ[u][T ],

then the proof of Theorem 1.12 yields

(1.6) g1 ≡ g2 mod u9(u + 1)4 ⇒ µ(f(g1)) = µ(f(g2))

when deg gj ≥ 2 (see Example 6.14), and numerical evidence suggests (but we cannot prove)
that the modulus in (1.6) cannot be replaced with its radical, even if we restrict attention
to deg gj � 0 instead of to deg gj ≥ 2. Over some fields it seems probable that u9(u+1)4 in
(1.6) can be replaced with a proper factor; for example, when κ = F2 the data suggest (but
we cannot prove) that u3(u+1) may be used as a modulus in (1.6) when taking deg gj ≥ 2.
In fact, for κ = F2 it appears from the data that we can use deg gj ≥ 0.

Remark 1.13. Numerical examples suggest that µ(f(g)) is not always periodic in g when
f ∈ κ[u][T 2]. More specifically, in Theorem 6.10 we will provide a general formula for
µ(h(g2)) for h ∈ κ[u][T ] such that h(T 2) is squarefree in κ[u][T ], and the formula involves the
second symmetric function of the geometric residues of a certain rational 1-form depending
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on g and h. When h is not a polynomial in T 2 (so h(T 2) is not a polynomial in T 4) then
this symmetric function of residues is generally nonzero, and for this reason it seems that
new ideas are required to generalize Theorem 1.12 beyond the case f ∈ κ[u][T 4].

Since Theorem 1.7 and Theorem 1.12 are rather unexpected from a classical point of view,
let us indicate how we are able to prove such periodicity properties for the Möbius function.
For simplicity, suppose p 6= 2. The starting point is an elementary formula of Swan over
finite fields of odd characteristic: µ(κ[u]/(h)) = (−1)nχ(discκ(h)) for any nonzero h ∈ κ[u]
with degree n, where χ is the quadratic character on κ× (vanishing at 0) and discκ(h) ∈ κ is
the discriminant of the finite κ-algebra κ[u]/(h) with respect to the basis {1, u, . . . , un−1}.
By expressing the discriminant in terms of the resultant against the derivative (see §4 for
our conventions concerning resultants), in the special case h = f(g) with f as in Theorem
1.7 we can exploit the property that h′ = (∂uf)(g) is also a polynomial in g because it
identifies our problem with a special case of the setup in:

Theorem 1.14. Let F be a perfect with with arbitrary characteristic and let f1, f2 ∈ F [u, T ]
be nonzero elements whose zero loci Zf1 and Zf2 in the affine plane have finite intersection.
For each x = (ux, tx) ∈ Zf1 ∩ Zf2, let ix(Zf1 , Zf2) be the local intersection number.

There exist c0, c1 ∈ F× and m0,m1 ∈ Z with m1 ≥ 0 such that for g ∈ F [u] with
sufficiently large degree n, the resultant RF (f1(u, g), f2(u, g)) is given by

RF (f1(u, g), f2(u, g)) = c0c
n
1 (lead g)m0+m1n

∏
x∈Zf1

∩Zf2

NF (x)/F (g(ux)− tx)ix(Zf1
,Zf2

),

where lead g ∈ F× is the leading coefficient of g.

We prove this theorem as a universal algebraic identity (with deg g fixed and large). The
intervention of n in this identity is only in two exponents, so upon applying the quadratic
character in the case that F = κ is finite with odd characteristic we get dependence on only
n mod 2 and g mod M with M =

∏
ux

NF (ux)/F (u − ux) ∈ F [u]. The comparison between
discF (h) and RF (h, h′) involves the sign (−1)(deg h)(deg h−1)/2 that depends on deg h mod 4,
and so in this way we are able to deduce Theorem 1.7 from Theorem 1.14. The proof of The-
orem 1.14 is a recursive application of elementary properties of resultants and intersection
numbers. Allowing the generality in F in Theorem 1.14 is useful: we apply it over 2-adic
fields (characteristic 0!) in our study of characteristic 2. The key to generalizing our results
to higher genus is to appropriately generalize Theorem 1.14, and even the formulation of
such a generalization is not obvious because resultants are no longer available.

Returning to the faulty (1.2), we modify it as follows. Let f(T ) satisfy the Bouniakowsky
conditions: f has positive T -degree, is irreducible in κ[u][T ], and has no divisibility obstruc-
tions. Assume also that f(T ) is a polynomial in T p when p 6= 2 or in T 4 when p = 2. Define

(1.7) Λκ,M (f ;n) := 1−
∑

deg g=n,gcd(f(g),M)=1 µ(f(g))∑
deg g=n,gcd(f(g),M)=1 |µ(f(g))|

,

where M ∈ κ[u] is any modulus Mf,κ from Theorem 1.7 or Theorem 1.12; both sums run
over g, and the denominator is nonzero for large n by Lemma 7.2. Note Λκ,M (f ;n) is a
rational number in [0, 2].

There are two senses in which the sequence Λκ,M (f ;n) is independent of M :
(1) for any two choices of modulus M , the corresponding sequences Λκ,M (f ;n) agree

for large n (see Theorem 7.5),
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(2) in many (but not all!) examples, Λκ,M (f ;n) = Λκ,1(f ;n) for large n (that is, the
constraint (f(g),M) = 1 in (1.7) can be dropped), even when 1 is not a genuine
modulus for g 7→ µ(f(g)).

At the end of Remark 7.11, we will give a general criterion for (2) to hold, which in particular
applies to Example 1.1. (We will also explain in that remark why we use the condition
gcd(f(g),M) = 1 in the definition of Λκ,M (f ;n).) Because of (1), we may abbreviate
Λκ,M (f ;n) to Λκ(f ;n), provided that the properties that we care about are limited to large
n, as they usually are. The independence of the choice of M provides a robustness that
makes the definition of (1.7) less sensitive to change in M than it may initially seem to be.

The marvelous fact (Theorem 7.5) is that Λκ(f ;n) is periodic in n with period 1, 2,
or 4 for sufficiently large n; intuitively, this is a consequence of Theorems 1.7 and 1.12,
and consequently Λκ(f ;n) is far simpler than it at first appears to be. This makes the
following proposed correction to (1.2) simple to appreciate: when f ∈ κ[u][T p] satisfies the
Bouniakowsky conditions, with the extra restriction that f ∈ κ[u][T 4] when p = 2,

(1.8) #{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ Λκ(f ;n)
C(f)

degT f

(q − 1)qn

log(qn)

as n →∞. If Theorem 1.12 can be generalized to allow f ∈ κ[u][T 2] (see Remark 1.13) then
it should be possible to formulate a version of (1.8) in characteristic 2 for any f ∈ κ[u][T 2]
that satisfies the Bouniakowsky conditions.

Example 1.15. Let f1(T ) be the polynomial in Example 1.1 and f2(T ) be the polynomial
in Example 1.3. We will show in Example 7.7 that ΛF3(f1;n) = 4/3 for n ≥ 2 and in
Example 7.8 that ΛF3(f2;n) = 0, 1, 2, 1, 0, 1, 2, 1, . . . for n ≥ 1, Thus, (1.8) appears to fix
the discrepancies in the ratio columns for Tables 1.1 and 1.2 when we stay away from
(periodic!) n � 0 such that Λκ(f ;n) = 0.

Our numerical evidence suggests that the naive estimate (1.2) is correct for many T -
inseparable f , and in some loose sense (1.2) seems to be correct much more often than it
is incorrect. As a consistency check between (1.2) and (1.8), we have always been able to
prove Λκ(f ;n) = 1 for large n in examples where data suggest that (1.2) holds. Of course,
as with any setting where a quantifiable obstruction may often turn out to be trivial, the
point is that nontrivial examples really do occur.

The possibility that 0 lies in the period of Λκ(f ;n) requires a clarification on the meaning
of (1.8) as an asymptotic relation. When 0 is in the period of Λκ(f ;n), what does (1.8)
mean for the n’s where Λκ(f ;n) is periodically 0? The vanishing of Λκ(f ;n) implies that for
all g of degree n, either µ(f(g)) = 1 or (f(g),Mf,κ) 6= 1. When n is large, both cases imply
that f(g) is reducible. Therefore, the appearance of 0 in the period for Λκ(f ;n) implies
that both sides of (1.8) vanish for such n, which proves there is a periodic lack of irreducible
specializations f(g). For instance, the mod-4 patterns of 0’s in Table 1.2 provably continues
for all larger n. For other large degrees n, where Λκ(f ;n) 6= 0, we only conjecture that (1.8)
is a genuine asymptotic relation.

When κ has characteristic p 6= 2 and f(T ) ∈ κ[u][T ] is irreducible with positive T -
degree, we believe the correct κ[u]-variant on Bouniakowsky’s (qualitative) conjecture is
the following: f(g) is irreducible for infinitely many g ∈ κ[u] except in the following two
cases: f(T ) has a divisibility obstruction or f(T ) is a polynomial in T p with Λκ(f ;n) = 0 for
n � 0. Both types of obstructions can be checked with a finite amount of computation. An
example which fits the second case but not the first is f(T ) = T 4p+u; for any nonconstant g
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in κ[u], g4p +u is reducible. For details, see Example 3.11. (We do not make any analogous
conjecture in characteristic 2 because the case of characteristic 2 is still not adequately
understood when f is a polynomial in T 2 but not a polynomial in T 4.)

In order that our results are not misunderstood, we want to stress that when n runs
through a sequence in which Λκ(f ;n) does not vanish, we do not prove a connection between
Λκ(f ;n) and irreducibility counts for f(g) with deg g = n. All we can say is that numerics
in those cases suggest that (1.8) holds.

Numerical examples were extremely important in this work. Without them, most of the
nontrivial phenomena in this paper would not have been discovered. While examples in
the paper concentrate on the finite fields F2 and F3, we did testing over F5 (and some
non-prime finite fields) as well. Moreover, nonmonic polynomials played a more prominent
role in our numerical work than the examples included here may suggest.

It is natural to ask how often Möbius bias occurs. The answer seems to be that it is rare.
We noted above that, as a matter of experience, for generic f ∈ κ[u, T p] that is squarefree
in κ[u, T ] we have Λκ(f ;n) = 1 for all large n. It is unclear how to formulate and prove a
precise theorem along these lines with a fixed finite field κ and varying f , but we have the
following related result in odd characteristic:

Theorem 1.16. Suppose p 6= 2 and let f ∈ κ[u][T p] be squarefree in κ[u][T ] with degT f > 0.
Fix a congruence class c ∈ Z/4Z, and for any finite extension κ′/κ let λκ′(f ; c) be the
common value of Λκ′(f ;n) for large n in the class c. As [κ′ : κ] → ∞, λκ′(f ; c) has a
limiting value of 0, 1, or 2. Moreover, for “generic” f the limiting value is 1.

Examples 7.7 and 7.8 illustrate this theorem with κ = F3, and the meaning of genericity
for f is that the local intersection number at some point in the finite intersection of the zero
loci of f and ∂uf is odd; we shall see in Example 5.11 that, roughly speaking, for generic f
each of these intersection numbers is a power of p. We will not prove Theorem 1.16 in this
paper, as it is the genus-0 case of a more general result [10, Cor. 8.5] that is proved by using
the Lang–Weil estimate and a link between the Λκ’s and ζ-functions; this link follows from
a higher-genus version of Theorem 1.14. In [10, Thm. 11.14] we shall prove an analogue of
Theorem 1.16 for p = 2 and f ∈ κ[u][T 4], and also for higher-genus coordinate rings in the
role of κ[u]. To summarize, the phenomenon of inseparable counterexamples to (1.2) seems
to be non-generic as the constant field grows.

Our work in characteristic p suggests a link between some classical conjectures in analytic
number theory. Since (1.1) is not expected to have any counterexamples, and counterexam-
ples to (1.2) in characteristic p appear to be explained by non-vanishing Möbius averages,
it seems reasonable to conjecture that if f(T ) is irreducible (or more generally is not a per-
fect square up to sign) in Z[T ] and has no divisibility obstructions then its Möbius average
vanishes:

(1.9)

∑
n≤x µ(f(n))∑

n≤x |µ(f(n))|
→ 0

as x →∞. By [14], the abc-conjecture implies that (1.9) is equivalent to

(1.10)
∑
n≤x

µ(f(n)) = o(x).

For linear f , (1.10) is true [21]. Numerical evidence for (1.10) in other cases is encouraging [8,
Table 7]. After being led to (1.10) by analogy with our work in characteristic p, we learned
that it is a folklore conjecture. The case f(T ) = T 2 + 1 is posed in [12, p. 417].
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The way that we were just led to (1.10) from our work in characteristic p suggests that
any counterexample to (1.10) in Z[T ] is probably a counterexample to (1.1). That is, the
truth of (1.1) should imply (1.9) and (1.10). Can such an implication be proved, perhaps
assuming some other standard conjectures?

Diophantine consequences of the failure of (1.2) are worth exploring. For instance, the
related failure of (1.9) in characteristic p leads to an interesting family of elliptic curves [11].

Here is an outline of the paper. In §2, we discuss the constant in (1.1) and the obvious
analogue of (1.1) in κ[u][T ]. This obvious analogue is not true. In §3 and §4 we build on
work of Swan to develop an understanding of µ(f(g)) as in Theorem 1.7, which we restate as
Theorem 4.7. The proof of Theorem 1.14 is given in §5, where we also deduce Theorem 4.7.
In particular, we only begin to prove some non-trivial results in §5ff (for odd characteristic);
the development in §2–§4 is largely a discussion of examples and some classical facts. Since
the phenomena we study are unrelated to any classical ideas concerning prime values of
polynomials, we feel that this preliminary discussion will help the reader to understand the
nature of the theorems that we prove in §5ff.

In §6 we treat characteristic 2, which is much more difficult. Theorem 1.12 appears in
a more precise form as Theorem 6.10 and Corollary 6.11. Its proof uses ideas from our
treatment of odd characteristic and some considerations with residues of differential forms
on the projective lines in characteristic 2 and over 2-adic fields. (The higher genus analogue
of this work in characteristic 2 in [10] uses formal and rigid geometry, in addition to algebraic
geometry.) Finally, §7 returns to conjectures, discussing the new factor Λκ(f ;n) in (1.8).
This leads to our modified κ[u]-conjecture, given as Conjecture 7.9.

Notation and Terminology. Throughout the paper, κ denotes a finite field of size
q. For nonzero g ∈ κ[u], we set Ng = qdeg g. We often let µ, rather than µκ[u], denote
the Möbius function on κ[u], relying on the context to make clear the ring in which we are
computing the Möbius function; see Definition 3.1. We likewise often write χ instead of χκ

to denote the quadratic character on the multiplicative group κ× of a finite field with odd
characteristic.

We write a typical polynomial in κ[u][T ] as f(T ), suppressing the dependence on u in the
notation to make analogies to the classical situation more apparent. When, for geometric
and other reasons, we want to make the u-dependence explicit, we write f(T ) as f(u, T ).

For a nonzero polynomial h in one variable, we write the leading coefficient as leadh. For
a nonzero polynomial f in two variables u and T over a ring R, the T -degree of f and the
leading coefficient of f as a polynomial in T are indicated with a subscript: degT f ≥ 0 and
leadT f ∈ R[u]. An element in R[u] is primitive when its coefficients generate the unit ideal
in R. For a domain K, the discriminant of a one-variable polynomial with coefficients in K
is denoted disc h, or discK h for emphasis. Our definition of discriminants does not match
the usual definition when the polynomial is not monic; see (3.1) and (3.2). Our notation
for resultants is introduced in §4.

All algebras in this paper are assumed to be commutative.
When R is a local ring with residue field k, a lift of a polynomial h ∈ k[u, T ] is a

polynomial H ∈ R[u, T ] whose reduction to k[u, T ] is h.
Acknowledgments. We thank C. Elsholtz, O. Gabber, A. Granville, A. J. de Jong,

M. Larsen, B. Poonen, A. Silberstein, and H. Stark for their advice and encouragement.
We are also very grateful to an anonymous referee who offered helpful suggestions on an
earlier submission of this work. B.C. thanks the NSF and the Alfred P. Sloan Foundation
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2. The Classical and Naive Conjectures

This section is intended for readers who are unfamiliar with conjectures like (1.1), and it
also serves to fix some terminology.

For h(T ) ∈ Z[T ] and prime p, let

πh(x) = #{1 ≤ n ≤ x : h(n) is prime}.
and

ωh(p) := #{n ∈ Z/(p) : h(n) ≡ 0 mod p}.
The “probability” that h(n) is not a multiple of p, as n runs over Z, is 1− ωh(p)/p. When
ωh(p) = p, i.e., the function h : Z → Z/(p) is identically zero, we say h has a local obstruction
at p. (A polynomial h that has no local obstructions must be primitive. For any primitive
h, the only primes p at which h can have a local obstruction are those p ≤ deg h.)

Conjecture 2.1 (Bateman–Horn, Hardy–Littlewood). Pick f(T ) ∈ Z[T ]. Assume the
following two conditions:

1) f(T ) is irreducible in Q[T ].
2) f(T ) has no local obstructions, i.e., ωf (p) < p for all p.
Then

(2.1) πf (x) ?∼ C(f)
∑
n≤x

′ 1
log |f(n)|

∼ C(f)
deg f

x

log x
.

where

(2.2) C(f) =
∏
p

1− ωf (p)/p

1− 1/p

and the ′ in the summation indicates that we sum only over n large enough so that |f(n)| > 1.

The second hypothesis in Conjecture 2.1 is equivalent to f having a pair of relatively prime
values, which is how the second hypothesis is checked in practice. The infinite product C(f),
taken in order of increasing p, is usually only conditionally convergent.

We turn now to a κ[u]-analogue of Conjecture 2.1. Pick f ∈ κ[u][T ] with degT f > 0. Say
f(T ) has a local obstruction at an irreducible π ∈ κ[u] when f(g) ≡ 0 mod π for all g ∈ κ[u].
In practice, one checks that f(T ) has no local obstructions by finding two specializations of
f(T ) on κ[u] that are relatively prime. Often T = 0 and T = 1 suffice.

Suppose f(T ) ∈ κ[u][T ] is irreducible over κ(u) and has no local obstructions. Define

πf (n) = #{g ∈ κ[u] : deg g = n, f(g) is irreducible}.
A conjecture analogous to (2.1) is

(2.3) πf (n) ?∼ C(f)
degT f

(q − 1)qn

log(qn)
,

where Nh = qdeg h and

(2.4) C(f) = log q ·
∏
(π)

1− ωf (π)/ Nπ

1− 1/ Nπ
, ωf (π) = #{g mod π : f(g) ≡ 0 mod π},
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the product running over nonzero prime ideals in κ[u]. We could write C(f) as Cκ[u](f) to
emphasize the base ring κ[u] (especially the choice of κ).

We call (2.3) the naive conjecture over κ[u]. It is an obvious conjecture to make, but in the
Introduction we saw it is wrong: apparent counterexamples were provided. (Incidentally, the
standard version of Conjecture 2.1 allows for simultaneous primality of several polynomials,
such as twin prime pairs, and it is trivial to adapt that broader conjecture to a multi-
polynomial naive conjecture over κ[u]. This is a false conjecture.)

It will be useful later to record the simple formulas for the degree and leading coefficient
of f(g) when deg g � 0, and to make the condition deg g � 0 effective. Write

f(T ) = αd(u)T d + αd−1(u)T d−1 + · · ·+ α0(u),

with αd(u) 6= 0 and d > 0. For g ∈ κ[u] with sufficiently large degree (depending on f), the
degree and leading coefficient of f(g) in κ[u] are the same as those for αdg

d:

(2.5) deg(f(g)) = d · deg g + deg αd = (degT f)n + deg(leadT f),

(2.6) lead(f(g)) = (leadαd)(lead g)d,

where n = deg g. In particular, deg(f(g)) is a linear polynomial in deg g when deg g � 0.
In Section 5 it will be useful to have an explicit lower bound in terms of f such that (2.5)
and (2.6) apply for deg g above this bound. Such a bound is

(2.7) ν(f) = max
0≤i≤d−1

deg αi − deg αd

d− i
.

In this maximum, terms with αi = 0 are omitted, or use the convention that deg 0 = −∞.
For completeness, when f(T ) = α(u)T d is a T -monomial, take ν(f) = 0.

Although it won’t be used in this paper, we record here the analogue of C(f) = Cκ[u](f)
for polynomials with S-integer coefficients. Let OK,S be a ring of S-integers for a global
field K, with S containing the set S∞ of archimedean places in the number-field case. Let
f ∈ OK,S [T ] be irreducible in K[T ] with no local obstructions at places on OK,S . (The last
condition means that f defines a non-zero function on the residue field of each place outside
of S.) Define

(2.8) C(f) =
1

Res(OK,S)

∏
v 6∈S

1− ωf (v)/ Nv

1− 1/ Nv
,

where Res(OK,S) denotes the residue at s = 1 for the zeta-function ζK,S of Spec(OK,S).
Such numbers are called Hardy–Littlewood constants, and agree with (2.2) and (2.4) for
OK,S = Z and OK,S = κ[u], e.g., Ress=1 ζκ[u](s) = 1/ log q. The multiplication in (2.8)
is carried out according to increasing values of Nv, with all v 6∈ S of a given norm being
introduced into the product at the same time. The convergence of the product in (2.8) is
absolute if and only if f is linear in characteristic 0 or a linear polynomial in some T pm

in
characteristic p.

3. The Möbius function over finite fields

In the Introduction we gave a heuristic explanation of the data in Example 1.1 as an
effect of a Möbius bias. We speak of a Möbius bias when µκ[u](f(g)) does not take its
nonzero values 1 and −1 equally often on average as g varies. In this section, we begin the
systematic investigation of Möbius fluctuations in characteristic p, with the ultimate goal
of using this work to correct the faulty (1.2). The first step in the analysis of µκ[u](f(g))
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as g varies is the description of a formula for µκ[u](h) (h ∈ κ[u]) other than its definition;
the existence of an alternative Möbius formula on κ[u] has no analogue in Z. We will then
apply the formula to compute µκ[u](f(g)) for varying g in some examples.

Definition 3.1. Let R be a Dedekind domain. The Möbius function on nonzero ideals of
R is given by µR(p1 · · · pm) = (−1)m for distinct nonzero prime ideals pj , µR((1)) = 1, and
µR(b) = 0 for any nonzero ideal b ⊆ R divisible by the square of a prime. For nonzero
r ∈ R, we define µR(r) = µR(rR). If R is understood from context, we write µ rather than
µR.

When F is a field and h in F [u] is nonconstant of degree d with roots γ1, . . . , γd (counted
with multiplicity) in a splitting field, we define the discriminant of h to be

(3.1) disc h :=
∏
i<j

(γi − γj)2 ∈ F,

whether or not h is monic. (For nonzero constant h, the empty product is understood to
be 1.) In terms of the derivative of h, (3.1) is the same as

(3.2) disc h =
(−1)d(d−1)/2

(leadh)d

d∏
i=1

h′(γi).

The factor (lead h)d in (3.2) reflects our definition of discriminants of nonmonic polynomi-
als in (3.1). When h is not monic, a variant on (3.1) is often used in the literature to define
disc h (e.g., [17, p. 204]). This variant equals (3.1) multiplied by (lead h)2d−2. In particular,
the two competing definitions of the discriminant of a polynomial differ by a nonzero square
factor in F×. We prefer (3.1) for nonmonic h since it agrees with the universally accepted
definition of discF (F [u]/(h)) ∈ F relative to the ordered basis {1, u, . . . , ud−1}.

A generalization of the discriminant of a nonzero polynomial over a field F is the dis-
criminant discF A of a finite F -algebra A. Such discriminants are only well-defined up to
multiplication by squares in F× due to variation in the choice of F -basis of A. We do not
define the discriminant of the zero polynomial, just as the discriminant is not defined for
an F -algebra with infinite dimension as an F -vector space.

Definition 3.2. Let κ be a finite field. For a finite κ-algebra A, let µ(A) = (−1)# Spec A if
A is étale over κ (i.e., reduced) and let µ(A) = 0 otherwise.

Note that µ(A) only depends on the underlying ring structure of A and not on its κ-
algebra structure. If h ∈ κ[u] is nonzero, then µ(κ[u]/(h)) = µκ[u](h). The following
elementary result extends an observation of Swan.

Theorem 3.3. Suppose κ is finite with odd characteristic, and let χκ be the quadratic
character on κ×, with χκ(0) = 0. For any finite κ-algebra A,

(3.3) µ(A) = (−1)dimκ Aχκ(discκ A).

Proof. Both sides of (3.3) vanish when A is not étale over κ, so we may assume A is étale
over κ. Both sides are multiplicative in A. The case A = 0 is trivial, so we reduce to the
case when A = κ′ is a finite extension field of κ, and we want to prove

(3.4) χκ(discκ κ′) = (−1)d−1

in Z, where d = [κ′ : κ]. Let γ be a field generator for κ′ over κ. Since κ does not have
characteristic 2, discκ κ′ is a square in κ precisely when a generator for Gal(κ′/κ) acts as an
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even permutation on the κ-conjugates of γ. Since this permutation of the roots is a d-cycle,
its sign is (−1)d−1. �

Remark 3.4. Theorem 3.3 and its proof carry over verbatim to finite algebras over any
perfect field k with characteristic not 2 having only cyclic Galois extensions; e.g., we could
take k = C((X)). See [20, XIII, Exercise 3] for artificial examples in positive characteristic.

The proof of Theorem 3.3 works for étale algebras A in characteristic 2 if we formulate the
result in terms of signs of certain permutations rather than in terms of quadratic characters
of certain discriminants. (See [13, p. 237] for an application of this idea.) For our purposes,
the role of discriminants is critical and therefore we need an analogue of Theorem 3.3
in characteristic 2 that involves discriminants. This analogue will use a lifting of A into
characteristic 0. We shall now formulate a setup for finite κ with arbitrary characteristic
(which for odd characteristic will recover a reformulation of Theorem 3.3).

Let κ be any finite field (of characteristic p, say), F the unramified extension of Qp with
residue field κ, and W = W (κ) the valuation ring of F . (In other words, W is the ring of
Witt vectors of κ.) We extend Theorem 3.3 to all characteristics by using finite flat liftings
of A over W ; i.e., finite flat W -algebras Ã such that Ã/pÃ is isomorphic to A as κ-algebras.
For instance, a finite flat lifting of κ[u]/(h(u)) over W is W [u]/(H(u)), where H ∈ W [u]
satisfies H mod p = h and deg H = deg h. By Hensel’s lemma, if A is étale over κ then Ã
exists (and is finite étale over W ) and is unique up to unique W -isomorphism. If A is not
étale over κ, a finite flat lifting of A over W may not exist (see [5, Example 3.2(4)]).

When κ has characteristic 2 and A is étale over κ, discW Ã lies in W×/(W×)2. Writing
W× = κ××(1+2W ) (Teichmüller decomposition), note that the 1-unit part of discW Ã lies
in 1 + 4W . (Ambiguity of discW Ã up to a unit-square does not affect the meaning of this
assertion, since (1+2w)2 ∈ 1+4W .) Indeed, to prove discW Ã has its 1-unit part in 1+4W

we may make a finite étale local base change on W to split the finite étale W -algebra Ã,
and the discriminant with respect to a primitive idempotent basis is 1.

Here is a Möbius formula using liftings to characteristic 0.

Theorem 3.5. For any finite κ-algebra A that admits a finite flat lifting Ã of A over W ,

(3.5) µ(A) = (−1)dimκ Aχ̃(discW Ã),

where χ̃ is the unique quadratic character on W×/(W×)2 ' κ×/(κ×)2 when κ has odd
characteristic and is the unique quadratic character on

(κ× × (1 + 4W ))/((κ× × (1 + 4W )) ∩ (W×)2) ' (1 + 4W )/((1 + 4W ) ∩ (W×)2)

when κ has characteristic 2. In both cases, χ̃ is extended by 0 to pW .

Before we prove Theorem 3.5, we make some remarks on the case char(κ) = 2.

Remark 3.6. When κ has characteristic 2, we do not need to extend χ̃ to 1 + 2W or to
all of W×, and there is no canonical extension anyway. Note that (1 + 4W )∩ (W×)2 is the
index-2 kernel of

1 + 4W // // (1 + 4W )/(1 + 8W ) ' W/2W = κ
Trκ/F2 // // F2,

where the middle isomorphism is induced by 1 + 4x 7→ x.
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Proof. (of Theorem 3.5) The case A = 0 is trivial. Since the reduction of discW Ã modulo
pW is discκ A, (3.5) is trivial when A is non-étale over κ. (All we need to know about χ̃
here is that, by definition, it vanishes on pW .)

When A is étale over κ, the uniqueness of Ã lets us assume A = κ′ is a field, say of degree
d over κ, so Ã is the valuation ring Wd of an unramified extension of W of degree d and the
desired Möbius formula is equivalent to

χ̃(discW (Wd)) = (−1)d−1.

By the definition of χ̃, this formula says that discW Wd is a square in W× if and only if d is
odd. This criterion for being a square is proved via the argument used to prove (3.4). �

Remark 3.7. Theorem 3.5 and its proof apply with κ replaced by any perfect field k of
positive characteristic such that all finite Galois extensions of k are cyclic. When k has
characteristic 2, Artin–Schreier theory ensures that the subgroup {x2 +x |x ∈ k} has index
≤ 2 in k. However, there is no description of this subgroup akin to Remark 3.6 when k is
infinite.

Taking A = κ[u]/(h) for nonzero h ∈ κ[u], Theorems 3.3 and 3.5 specialize to

(3.6) µκ[u](h) =

{
(−1)deg hχ(discκh), if κ has odd characteristic,
(−1)deg hχ̃(discW H), if κ has any characteristic,

where χ and χ̃ are described in Theorems 3.3 and 3.5, and H is a lifting of h into W [u]
with deg H = deg h.

Remark 3.8. The formula in (3.6) for the case of characteristic 2 uses a discriminant in
characteristic 0. There is an intrinsic characteristic 2 variant of the discriminant, due to
Berlekamp [4] (and developed by later authors, such as Wadsworth [23]), but we have not
found this to be useful for our purposes.

Remark 3.9. When κ = Fp, (3.6) is a classical formula of Pellet [18] from 1878, with the
case when h ∈ Fp[u] is separable being related to Stickelberger’s formula for the quadratic
character of the discriminant of a number field [7, Prop. 4.8.10]. What is crucial for us is
not simply the formula (3.6) itself but its interpretation. In the context of Stickelberger’s
formula, one uses (3.6) with fixed h ∈ Z[u] and varying κ = Fp. Instead we will use (3.6)
with fixed κ and varying h ∈ κ[u]. This is an idea that goes back to Swan [22], although he
only considered separable h and did not bring out the Möbius aspect of the formula.

Remark 3.10. In numerical work, we used (3.6) to compute Möbius values on Fp[u] when
p 6= 2. This is much faster than the definition of the Möbius function, which involves
factorizations. However, we computed Möbius values on F2[u] directly from the definition,
since factoring in F2[u] on a computer is much faster than computing discriminants in
characteristic 0 and reducing modulo 8.

Example 3.11. Let κ be a finite field with characteristic p, even perhaps p = 2. For
nonconstant g in κ[u], µ(g4p + u) = 1. Indeed, for p 6= 2, this follows from (3.6) because
disc(g4p + u) is a square in κ by (3.2). For p = 2, let W = W (κ). By (3.2),

discW (G8 + u) ∈ (W×)8 · (1 + 8W ) ∈ (W×)2.

Therefore, χ̃(discW (G8 + u)) = 1 when G is a polynomial in W [u] with positive degree and
unit leading coefficient. Thus, by (3.6), µ(g4p +u) = 1 for nonconstant g ∈ κ[u] when p = 2.
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Example 3.12. Let κ be a finite field with characteristic p 6= 2. For nonconstant g =
cun + · · · ∈ κ[u] we see via (3.6) that

µ(gp + u) = (−1)nχ(c)nχ(−1)n(n+1)/2.

When n is odd, this equals 1 and −1 equally often as g varies. When n is even, µ(gp + u)
equals χ(−1)n/2 for all g of degree n.

For instance, when n ≡ 2 mod 4, µ(g5 + u) = 1 for all g ∈ F5[u] with degree n, so g5 + u
is reducible. On the other hand, µ(g3 + u) = −1 for all g ∈ F3[u] with degree ≡ 2 mod 4.

We similarly find

µ(gp + u2) = (−1)n(χ(−1))n(pn+1)/2χ(2)nχ(c)n+1χ(g(0)).

In particular, for fixed n ≥ 1, µ(gp +u2) is equal to 1 as often as it is equal to −1. Therefore
there is no Möbius bias, in contrast with µ(gp + u) when deg g is even and −1 ∈ κ× is a
square.

Example 3.13. Let κ have size q and characteristic p. Choose an integer b such that
1 < b < 4q and (b, p(q− 1)) = 1 (e.g., b = 2q− 1). Then the polynomial f(T ) = T 4q + ub is
irreducible in κ[u][T ] by [17, p. 297] and has no local obstructions, but f(g) is reducible in
κ[u] for every g ∈ κ[u]. Indeed, this holds when g = c is constant since ub + c is non-linear
and has a root. If g is nonconstant then f(g) has u as a multiple factor if g(0) = 0 and
(3.6) implies µ(f(g)) = 1 if g(0) 6= 0.

When q = 2 and b = 3, we recover Example 1.4: T 8 + u3 takes no irreducible values on
F2[u] despite being irreducible with no local obstructions. What happens if we replace F2 by
a larger finite field of characteristic 2? Further work shows that T 8 +u3 takes no irreducible
values on F2m [u] with m odd, while for m even it takes irreducible values on F2m [u] only at
constant non-cubes in F×

2m . In particular, T 8+u3 acquires only a finite number of irreducible
specializations on any F2m [u]. In [3], Bender and Wittenberg establish conditions under
which a polynomial over κ[u][T ] is guaranteed to have at least one irreducible specialization
after extending the constant field κ. The polynomial T 8 + u3 shows such a result is almost
optimal without additional constraints.

This completes our discussion on generalities about the Möbius function on κ[u]. The-
orems 3.3 and 3.5 will be important both here and in our higher genus work in [10]. In
the present paper, we will prove a refinement of (3.6) when h = f(g) with fixed nonzero
f ∈ κ[u][T p] and varying g ∈ κ[u]. Our main results in this direction are Theorems 4.7, 5.7,
and 6.10 (and Corollary 6.11).

4. Discriminants and Resultants

For nonconstant f ∈ κ[u][T p], we wish to understand the behavior of µ(f(g)) as g varies in
κ[u] with large degree. The formulas (2.5) and (3.6) suggest that we should study disc(f(g))
as an algebraic function of varying g with large but fixed degree. Following Swan [22], we
will find it useful to work with resultants and not discriminants. In characteristic 0, where
derivative degrees drop by 1, the relation between resultants and discriminants is given by
the formula

(4.1) disc h =
(−1)d(d−1)/2Rd,d−1(h, h′)

(leadh)2d−1
.
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Here d = deg h ≥ 1 and Rd,d−1(h, h′) is the resultant of h and h′ using a universal (d+(d−1))-
dimensional determinant. In all characteristics, if h′ 6= 0 then the formula is

(4.2) disc h =
(−1)d(d−1)/2R(h, h′)

(leadh)d+deg h′
,

where d = deg h ≥ 1 and R(h, h′) is the resultant of h and h′ computed with a determinant
whose size is based on the actual degree of h′ (which might be less than d − 1). The
periodic dependence of (−1)d(d−1)/2 as a function of d mod 4 is ultimately where the mod-4
periodicity enters into our work (for an example, see (4.8) in Example 4.3). We now review
some of the basic formalism of resultants.

Recall that for an integral domain A, the resultant of two nonzero polynomials h1 and
h2 in A[u], denoted RA(h1, h2) = R(h1, h2), is defined to be

(4.3) R(h1, h2) = (lead h1)deg h2
∏

h1(α)=0

h2(α)

with the product running over the roots of h1 (counted with multiplicity) in a splitting
field over the fraction field of A. In [17, p. 200], an expression for R(h1, h2) is given
as a universal determinant in the coefficients of h1 and h2. An essential aspect of this
universal formula is that the size of the determinant defining the resultant depends on the
degrees of h1 and h2. We may write Rd1,d2(h1, h2) to indicate that hj is being treated as a
polynomial of degree dj for the resultant calculation via a universal determinant. We make
the convention that when a resultant R(h1, h2) appears without degree subscripts then it
is defined in terms of the actual degrees of its arguments if h1 and h2 are nonzero. We
also agree to define R(h1, h2) = 0 when at least one hj vanishes. This latter definition is
compatible with universal determinants that define resultants (letting the zero polynomial
be assigned whatever nonnegative degree we please).

The effect of computing a resultant with a universal formula involving a fake higher
degree in the second argument goes as follows. If nonzero h1 and h2 have actual degrees d1

and d2, then for any d3 ≥ d2,

(4.4) Rd1,d3(h1, h2) = (lead h1)d3−d2Rd1,d2(h1, h2).

While the value of the resultant may have changed (although not if h1 is monic), the
property of vanishing or nonvanishing for the resultant does not change. (We work with
resultants only over domains, not over arbitrary commutative rings). Though (4.3) is valid
as written when h2 is given a fake higher degree (still denoted deg h2), it is generally not
valid when h1 is given a fake higher degree; also keep in mind that in general R(h1, h2) and
R(h2, h1) are related by a sign (the precise sign-factor will be recorded shortly in a list of
standard algebraic properties of resultants).

Warning. Failure to remember that the construction of resultants is sensitive to de-
grees can lead to errors when standard universal formulas from characteristic 0 are used in
characteristic p.

Example 4.1. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 in κ[u][T ], where
κ has characteristic 3 (κ = F3 is Example 1.3). For nonconstant g = cun + . . . in κ[u] with
c 6= 0, f(g) has degree 9n and f(g)′ = (∂uf)(g) has degree 6n + 1 < 9n − 1. The “true”
resultant of f(g) and (∂uf)(g) is R9n,6n+1(f(g), f(g)′), but the resultant needed to compute
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disc f(g) in (4.1) is

(4.5) R9n,9n−1(f(g), f(g)′) = (c9)3n−2R9n,6n+1(f(g), (∂uf)(g)).

Thus

(4.6) disc f(g) =
(−1)n(n−1)/2R9n,6n+1(f(g), (∂uf)(g))

c9(15n+1)
,

which also follows directly from (4.2). Using (4.1) instead of (4.2) introduces an erroneous
factor of (c9)3n−2. This power of c affects the quadratic nature of the right side of (4.6), so
in view of (3.6) such an error would be serious.

Resultants have several useful algebraic properties. We summarize six of them without
proof, as in [22], and we include (4.4) in the list. In this list, polynomials are nonzero and
have coefficients in a domain A.

(1) R(h1, h2) = (−1)(deg h1)(deg h2)R(h2, h1).
(2) R(h1, h2) is bimultiplicative: R(h1h3, h2) = R(h1, h2)R(h3, h2) and R(h1, h2h3) =

R(h1, h2)R(h1, h3).
(3) R(u, h) = h(0). More generally, R(u− c, h) = h(c) and R(h, u− c) = (−1)deg hh(c)

for c ∈ A.
(4) R(c, h) = R(h, c) = cdeg h for c ∈ A, h 6= 0. Thus, R(c1, c2) = 1 for c1, c2 6= 0 in A.
(5) When h1 has degree d1, h2 has degree d2, and d3 ≥ d2,

Rd1,d3(h1, h2) = (lead h1)d3−d2Rd1,d2(h1, h2).

(6) For nonzero M , h1, h2 in A[u],

h1 ≡ h2 mod M =⇒ R(M,h1) = (lead M)deg h1−deg h2R(M,h2),

where we recall that lead M denotes the leading coefficient of M ∈ A[u].

We call property (6) the quasi-periodicity of the resultant (in its second argument). When
M is monic, R(M,h) is genuinely periodic in h, with period (M). More generally (and of
greater relevance to our work), for monic M in A[u] and any b(T ) ∈ A[u][T ], R(M, b(h)) is
genuinely periodic in h. Swan’s definition of R(h1, h2) in [22] is what we call R(h2, h1), so
property (1) warns us that any comparison with [22] must keep this distinction in mind.

The following two examples use the resultant to compute a formula for µ(f(g)) as a
function of g:

Example 4.2. Let f(T ) = T 12 + (u + 1)T 6 + u4 ∈ κ[u][T ] with finite κ of characteristic 3.
(Example 1.1 is κ = F3.) Let q denote the size of κ and let χ be the quadratic character
on κ×, with χ(0) = 0. We shall compute µ(f(g)) when n = deg g ≥ 1.

Since 4|deg(f(g)) and lead(f(g)) is a square, (3.6) and (4.2) with h = f(g) give

µ(f(g)) = χ(disc f(g))
= χ(R12n,12n−1(f(g), (f(g))′))

= χ(R12n,12n−1(f(g), (g2 + u)3))

= χ(R(g2 + u, f(g))).
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Since f(g) ≡ u6 − u3 mod g2 + u and the leading coefficient of g2 + u is a square, quasi-
periodicity of the resultant gives (using cg to denote (lead g)12 deg g−6)

R(g2 + u, f(g)) = c2
gR(g2 + u, u6 − u3)

= c2
gR(g2 + u, u)3R(g2 + u, u− 1)3

= c2
gg(0)6(g(1)2 + 1)3,

so

(4.7) µ(f(g)) = χ(disc f(g)) = χ(g(0))2χ(g(1)2 + 1).

(This calculation also shows that disc f(g) is a constant square multiple of g(0)18(g(1)2+1)9,
with the constant multiplier depending on lead g and deg g.) As g runs over all polynomials
of a given degree n ≥ 2 in κ[u], g(0) and g(1) can be “independently assigned” (think about
g mod u(u − 1)). So, for instance, if −1 is not a square in κ, we see that µ(f(g)) vanishes
1/q of the time (when g(0) = 0), and is −1 twice as often as it is 1.

Example 4.3. Let κ be a finite field with characteristic 3, and χ the quadratic character
on κ×. Let

f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1

in κ[u][T ]. This polynomial was already met in Example 4.1. We will compute a formula
for µ(f(g)) as g runs over nonconstant polynomials in κ[u]. The argument is long compared
to Example 4.2, but at the same time it is more indicative of the general case, and thus is
more instructive.

For nonconstant g(u) = cun + · · · with degree n ≥ 1, we have deg(f(g)) = 9n and
deg(f(g)′) = 6n + 1, so µ(f(g)) = (−1)9nχ(disc f(g)) by (3.6). By (4.6),

(4.8) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(R(f(g), (∂uf)(g))).

We now compute a universal formula for R(f(g), (∂uf)(g)) in five steps, working over
any field (or even domain) of characteristic 3. The formula is given in (4.13) as an algebraic
identity, so for the purposes of the following calculation we may take g to be the universal
polynomial of degree n over a field of characteristic 3 (so g has coefficients in a rational
function field of transcendence degree n+1 over F3). In particular, the operation of division
by g(2) in Step 1 is not problematic.

Step 1. Explicitly,

(4.9) f(g) = g9+(2u2+u)g6+(2u+2)g3+u2+2u+1, (∂uf)(g) = (u+1)g6+2g3+2u+2.

Using (4.9), write R(f(g), (∂uf)(g)) = (−1)nR((∂uf)(g), f(g)) to make the lower-degree
term (∂uf)(g) appear as the first argument. We want to simplify the resultant by quasi-
periodicity, but the leading terms in (4.9) suggest it is easier to reduce (u + 1)f(g), rather
than f(g), modulo (∂uf)(g). Apply bimultiplicativity to introduce a factor of u + 1:
(4.10)

R(f(g), (∂uf)(g)) =
(−1)nR((∂uf)(g), (u + 1)f(g))

R((∂uf)(g), u + 1)
=

(−1)nR((∂uf)(g), (u + 1)f(g))
g(2)3

.

Treating g as if it is generic (so g(2) is a unit) ensures that (4.10) is a meaningful (and cor-
rect) algebraic formula. Our derivation of (4.10) used bimultiplicativity to create convenient
leading terms for quasi-periodicity. This idea will be used again in Step 3.
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Step 2. Since (u + 1)f(g) = (∂uf)(g)(g3 + 2u2 + u) + g6 + u2g3 + u + 1, quasi-periodicity
of the resultant implies (recall c = lead g)

R((∂uf)(g), (u + 1)f(g)) = (c6)9n+1−6nR((∂uf)(g), g6 + u2g3 + u + 1)
= (c6)3n+1R(g6 + u2g3 + u + 1, (∂uf)(g)).

The nonzero constant in front will disappear when we apply χ as part of (4.8).
Step 3. Since (∂uf)(g) ≡ 2(u+2)(u2+2u+2)g3+2(u+1)(u+2) mod g6+u2g3+u+1, quasi-

periodicity implies R(g6+u2g3+u+1, (∂uf)(g)) is the product of (c6)6n+1−(3n+3) = (c6)3n−2

and R(g6 + u2g3 + u + 1, 2(u + 2)(u2 + 2u + 2)g3 + 2(u + 1)(u + 2)). Writing the second
argument of this resultant as a product 2(u + 2)((u2 + 2u + 2)g3 + u + 1), this resultant is
a product of 26n = 1, (g(1)2 + g(1) + 2)3, and R((u2 + 2u + 2)g3 + u + 1, g6 + u2g3 + u + 1).
To simplify this last resultant, we again use bimultiplicativity to make leading terms more
compatible. This resultant equals the ratio

(4.11)
R((u2 + 2u + 2)g3 + u + 1, (u2 + 2u + 2)(g6 + u2g3 + u + 1))

R((u2 + 2u + 2)g3 + u + 1, u2 + 2u + 2)
.

Step 4. The denominator in (4.11) is 1 by quasi-periodicity (switch the two terms, which
introduces no sign, and then reduce mod u2 + 2u + 2). As for the numerator,

(u2 + 2u + 2)(g6 + u2g3 + u + 1) ≡ (2u + 2)g3 + 2u2 + u + 2 mod (u2 + 2u + 2)g3 + u + 1,

so the numerator of (4.11) is (c3)3n+1R((u2 + 2u + 2)g3 + u + 1, (2u + 2)g3 + 2u2 + u + 2).
The resultant factor equals

R(2(u+1)(g3+u+1), (u2+2u+2)g3+u+1) = (−1)ng(2)3R(g3+u+1, (u2+2u+2)g3+u+1).

Putting everything together into (4.10), we have a cancellation of g(2)3 and obtain

(4.12) R(f(g), (∂uf)(g)) = c45n−3(g(1)2 + g(1) + 2)3R(g3 + u + 1, (u2 + 2u + 2)g3 + u + 1).

Step 5. Finally, (u2 + 2u + 2)g3 + u + 1 ≡ 2(u + 1)3 mod g3 + u + 1, so

R(g3 + u + 1, (u2 + 2u + 2)g3 + u + 1) = (c3)3n−1(−1)nR(2(u + 1)3, g3 + u + 1)
= (c3)3n−1g(2)9.

Feeding this into (4.12) gives the resultant formula

(4.13) R(f(g), (∂uf)(g)) = c54n−6(g(1)2 + g(1) + 2)3g(2)9.

(The reader may check that the projection from {f = 0} onto the T -axis is non-étale at
precisely (2, 0) and the two geometric points (1, t) with t2 + t + 2 = 0, with the branch
scheme having respective lengths 9 and 3. The relation with the factors and exponents in
(4.13) will be explained in §5.)

Inserting (4.13) into (4.8), we find our Möbius formula:

(4.14) µ(f(g)) = (−1)nχ(−1)n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2))χ(g(2))

for nonconstant g in κ[u]. This depends on g mod (u− 1)(u− 2), deg g mod 4, and the qua-
dratic character of the leading coefficient of g. Taking κ = F3, we will show in Example 7.8
that (4.14) is numerically compatible with the statistics in Table 1.2.

Motivated by the goal of making patterns in µ(f(g)) provable when f(T ) is irreducible
and inseparable, as in Examples 4.2 and 4.3, we discovered that the function g 7→ µ(f(g))
admits a periodicity in g when f is squarefree with irreducible factors that are inseparable
(in T ). Before stating our periodicity theorem, we need a lemma.
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Lemma 4.4. Let F be perfect of characteristic p > 0.
1) Choose a nonzero f ∈ F [u][T p] such that f is squarefree in F [u, T ]. Then f and ∂uf

have no nonconstant common factor in F [u, T ], or equivalently the zero loci {f = 0} and
{∂uf = 0} in the affine plane A2

F intersect at finitely many points.
2) The same conclusion holds if f ∈ F [u, T ] is nonzero and f(T p) is squarefree in F [u, T ]

(so f is squarefree in F [u, T ]).

Note that if f 6∈ F then f(T ) cannot lie in F [up, T ] under either hypothesis in the lemma,
so ∂uf 6= 0 in such cases. It may happen that ∂uf is constant; e.g., f = upT p + u + 1 (or
f = u). The second case in Lemma 4.4 will be used only when p = 2.

Proof. The case f ∈ F× is trivial, so we may assume f 6∈ F . In particular, ∂uf 6= 0. Let
Zf and Z∂uf be the respective zero loci of f and ∂uf in the affine plane (so the latter
locus may be empty). Since F is perfect, extending scalars to an algebraic closure of F
preserves the property of being squarefree and hence we may assume F is algebraically
closed. The hypothesis on f in case (1) (resp. case (2)) implies that f(T ) (resp. f(T p)) is
a squarefree element in F (T p)[u] with nonzero u-derivative, so the projection of Zf ∩ Z∂uf

onto the T -axis does not contain the generic point and hence is F -finite. To conclude the
finiteness of Zf ∩Z∂uf it therefore suffices (since F is algebraically closed) to prove that Zf

contains no lines T = c for c ∈ F . But if Zf contains such a line then the squarefree element
f ∈ F [u, T p] (resp. f(T p) ∈ F [u, T p]) is divisible by T p − cp = (T − c)p (resp. (T − c1/p)p),
contrary to the squarefreeness hypothesis. �

Definition 4.5. If f1, f2 ∈ F [u, T ] are two nonzero polynomials over a perfect field F such
that their zero loci Zf1 and Zf2 in A2

F have finite intersection, Mgeom
f1,f2

∈ F [u] is the monic
separable polynomial whose zero locus is the projection of Zf1 ∩ Zf2 onto the u-axis (so
Mgeom

f1,f2
= 1 if Zf1 ∩ Zf2 is empty, such as when some fj lies in F×). When f ∈ F [u, T ]

is nonconstant, define Mgeom
f := Mgeom

f,∂uf when this makes sense (i.e., when ∂uf 6= 0 and
Zf ∩ Z∂uf is finite).

Note that the formation of Mgeom
f1,f2

commutes with extension of the perfect ground field.
When leadT f is separable, Mgeom

f1,f2
is the radical of the resultant RF [u](f1, f2). (We saw in

Remark 1.6 that this need not hold when leadT f is not separable.)
For f ∈ F [u, T ] with f 6∈ F , Lemma 4.4 gives some sufficient conditions for Mgeom

f to
be defined when F has positive characteristic. The next lemma gives a general geometric
criterion in any characteristic.

Lemma 4.6. If F is perfect with arbitrary characteristic and f ∈ F [u, T ] is not in F , then
the zero loci of f and ∂uf in A2

F have finite intersection if and only if f is squarefree in
F [u, T ] with no irreducible factors in F [T ] and the projection

prT : Zf = Spec F [u, T ]/(f) → Spec F [T ] = A1
F

onto the T -axis is generically étale on Zf . When this happens, the non-étale locus of prT

is finite and its projection onto the u-axis is the zero locus of Mgeom
f in A1

F .

The generically-étale property is always satisfied for squarefree nonzero f ∈ F [u, T ] in
characteristic 0 since prT is a priori quasi-finite and flat. We will apply this lemma over a
2-adic field in our later study of Möbius bias in characteristic 2.



IRREDUCIBLE SPECIALIZATION IN GENUS 0 23

Proof. Necessity of the conditions that f be squarefree and have no irreducible factors in
F [T ] is clear. Granting these conditions, the plane curve Zf is reduced (hence geometrically
reduced since F is perfect) and its projection to the T -axis is quasi-finite and hence flat.
Thus, the property of prT being étale at a point of Zf may be checked on the geometric
fibers of prT . Extending scalars to an algebraic closure of F , we thereby see that the non-
étale locus for prT is where Zf meets Z∂uf in A2

F . This completes the proof of the desired
equivalence, and also yields the asserted relationship between Mgeom

f and the non-étale locus
of prT . �

Here is our main result in odd characteristic. The proof will be given in §5, using Theorem
5.7.

Theorem 4.7. Let κ be a finite field with odd characteristic p, and let χ be the quadratic
character of κ×. Fix a nonzero f(T ) ∈ κ[u][T p] that is squarefree in κ[u][T ]. Assume f 6∈ κ.

For g1 = c1u
n1 + . . . and g2 = c2u

n2 + . . . in κ[u] with sufficiently large degrees n1 and
n2 (depending on f), we have the implication

(4.15) g1 ≡ g2 mod Mgeom
f , n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2)).

The largeness of degrees nj can be chosen uniformly with respect to finite extensions of κ.
If −1 is a square in κ or degT f is even, the second congruence in (4.15) may be relaxed

to n1 ≡ n2 mod 2.
If Mmin

f,κ ∈ κ[u] is the monic polynomial M of least degree such that

g1 ≡ g2 mod M, n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2))

for all gj = cju
nj + . . . with sufficiently large degrees n1 and n2 then Mmin

f,κ is a factor of
any other nonzero polynomial M ∈ κ[u] with the same property (so Mf,κ|Mgeom

f ). For some
finite extension κ′/κ we have Mmin

f,κ′′ = Mgeom
f for any finite extension κ′′ of κ′.

Remark 4.8. The finiteness of κ in Theorem 4.7 may be relaxed in odd characteristic
exactly as in Remark 3.4 without changing the proof, but we do not know any interesting
examples of this generalized theorem with infinite κ.

Although Theorem 4.7 does not say that g 7→ µ(f(g)) is genuinely periodic in g, we will
refer to any nonzero M satisfying the role of Mgeom

f in (4.15) as a modulus for µ(f(g)). Since
any congruence class in κ[u]/(M) may be represented by a polynomial of any large degree
with any desired leading coefficient, it is a trivial exercise with the Chinese remainder
theorem to check that for any two moduli M1 and M2 for µ(f(g)), gcd(M1,M2) is also
a modulus. It therefore follows trivially from (4.15) that Mmin

f,κ divides all other moduli
for µ(f(g)). The fact that Mmin

f,κ′′ = Mgeom
f for all finite extensions κ′′/κ containing some

sufficiently large finite extension κ′/κ rests on an understanding of how we prove (4.15).
Examples 4.2 and 4.3 illustrated some techniques that will be used in the proof of The-

orem 4.7. The following example focuses only on explicit Möbius formulas, illustrating the
conclusions of Theorem 4.7.

Example 4.9. The variation of Mmin
f,κ as κ grows is interesting. Since Mmin

f,κ |M
geom
f , there

are only finitely many possibilities for Mmin
f,κ′ as κ′ varies over finite extensions of κ. We now

give an example where Mmin
f,κ 6= Mgeom

f .
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Let f(T ) = T 12 + (2u4 + u3 + u2 + 2)T 6 + 2u3 + 1 in κ[u][T ], where κ has characteristic
3. For nonconstant g in κ[u], the proof of Theorem 4.7 shows

µ(f(g)) = χ(g(0)2 + 1)2χ(g(1))χ(R(u2 + 1, f(g))).

Note that χ(g(0)2 + 1)2 is not always 1 because it may vanish. This Möbius formula,
like (4.7), has no dependence on deg g mod 4 or on the quadratic character of the leading
coefficient of g. Since R(u2 +1, f(g)) only depends on g modulo u2 +1 (by quasi-periodicity
of resultants), we see that µ(f(g)) only depends on g modulo u(u − 1)(u2 + 1). (Since
Rκ[u](f, ∂uf) = u12(u − 1)18(u2 + 1)12, we have Mgeom

f = u(u − 1)(u2 + 1).) If [κ : F3] is
odd then g(0)2 +1 is nonzero, so µ(f(g)) only depends on g modulo (u−1)(u2 +1) for such
κ; hence, Mmin

f,κ = (u − 1)(u2 + 1) 6= Mgeom
f . This illustrates that the minimal modulus in

Theorem 4.7 can be sensitive to a change in the base field κ.

5. A resultant formula

We will obtain Theorem 4.7 from a periodicity property for resultants over arbitrary
perfect fields. We indulge in the following notational device: for a field F and a nonzero
M ∈ F [u], we write F [u]/(M) to denote the vector-scheme of remainders upon long division
by M over F -algebras A. That is, F [u]/(M) is viewed as an affine space of dimension deg M ,
whose coordinates arise from coefficients of ui for 0 ≤ i < deg M . (This space is Spec F
when deg M = 0.) Such abuse of notation is standard for vector-schemes in the theory of
algebraic groups. The context will indicate whether F [u]/(M) denotes an affine space over
Spec F or its set of F -valued points, the “usual” F -vector space F [u]/(M).

We will also work with the scheme

Polyn/F = An ×F Gm = Spec F [a0, . . . , an, 1/an]

of polynomials of exact degree n ≥ 0, as well as the scheme

Poly≤n/FAn+1
F = Spec F [a0, . . . , an]

of polynomials of degree ≤ n. The coordinates (a0, . . . , an) correspond to
∑

i≤n aiu
i, with

Polyn/F the locus in Poly≤n/F where an is a unit. For example, given nonconstant M ∈ F [u]
and any n ≥ deg M , formation of remainders under long division by M defines an algebraic
morphism

(5.1) ρn,M : Polyn/F → F [u]/(M) ' Poly≤(deg M−1)/F

of smooth F -schemes and this is a smooth surjection (it is a trivial Polyd/F -bundle with
d = n− deg M , by the division algorithm). When M ∈ F×, the map

(5.2) ρn,M : Polyn/F → Spec F

is the structure map to a point.
Since deg(f(g)) is determined by n = deg g for g of large degree (depending on f , as in

(2.5)), there is a well-posed algebraic function

(5.3) disc ◦ f : Polyn/F → A1
F

defined by g 7→ disc(f(g)) when n is sufficiently large; note that (5.3) does not extend to an
algebraic function on Poly≤n/F (cf. Remark 1.8). Our aim is to understand the structure
of the algebraic function (5.3) for f as in Lemma 4.6, and in particular the extent to which
it factors through some remainder morphism ρn,M for some nonzero M ∈ F [u].
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To exploit inductive arguments, it is convenient to re-interpret our discriminant problem
as the study of the resultant R(f(g), (∂uf)(g)) for varying g of large (fixed) degree; the
utility of this point of view is that it allows us to consider the more general algebraic
function Polyn/F → A1

F defined by

g 7→ R(f1(g), f2(g))

for large n, with fixed nonzero relatively prime f1, f2 ∈ F [u, T ] (a condition satisfied for
f1 = f and f2 = ∂uf under either hypothesis in Lemma 4.4 when f 6∈ F ). The merit of
this generality is that we may separately vary f1 and f2. Restricting attention to finite or
perfect F of positive characteristic is not adequate: our later work in characteristic 2 will
use the present considerations with a 2-adic field F .

Let us now fix a pair of nonzero relatively prime elements f1, f2 ∈ F [u, T ], so the zero loci
Zf1 = {f1 = 0} and Zf2 = {f2 = 0} are (possibly empty) curves in A2

F with no common
irreducible components. For g ∈ F [u] of degree n, (2.5) gives the degree of fj(g) ∈ F [u]
when n � 0. We give this formula the label dj,n. That is,

(5.4) dj,n := (degT fj)n + deg(leadT fj).

The largeness of n = deg g that makes (2.5) hold for both f1 and f2 depends only on
degT f1, degT f2, and the u-degrees of the coefficients of f1 and f2 when the fj ’s are viewed
as polynomials in T . See (2.7) for an explicit universal lower bound on n that makes (2.5)
valid when g is a point of Polyn/F with values in any F -algebra domain.

Fixing such large n, let

G = a0 + a1u + · · ·+ anun ∈ F [a0, . . . , an][u]

denote the universal polynomial over the scheme Poly≤n/F = Spec F [a0, . . . , an] of polyno-
mials of degree ≤ n over F -algebras; we are not requiring an to be a unit. We wish to study
the following universal polynomial depending on f1 and f2:

(5.5) Rn(G) := RF [a0,...,an](f1(G), f2(G)) ∈ F [a0, . . . , an],

where the resultant is computed by viewing fj(G) as having u-degree dj,n; since n is large,
dj,n is also the u-degree of the specialization of fj(G) at all field-valued points of the open
subscheme Polyn/F ⊆ Poly≤n/F where an is a unit.

Lemma 5.1. Rn(G) 6= 0.

Proof. We need to prove that the nonzero f1(G) and f2(G) have no common factor in
F (a0, . . . , an)[u]. We first show that the fj(G)’s in F [a0, . . . , an][u] have no non-trivial
common factor that lies in F [u]. We may assume F is algebraically closed, so it suffices to
prove that for each c ∈ F , f1(c,G(c)) and f2(c,G(c)) do not both vanish in F [a0, . . . , an].
Since some fjc(u, T ) is not divisible by u − c, as f1(u, T ) and f2(u, T ) cannot both be
divisible by u− c, so fjc(c, T ) 6= 0, clearly fjc(c,G(c)) 6= 0 since G(c) is transcendental over
F .

Since f1 and f2 have no common factor in F [u, T ], and hence no common factor in F [u],
we may assume that f1 and f2 are not divisible by nonunits in F [u]. In particular, if some
fj has T -degree equal to 0 then that fj lies in F×. Hence, we may assume both degT fj ’s
are positive. The relative primality of f1 and f2 ensures that we can find q1, q2 ∈ F [u, T ]
such that

q1f1 + q2f2 = h(u) ∈ F [u]− {0},
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so if f1(G) and f2(G) have a non-trivial common monic factor in F (a0, . . . , an)[u] then such
a factor must divide h(u) and so must lie in F [u]. Thus, there is no such factor. �

We want to understand the structure of Rn(G) as an algebraic function in the aj ’s. For
each of the finitely many intersection points x = (ux, tx) of Zf1 and Zf2 in A2

F , the finite
extension F (x)/F is generated over F by the subextensions F (ux) and F (tx).

Definition 5.2. For n ≥ 1, define Px,n(a0, . . . , an) to be the norm-form polynomial

NF (x)[a0,...,an]/F [a0,...,an](a0 + a1ux + · · ·+ anun
x − tx) ∈ F [a0, . . . , an].

For any F -algebra F ′ and any g ∈ Poly≤n/F (F ′), we have

Px,n(g) = N(F (x)⊗F F ′)/F ′(g(ux)− tx ⊗ 1) ∈ F ′.

Lemma 5.3. Assume n ≥ 1. For each x ∈ Zf1 ∩ Zf2 such that F (x)/F is separable, Px,n

is irreducible in the coordinate ring of Poly≤n/F . If x and x′ are two such distinct points,
then Px,n and Px′,n are not unit multiples of each other in this coordinate ring.

If we do not assume F (x)/F to be separable, then Px,n need not be irreducible. For
example, if F has characteristic p > 0 and F (x) is a purely inseparable extension of F with
degree p2 such that the fields F (ux) and F (tx) have degree p over F , then Px,n is a pth
power.

Proof. Since the extension F (x)/F is finite separable and Px,n is a norm-form of a poly-
nomial in F (x)[a0, . . . , an] whose coefficients generate F (x) over F (since n ≥ 1), the ir-
reducibility is obvious. If L/F is a finite Galois extension into which F (x) admits an
F -embedding, then over L we see that Px,n factors as a product of linear forms Pxi,n de-
fined by the L-points xi of A2

F that lie over x. Thus, if x′ is another point on Zf1 ∩ Zf2

such that F (x′)/F is separable then the geometric zero locus of Px,n is distinct from that
of Px′,n. Hence, Px,n and Px′,n are not unit multiples of each other. �

Now assume F is perfect, so Lemma 5.3 applies to all x ∈ Zf1 ∩ Zf2 . By Definition 4.5
we have

(5.6) Mgeom
f1,f2

(u) =
∏
ux

NF (ux)/F (u− ux) ∈ F [u]− {0},

where ux runs over the distinct images of the x’s on the u-axis. In particular, Mgeom
f1,f2

= 1 if
Zf1 and Zf2 are disjoint. If g1, g2 ∈ F [u] have respective large degrees n1 and n2 then from
(5.6) and the definition Px,n(g) = NF (x)/F (g(ux)− tx) for n ≥ deg g we see

g1 ≡ g2 mod Mgeom
f1,f2

=⇒ Px,n1(g1) = Px,n2(g2)

where nj = deg gj .
For M := Mgeom

f1,f2
6= 0, consider the division-algorithm morphism ρn,M as in (5.1) and

(5.2). Assume Zf1 ∩ Zf2 is nonempty, so M 6∈ F . Choose x ∈ Zf1 ∩ Zf2 , so M(ux) = 0.
Clearly Px,n = Px,M ◦ ρn,M for the algebraic function Px,M on Poly≤(deg M−1)/F given by
the norm construction g 7→ N(F (x)⊗F F ′)/F ′(g(ux)− tx) for F -algebras F ′ and g ∈ F ′[u] with
degree at most deg M − 1.

Lemma 5.4. Let f1, f2 ∈ F [u, T ] be nonzero and relatively prime, with zero loci Zf1 and
Zf2 in A2

F . Assume that F is perfect. For n sufficiently large there exists a unique bn ∈ F×
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and integers en ≥ 0 and ex,n > 0 for all x ∈ Zf1 ∩ Zf2 such that

(5.7) Rn(G) = bnaen
n ·

∏
x

P
ex,n
x,n = bnaen

n ·
∏
x

P
ex,n

x,M ◦ ρn,M

as algebraic functions on Polyn/F , where M = Mgeom
f1,f2

. The exponent en is positive if and
only if degT f1,degT f2 > 0.

Remark 5.5. The algebraic functions in (5.7) are all polynomial functions on Poly≤n/F

(i.e., there is no intervention of 1/an).

The functorial construction of Rn(G) as a universal resultant for large n (an alternative
to the explicit definition (5.5)) only makes sense over Polyn/F and not over Poly≤n/F , so
it does not seem possible to use geometric methods alone to determine how the discrete
parameters en and bn depend on n (though clearly bn is generally sign-dependent on the
ordering of the pair f1 and f2). A geometric interpretation of the ex,n’s is given in Theorem
5.7; the product over x ∈ Zf1 ∩ Zf2 in (5.7) is understood to be 1 if Zf1 ∩ Zf2 is empty.

Proof. Let us first show an|Rn(G) in F [a0, . . . , an] if and only if both degT fj ’s are positive.
Specializing Rn(G) into a field in which an vanishes causes Rn(G) to specialize to 0 if
both degT fj ’s are positive and n is large (as then the fj(G)’s have leading coefficients
divisible by an). If some degT fj vanishes, say degT f1 = 0, then specializing an to zero
causes Rn(G) to have non-vanishing specialization because f1(u) must be relatively prime to
f2(u, a0+a1u+· · ·+an−1u

n−1) (as f1(u) is relatively prime to f2(u, T )). Thus, the geometric
zero locus for Rn(G) ∈ F [a0, . . . , an] on Poly≤n/F ' An+1

F contains the hyperplane an = 0
when both degT fj ’s are positive and otherwise it does not contain this hyperplane.

Since the irreducible Px,n’s are not scalar multiples of an, to establish (5.7) it remains
(by the Nullstellensatz) to show that the restriction of Rn(G) to Polyn/F has geometric
zero locus equal to the union of the geometric zero loci of the Px,n’s. If F/F is an algebraic
closure then by separability of F (x)/F the irreducible factorization of Px,n in F [a0, . . . , an]
is the product of the Pxi,n’s for the F -points xi of A2

F over the physical point x. Thus, we
may assume F is algebraically closed and we wish to prove that if g ∈ F [u] has large exact
degree n then the resultant of f1(u, g(u)) and f2(u, g(u)) vanishes if and only if g(ux) = tx
for some x in the intersection of the zero-loci Zfj

. But this is obvious since the vanishing
of the resultant says that f1(u, g(u)) and f2(u, g(u)) have a common root u0 ∈ F , and then
x = (u0, g(u0)) lies on both zero-loci Zfj

. �

Corollary 5.6. Let F be a perfect field with positive characteristic p and f(T ) ∈ F [u, T ] a
nonzero squarefree element.

1) If f lies in F [u][T p] then, for g of sufficiently large degree, the property of f(g) being
separable in F [u] is determined by g mod Mgeom

f .
2) If f(T p) is squarefree in F [u, T ], then for g of sufficiently large degree, the property of

f(gp) being separable in F [u] is determined by g mod Mgeom
f .

The “sufficient largeness” of deg g may be chosen uniformly with respect to arbitrary
extensions of F .

For the study of p = 2 we will need the second case in this corollary.

Proof. The case f ∈ F× is trivial, so we may assume f 6∈ F . Thus, in either case, Lemma 4.4
assures us that ∂uf 6= 0 and that f and ∂uf have no nonconstant common factor in F [u, T ]
(so Mgeom

f makes sense). Hence, we may apply Lemma 5.4 with f1 = f and f2 = ∂uf to
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conclude that for g with large degree, the vanishing of the resultant of f(g) and (∂uf)(g)
only depends on g mod Mgeom

f . Also, f(g) is inseparable in F [u] precisely when it has a
common geometric root with its derivative f(g)′.

In case (1), f(g)′ = (∂uf)(g) has a common geometric root with f(g) if and only if the
resultant of f(g) and (∂uf)(g) vanishes. Since (f(gp))′ = (∂uf)(gp), in case (2) we see that
separability of f(gp) only depends on gp mod Mgeom

f for deg(g) � 0. �

A defect in Lemma 5.4 is that it does not provide a description of how bn, en, and ex,n

depend on large n. These deficiencies are settled by:

Theorem 5.7. Let F be a perfect field and f1, f2 ∈ F [u, T ] nonzero and relatively prime,
with Zfj

⊆ A2
F the zero locus of fj. Let bn, en, and ex,n be as in Lemma 5.4 for the

ordered pair (f1, f2). For large n and x ∈ Zf1 ∩Zf2, ex,n is equal to the intersection number
ix(Zf1 , Zf2) at x. Also, there exist unique β0, β1 ∈ F× such that bn = β0β

n
1 for large n, and

if degT f1,degT f2 > 0 then en is a polynomial in n with degree ≤ 1 and Z-coefficients for
large n.

In particular, for the fixed choice of ordered pair (f1, f2), there exist c ∈ F×, integers m0

and m1 with m1 ≥ 0, and an algebraic function Lf1,f2 : F [u]/(M) → A1
F for some nonzero

M ∈ F [u] such that for large n there is an equality of algebraic functions

(5.8) Rn(G) = cnam0+m1n
n · (Lf1,f2 ◦ ρn,M )

on Polyn/F , with ρn,M as in (5.1) or (5.2). If degT f1,degT f2 > 0 then m1 > 0.

For f as in Lemma 4.4, the pair f1 = f and f2 = ∂uf satisfies the hypotheses in Theorem
5.7. A local calculation shows that in this case B = Zf1 ∩ Zf2 is the non-étale locus for
projection from {f = 0} onto the T -axis, and ix(Zf1 , Zf2) is the length of B at x. As an
illustration (via Example 4.2), for f as in Example 1.1 the projection from the plane curve
{f = 0} onto the T -axis is non-étale at precisely the geometric points (0, 0) and (1, t) with
t2 +1 = 0, and the branch scheme has respective lengths 18 and 9 at these points. Theorem
5.7 thereby explains why µ(f(g)) has the form given in (1.3), since we can equivalently
write it as the quadratic symbol for g(0)18(g(1)2 + 1)9.

Before we prove Theorem 5.7, we use it to prove Theorem 4.7.

Proof. (of Theorem 4.7) For g in κ[u] of sufficiently large degree, f(g) is nonzero and (3.6)
and (4.2) yield

µ(f(g)) = (−1)dχ(disc f(g))

= (−1)dχ(lead f(g))d+deg f(g)′(χ(−1))d(d−1)/2χ(R(f(g), f(g)′)),

with d = deg f(g). Note f(g)′ = (∂uf)(g). Since f is squarefree and f 6∈ κ, so (∂uf)(T ) 6= 0
by Lemma 4.4, we have (∂uf)(g) 6= 0 when deg g � 0.

When deg g � 0, both d = deg f(g) and deg((∂uf)(g)) are linear in deg g by (2.5). Using
(2.5) and (2.6) to compute deg f(g) and lead f(g) in terms of deg g and lead g for deg g � 0,
we have by Theorem 5.7 that there exist ε0, ε1 ∈ {±1} and integers m0 and m1 such that
for deg g � 0,

(5.9) µ(f(g)) = ε0ε
deg g
1 (χ(−1))(deg f(g))(deg f(g)−1)/2χ(lead g)m0+m1 deg gχ(L(g))

where L is an algebraic function on the affine space κ[u]/(Mgeom
f ) over κ. This formula

depends on deg g modulo 4. If −1 is a square in κ or degT f is a multiple of 4 then the
formula (5.9) depends on deg g modulo 2.
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Now let us establish the final part of Theorem 4.7 concerning the behavior of Mmin
f,κ′ for

sufficiently large finite extensions κ′ of κ. Let κ′/κ be a finite extension such that all points
in the finite set Zf ∩Z∂uf ⊆ A2

κ are κ′-rational, and so in particular Mgeom
f splits into linear

factors in κ′[T ]. This rationality property is inherited by all finite extensions of κ′.
We claim that no proper factor of Mgeom

f can serve as a modulus for µκ′′[u](f(g)) with κ′′

any finite extension of κ′. Since Mmin
f,κ′′ |M

geom
f , we can assume Mgeom

f is nonconstant.
Choose a monic linear factor of Mgeom

f in κ′[u], so it has the form h = u − ux for some
(κ′-rational) point x = (ux, tx) ∈ Zf ∩ Z∂uf . We can find polynomials g1 and g2 with
any large degree n and a common leading coefficient such that g1(ux) = tx 6= g2(ux) and
g1(ux′) = g2(ux′) 6= tx′ for all x′ ∈ Zf ∩ Z∂uf with x′ 6= x, in which case (5.7) and the
positivity of the exponents ex′ ensure that for sufficiently large n we have the vanishing
of the resultant of f(g1) and (∂uf)(g1) = f(g1)′ and the non-vanishing of the resultant
of f(g2) and f(g2)′; that is, µκ′[u](f(g1)) = 0 and µκ′[u](f(g2)) 6= 0. The same properties
persist after replacing κ′ with any finite extension κ′′. Since g1 and g2 are clearly congruent
modulo Mgeom

f /(u − ux), we conclude that this divisor of Mgeom
f cannot be a modulus for

µκ′′[u](f(g)) and so cannot be divisible by Mmin
f,κ′′ . Thus, the monic factor Mmin

f,κ′′ of the monic
Mgeom

f must equal Mgeom
f . �

Let us now prepare for the proof of Theorem 5.7. We first establish a key point: if
ex,n = ix(Zf1 , Zf2) for sufficiently large n and all x ∈ Zf1 ∩ Zf2 (or more generally, if ex,n

is independent of n for n � 0 and all such x) then a formula of the shape (5.8) holds for
some nonzero M if and only if en is a Z-polynomial of degree ≤ 1 in n for large n and
bn = β0β

n
1 for some β0, β1 ∈ F× for large n. Sufficiency is obvious by Theorem 5.4, and

for necessity we may replace M with MMgeom
f1,f2

to get to the case where Mgeom
f1,f2

|M , so with
ex := ix(Zf1 , Zf2) > 0 we have formulas

Rn(G) = bnaen
n

∏
x

P ex
x,M ◦ ρn,M

and
Rn(G) = cnam0+m1n

n · Lf1,f2 ◦ ρn,M

on Polyn/F for large n. Thus, for large n the rational function

g 7→ bnc−nan(g)en−(m0+m1n)

on Polyn/F factors through ρn,M , or equivalently for generic (or universal) g it only depends
on g mod M . This forces en = m0 + m1n for large n, so

(bnc−n)
∏
x

P ex
x,M ◦ ρn,M = Lf1,f2 ◦ ρn,M

for large n. We can assume deg M > 0, so for large n we have

bnc−n
∏
x

P ex
x,M = Lf1,f2

on Poly≤(deg M−1)/F . Since Lf1,f2 and the P ex
x,M ’s do not depend on n, we conclude that

bnc−n ∈ F× is equal to a constant c′ that does not depend on large n. Thus, bn = c′cn for
c, c′ ∈ F× and large n, as desired.

We shall now aim to prove ex,n = ix(Zf1 , Zf2) for all x ∈ Zf1 ∩ Zf2 and large n, as well
as an identity of the form (5.8), by means of induction on the ordered pair (f1, f2). The
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flexibility in the choice of M will be essential for the success of the induction. For example,
the preceding argument shows that if this goal is satisfied for a particular pair (f1, f2) then
upon replacing M with a nonzero multiple so that it is divisible by Mgeom

f1,f2
we must have

Lf1,f2 = c0

∏
x

P
ix(Zf1

,Zf2
)

x,M

for some c0 ∈ F×. In what follows we will work with a generic field-valued point g of the
geometrically integral F -variety Polyn/F for large n, though one can instead work through-
out in the universal case with g having a unit leading coefficient and large degree n. Since
local intersection numbers for plane curves enjoy properties analogous to the properties of
resultants that were summarized below Example 4.1, our inductive manipulations with re-
sultants below will be well-behaved with respect to the desired equality ex,n = ix(Zf1 , Zf2)
for large n and all x ∈ Zf1 ∩ Zf2 .

Note that although R(f1(g), f2(g)) generally depends on the ordering of f1 and f2, the
existence of an identity as in (5.8) does not depend on this ordering (nor do the intersection
numbers between Zf1 and Zf2). Indeed, for g of sufficiently large degree, say deg g >
ν(f1), ν(f2) (see (2.7)),

R(f1(g), f2(g)) = (−1)(deg f1(g))(deg f2(g))R(f2(g), f1(g))

= (−1)e0(−1)e1 deg gR(f2(g), f1(g)),

where e0 = (deg α1,d1)(deg α2,d2) and e1 = d1 deg α2,d2 + d2 deg α2,d2 + d1d2, with dj =
degT fj and fj =

∑
αj,iT

i. Thus, we need not be concerned with sign-changes in resultants
when f1(g) and f2(g) are interchanged. We will use this repeatedly.

Our proof of Theorem 5.7 will roughly be a series of identities

R(f1(g), f2(g)) = c0c
deg g
1 (lead g)m0+m1 deg gR(f3(g), f4(g)), Zf1 ∩ Zf2 = Zf3 ∩ Zf4

for generic g of large degree (or universal g with a unit leading coefficient and large degree),
where c0, c1 ∈ F× and m0,m1 ∈ Z, and the ordered pair (f3, f4) of nonzero relatively prime
polynomials in F [u, T ] is in some sense smaller than (f1, f2). (There is more than one sense
that we use, depending on the stage of our argument.) In this way, induction will establish
(5.8).

To get started, the case when f1(T ) has T -degree 0, say f1(T ) = a(u) ∈ F [u], is trivial:
writing a(u) = ca1(u) with c ∈ F× and a1(u) monic,

(5.10) R(a(u), f2(g)) = R(c, f2(g))R(a1(u), f2(g))cdeg f2(g)R(a1(u), f2(g)).

For deg g > ν(f2), cdeg f2(g) = c0c
deg g
1 for suitable c0 and c1 in F× that are independent

of g. The factor R(a1(u), f2(g)) is an algebraic function of g modulo a1(u), since a1(u) is
monic. This proves (5.8) in the present case for large n, and so we next have to relate ex,n

to an intersection number at x for large n in this case.
For each x ∈ Zf1 ∩ Zf2 = Za1 ∩ Zf2 , since F (x)/F is separable it is clear that if F ′/F is

any extension and {x′j} is the finite set of points over x in A2
F ′ then Px,n =

∏
j Px′j ,n over

F ′ and ix(Zf1 , Zf2) = ix′j (Zf1/F ′ , Zf2/F ′). Hence, to identify each ex,n with the intersection
number at x for large n we may assume F is algebraically closed. The monicity of a1

and the bimultiplicativity of resultants and local intersection numbers reduce us to the
case a1 = u − u0 for some u0 ∈ F . By long division against u − u0 we can assume
f2 ∈ F [T ], so since F is algebraically closed we can use bimultiplicativity to reduce to the
case f2 = c(T − t0)e0 for some c ∈ F×, t0 ∈ F , and e0 ≥ 0. The case e0 = 0 is trivial, so we
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can assume c = 1 and e0 = 1. Since R(u− u0, g − t0) = g(u0)− t0 = P(u0,t0)(g), this case is
settled.

To prove Theorem 5.7 in general, we can assume that the coefficients of f1 as a polynomial
in T have no common factor in F [u], and similarly for f2. Indeed, if f1(T ) = a(u)h(T ) for
a(u) in F [u] (so f2 is relatively prime to both a(u) and h(T ) in F [u, T ]), then

(5.11) R(f1(g), f2(g)) = R(a(u), f2(g))R(h(g), f2(g)),

with the first factor on the right side satisfying the inductive hypothesis by the preceding
discussion. In view of the bimultiplicativity of local intersection numbers, if the second
factor on the right side in (5.11) satisfies the inductive hypothesis (for large n) then we will
indeed be done. Removing a common factor from the coefficients of f2 as a polynomial in
T is also compatible with Theorem 5.7.

We will prove Theorem 5.7 by two inductions: on the maximum of degT f1 and degT f2

when these degrees are distinct, and for f1 and f2 of equal T -degree we will induct on the
minimum u-degree of their leading coefficients as polynomials in T .

Lemma 5.8. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume α - β and β - α (so α, β 6∈ F ). There exist c ∈ F×, ε = ±1, m ∈ Z, and a second
pair of polynomials h̃1(T ) and h̃2(T ) in F [u][T ] with T -degree d whose leading coefficients
as polynomials in T , α̃(u) and β̃(u), satisfy

(5.12) min(deg α̃, deg β̃) < min(deg α, deg β)

such that for all extensions F ′/F and all g in F ′[u] with sufficiently large degree (depending
on h1 and h2, and uniform with respect to F ′)

(5.13) R(h1(g), h2(g))cεdeg g(lead g)mR(h̃1(g), h̃2(g)).

If the hj’s are relatively prime in F [u, T ] then the h̃j’s must be relatively prime in F [u, T ].

Proof. We will prove the lemma when deg α ≤ deg β. (When deg α > deg β, we can
reduce to the other case by interchanging h1 and h2, at the cost of changing c and ε in
the conclusion.) In F [u], write β(u) = α(u)q(u) + r(u), where r 6= 0 and deg r < deg α.
Since r 6= 0, k(T ) := h2(T )− q(u)h1(T ) has leading term r(u)T d as a polynomial in T with
coefficients in F [u]. For all g, clearly h2(g) ≡ k(g) mod h1(g). When deg g exceeds ν(h1),
ν(h2), and ν(k) (see (2.7)), quasi-periodicity gives

R(h1(g), h2(g)) = (leadh1(g))deg h2(g)−deg k(g)R(h1(g), k(g))
= c(lead g)mR(h1(g), k(g)),

where c = (leadα)deg β−deg r and m = d(deg β − deg r). Let h̃1 = h1 and h̃2 = k, or h̃1 = k

and h̃2 = h1. By Lemma 5.1, the identity (5.13) forces relative primality of the h̃j ’s when
the hj ’s are relatively prime. �

Now we modify the hypothesis in the previous lemma. Rather than assuming the leading
coefficients α(u) and β(u) do not divide each other, we assume h1(T ) and h2(T ) are relatively
prime as polynomials in T .
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Lemma 5.9. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume the hj’s are relatively prime in F [u, T ]. There exist c ∈ F×, ε = ±1, m ∈ Z,
and a second pair of nonzero relatively prime polynomials h̃1(T ) and h̃2(T ) in F [u][T ] with
degT h̃1 < degT h̃2 = d such that for all extensions F ′/F and all g in F ′[u] with sufficiently
large degree (uniform with respect to F ′),

R(h1(g), h2(g))cεdeg g(lead g)mR(h̃1(g), h̃2(g)).

Proof. If neither α nor β divides the other in F [u], apply Lemma 5.8 to get a second pair
of polynomials in F [u][T ] with T -degree d. Repeat this process if again neither leading
coefficient as a polynomial in T divides the other. (Note that terms like cεdeg g(lead g)m

behave well under multiplication: the c’s and ε’s are multiplicative, while the m’s are
additive.) The condition (5.12) ensures that we eventually reach the case where α(u)|β(u)
or β(u)|α(u). Thus, we may interchange h1 and h2 if necessary to suppose α(u)|β(u). Write
β(u) = α(u)q(u). The polynomial k(T ) := h2(T )−q(u)h1(T ) has T -degree less than d. This
polynomial is nonzero and is relatively prime to h1 since gcd(h1, h2) = 1. Proceed as in the
proof of Lemma 5.8, taking h̃1 = k and h̃2 = h1. �

In the two preceding lemmas, if the hj ’s are relatively prime then for the h̃j ’s constructed
in the proofs we have Zh1 ∩Zh2 = Zeh1

∩Zeh2
scheme-theoretically in A2

F . In particular, local

intersection numbers are unaffected by replacing the pair (h1, h2) with the pair (h̃1, h̃2).
This observation will be used without comment below.

We are finally ready to prove Theorem 5.7:

Proof. (of Theorem 5.7). We argue by induction on max(degT f1,degT f2). Set d1 = degT f1

and d2 = degT f2. We can assume both d1 and d2 are positive, since the cases d1 = 0 or
d2 = 0 have been settled via (5.10). Remove any nontrivial common factor from the F [u]-
coefficients of f1(T ) as a polynomial in T , using (5.11), so f1(T ) is primitive over F [u].
Similarly make f2 primitive. By Lemma 5.9 and induction, we may assume d1 6= d2, and
without loss of generality 0 < d1 < d2. Writing

(5.14) f1(T ) = α(u)T d1 + . . . , f2(T ) = β(u)T d2 + . . . ,

we wish to reduce to the case deg β < deg α (at the expense of possibly losing the primitivity
condition for f2 but not for f1).

Write β(u) = α(u)q(u) + r(u), where r = 0 or deg r < deg α. The polynomial k(T ) =
f2(T )−q(u)T d2−d1f1(T ) is nonzero and relatively prime to f1. If r is nonzero, then k(T ) has
leading term r(u)T d2 . If r = 0, then degT k < d2. In either case, f2(g) ≡ k(g) mod f1(g)
for all field-valued points g of Polyn/F . When n = deg g is sufficiently large,

R(f1(g), f2(g)) = (lead f1(g))deg f2(g)−deg k(g)R(f1(g), k(g)).

The power of lead f1(g) can be written in the form c0c
deg g
1 (lead g)m0+m1 deg g for suitable

c0, c1 in F× and integers m0 and m1 that do not depend on g. (The number m1 is nonzero
when degT k < d2.) By construction Zf1 ∩ Zf2 = Zf1 ∩ Zk scheme-theoretically, so we are
now reduced to proving Theorem 5.7 with f2 replaced by k.

Either degT k = d2 and the leading coefficient of k as a polynomial in T has smaller degree
than deg α, or degT k < d2. In the latter case, max(degT f1,degT k) < d2, so Theorem 5.7
with f1 and k has already been proved by the inductive hypothesis. Thus, it remains to treat
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the case (5.14) with deg β < deg α; observe that this reduction step preserves primitivity
for f1 but possibly loses it for f2.

Our resultant now looks like R(f1(g), f2(g)) = R(α(u)gd1 + · · · , β(u)gd2 + · · · ). Since
d1 < d2, it is natural to want to reduce f2(g) modulo f1(g) and use quasi-periodicity, hoping
to lower the maximum T -degree of the pair f1, f2 in our resultants. However, deg β < deg α,
so there is no progress through a division algorithm on the leading coefficients as in the
proof of Lemma 5.8.

We now apply a generalization of the trick with u + 1 in (4.10). Consider the universal
identity

(5.15) R(f1(g), α(u))R(f1(g), f2(g)) = R(f1(g), α(u)f2(g))

with g the universal polynomial of large degree n with a unit leading coefficient. The first
term in (5.15) is nonzero, since primitivity of f1 forces gcd(f1(g), α(u)) = 1. Since all
three resultants admit expressions as in Theorem 5.4 for a common modulus M , and since
we know that if the ex,n’s for large n have been proved to be independent of n then an
identity as in (5.8) is equivalent to en being a Z-polynomial of degree ≤ 1 in n and bn

having the form β0β
n
1 for large n (for some β0, β1 ∈ F×), it is obvious (again with the help

of bimultiplicativity of local intersection numbers) that if the theorem is proved for two of
the three pairs (f1, α), (f1, f2), and (f1, αf2) then it follows for the third. Since the case
of a polynomial of T -degree zero has already been settled, it suffices to prove (5.8) for the
ordered pair (f1, α(u)f2).

The right side of (5.15) has the form R(α(u)gd1 + · · · , α(u)β(u)gd2 + · · · ). Let h(T ) =
α(u)f2(T ) − β(u)f1(T )T d2−d1 . Since gcd(f1, f2) = 1 and f1 is primitive over F [u], and
we may assume degT f1 > 0, it follows that h is nonzero and satisfies degT h < d2 and
gcd(f1, h) = 1. Since h(g) ≡ α(u)f2(g) mod f1(g) for all g, when deg g � 0 the right side
of (5.15) is

R(f1(g), α(u)f2(g)) = (lead f1(g))deg α+deg f2(g)−deg h(g)R(f1(g), h(g))

= c0c
deg g
1 (lead g)m0+m1 deg gR(f1(g), h(g))

for suitable c0, c1 in F× and integers m0 and m1. (For instance, m1 = d2 − degT h.) Since
degT f1 and degT h are both less than d2, the theorem holds for the pair (f1, h) by induction
on the maximum T -degree. The scheme-theoretic equality Zf1 ∩ Zαf2 = Zf1 ∩ Zh therefore
allows us to infer the desired result for the pair (f1, αf2). �

Corollary 5.10. Let F be a perfect field of characteristic p > 0 and let f1, f2 ∈ F [u, T ] be
nonzero and relatively prime. Assume fj = hj(u, T pm

) with m ≥ 0. For each x ∈ Zf1 ∩Zf2,
the multiplicity ex of Px,n as a factor of the algebraic function g 7→ R(f1(g), f2(g)) on
Polyn/F for sufficiently large n is equal to pm · i(1×φm)(x)(Zh1 , Zh2), with φ the relative
Frobenius on the T -line over F .

Proof. By Theorem 5.7, we just have to prove

ix(Zf1 , Zf2) = pm · i(1×φm)(x)(Zh1 , Zh2).

Since F is perfect and the relative Frobenius map commutes with extension of the base
field we can assume F is algebraically closed. By a linear translation we can assume x =
(0, 0). Thus, the finite F -algebra F [[u, T ]]/(f1, f2) is identified with the scalar extension
of F [[u, T ]]/(h1, h2) via the local F -algebra map F [[T ]] → F [[T ]] given by T 7→ T pm

. This
extension of scalars is finite flat of degree pm, so it multiplies the vector-space dimension
by pm. �
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Example 5.11. The case of most interest in Corollary 5.10 is f1 = f and f2 = ∂uf with
f as in Corollary 5.6(1) and p 6= 2. For “generic” such f and maximal m the associated
polynomials h1 and h2 are T -separable, so the intersection numbers between Zh1 and Zh2

are all equal to 1. Hence, for “generic” such f the exponents ex are a power of p (and hence
odd if p 6= 2). Also, if F is a p-adic field then for a “generic” f in F [u, T p] the intersection
numbers between Zf and Z∂uf are all equal to 1; this latter situation will be relevant for
our work with p = 2.

Although we have given a geometric interpretation to the exponents ex,n for large n, as
we noted after Remark 5.5, we lack a good understanding of the constants β0, β1 ∈ F×

(with bn = β0β
n
1 for large n) and the Z-polynomial function en of degree ≤ 1. For example,

if we write en = m0 + m1n for large n then we do not know a conceptual interpretation
of the parity of the mj ’s; such parities influence Möbius bias, as we shall see later. Due
to our poor understanding of β0, β1, and en, to compute Möbius formulas in large degrees
for specific examples it seems unavoidable to essentially carry out the recursive algebraic
procedure in the proof of Theorem 5.7.

6. Characteristic 2

The analogue of Theorem 4.7 in characteristic 2 is subtle because (3.5) in characteristic
2 requires liftings into characteristic 0. Fix a perfect field k of characteristic 2, and let
W = W (k) (the Witt vectors of k) and F = Frac(W ).

Hypothesis. Our running convention throughout this section is that h denotes a poly-
nomial in k[u, T ] such that h 6∈ k and h(T 2) is squarefree in k[u, T ].

This hypothesis forces h to be squarefree in k[u, T ] and not to have any irreducible
factors in k[T ], and also forces h(g2) 6= 0 for all g ∈ k[u]. We are interested in studying
specializations of h(T 2) on k[u] for finite k, but we will initially focus on h(T ) for any perfect
k with characteristic 2.

Since h 6∈ k, Lemma 4.4(2) ensures ∂uh 6= 0 and that there is no common irreducible
factor of h and ∂uh in k[u, T ]. Thus, Rk[u](h, ∂uh) 6= 0 and we may define Mgeom

h as in
Definition 4.5. We emphasize that Mgeom

h is not to be confused with Mgeom
h(T 2)

; in our study
of Möbius bias for specializations of f(T ) = h(T 2) in characteristic 2, it is Mgeom

h that will
turn out to be of more interest than Mgeom

f . Corollary 5.6(2) ensures that the separability
property of h(g2) in k[u] only depends on g mod Mgeom

h provided that deg g is sufficiently
large, with largeness that depends on h and is uniform with respect to all perfect extensions
of k.

Since h(T 2) is squarefree in k[u, T ] and h 6∈ k, we can find g ∈ k[u] of any sufficiently
large degree such that h(g2) is nonconstant and separable in k[u]: use [19, Theorem 3.1] if
k is finite, and use Lemma 5.1 and the Zariski-denseness of the locus of k-rational points
in an affine space over k if k is infinite. In particular, (∂uh)(g2) = h(g2)′ is nonzero and
Rk(h(g2), h(g2)′) is nonzero. Fix such a choice of g; concretely, g is a representative of some
member of a (nonempty) collection of residue classes modulo Mgeom

h .
Let H be a lift of h in W [u][T ] = W [u, T ] such that degT H = degT h and leadT (H) ∈

W [u] has the same u-degree as leadT (h) ∈ k[u], so leadT (H) ∈ W [u] has unit leading
coefficient and reduces to leadT (h) ∈ k[u]. Let G ∈ W [u] be a lift of g with unit leading
coefficient (so deg G = deg g). Assume deg g is sufficiently large so that the degree of
h(g2) ∈ k[u] is given by the generic formula as in (2.5), and likewise for the degree of H(G2).
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Note that H(G2) ∈ W [u] has unit leading coefficient (and hence the same degree as h(g2)),
so W [u]/(H(G2)) is a finite flat W -algebra that lifts the finite étale k-algebra k[u]/(h(g2)).
By (3.6), we need to understand how the unit discriminant discW (H(G2)) mod 8W depends
on G.

Though H(G2)′ 6= (∂uH)(G2) in characteristic 0, the mod-2 reductions agree. Thus, the
F -resultants

(6.1) RF (H(G2),H(G2)′), RF (H(G2), (∂uH)(G2))

lie in W and have reductions in k that are k×-multiples of each other (see (4.4) and the
Warning above Example 4.1). Both reductions therefore lie in k× since h(g2) is separable,
so both terms in (6.1) lie in W×. The quadratic nature of the first resultant in (6.1)
intervenes in the study of discW (H(G2)), and the second resultant in (6.1) is a form to
which Theorem 5.4 and Theorem 5.7 may be applied (over the field F of characteristic
zero). We are going to show that the unit ratio of the resultants in (6.1) can be made
explicit in (W/8W )× modulo unit-square factors, so we will be able to use Theorems 5.4
and 5.7 to study the quadratic nature of discW (H(G2)).

The leading coefficient of H(G2) is a unit and the reduction h(g2) is separable, so the
roots of H(G2) in an algebraic closure F are integral, lie in an unramified extension of F ,
and have pairwise-distinct reductions. Let {α} be the (nonempty) set of roots of H(G2) in
F , with α denoting the reduction of α, so (∂uh)(g2)(α) = (h(g2))′(α) is nonzero and hence
(∂uH)(G2)(α) is an integral unit for all α.

Since H(G2)′ = (∂uH)(G2) + 2(∂T H)(G2)GG′, the classical formula (4.3) for resultants
in terms of products over geometric roots gives

(6.2)
RF (H(G2),H(G2)′)

RF (H(G2), (∂uH)(G2))
= lead(H(G2))dG

∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
α

)
,

where dG = deg(H(G2)′) − deg((∂uH)(G2)) is a “universal” polynomial of degree at most
1 in deg G = deg g when deg g is large. The largeness depends on H but is uniform with
respect to perfect extensions of k.

Remark 6.1. For deg g large, dG = 0 if leadT H ∈ W [u] is nonconstant (or equivalently, if
leadT h ∈ k[u] is nonconstant). If leadT H ∈ W×, then for deg g large we have

dG = 2 degT h deg g − 1− deg(leadT ∂uH)− 2(degT ∂uH) deg G.

= 2(degT h− degT ∂uH) deg g − (1 + deg(leadT ∂uH)).

We need to understand the product in (6.2) modulo 8W . The remarkable surprise is that
there is a very simple formula for this product mod 8W (see (6.4)), and the formula only
depends on g and h (not on G or H). This formula uses residues of a certain differential
form. We need to make two definitions before we can state the formula of interest.

Definition 6.2. For any perfect field K and any rational differential form ω on P1
K , set

(6.3) s2(ω) :=
∑

{y1,y2}

Resy1ω · Resy2ω ∈ K,

where the sum runs over unordered pairs of distinct geometric poles of ω on P1
K .

In words, s2(ω) is the second symmetric function of the geometric residues of ω. Our
interest in s2(ω) will be restricted largely to cases when ω has simple poles. We are grateful
to Gabber for pointing out to us that, for ω varying with only simple geometric poles, s2(ω)
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is not algebraic in ω if we do not fix the number of simple geometric poles of ω. For example,
let

ω = b · du

u
+

du

u− a
,

with b, b + 1 6= 0. This has three simple poles when a 6= 0 and two simple poles when
a = 0. If a 6= 0 then s2(ω) = −b(b + 1) − 1, but if a = 0 then s2(ω) = −(b + 1)2. This
non-algebraicity is analogous to the fact that (5.3) does not extend to an algebraic function
on Poly≤n/F .

Definition 6.3. For γ ∈ k[u], define

ωh,γ :=
(∂T h)(γ2)γ

h(γ2)
dγ;

the initial hypotheses on h ∈ k[u][T ] in this section ensure that h(γ2) 6= 0.

When γ is a square in k[u] (so dγ = 0) or h is a polynomial in T 2 (so ∂T h = 0), clearly
ωh,γ = 0. For g ∈ k[u] with large degree such that h(g2) is separable, we may write

ωh,g =
(∂T h)(g2)g2

h(g2)
· dg

g
,

so this rational differential form on P1
k has simple poles. We will see in Theorem 6.10 that

s2(ωh,γ) intervenes in the behavior of µ(h(γ2)) when k is finite. The vanishing of s2(ωh,γ2)
will therefore make the behavior of µ(h(γ4)) quite tractable for finite k.

Theorem 6.4. Choose H ∈ W [u, T ] reducing to h ∈ k[u, T ] such that leadT (H) ∈ W [u]
has unit leading coefficient in W . For g ∈ k[u] of large degree with h(g2) separable and
G ∈ W [u] lifting g with lead(G) ∈ W×,

(6.4)
∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

)
≡ 1 + 2 deg g degT h + 4s2(ωh,g) mod 8W,

where α runs over the geometric roots of H(G2). The largeness of deg g depends on H and
may be chosen uniformly with respect to perfect extensions of k.

Proof. Let P = H(G2). Since P has simple zeros at each of its roots α, and hence serves
as a local coordinate there, we get the residue description

(6.5)
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P

)
.

We will first show

(6.6) 2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

≡ 2ResαωH,G + 4(ResαωH,G)2 mod 8W,

where W is the integral closure of W in an algebraic closure F of F . Note that we can replace
the residue in the final term in the mod-8 equation (6.6) with a residue in characteristic 2,
namely Resα(ωh,g) with α the reduction of α.

Since (H(G2))′ ≡ (∂uH)(G2) mod 2W [u] with H(G2)′(α) ∈ W
×, we have

Resα

(
((∂T H)(G2)GG′)2

(∂uH)(G2)H(G2)
du

)
≡ Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dH(G2)
H(G2)

mod 2W.
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However,

(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P
=

(∂T H)(G2)GG′((∂uH)(G2) + 2(∂T H)(G2)GG′)
(∂uH)(G2)H(G2)

du

=
(∂T H)(G2)G

H(G2)
dG + 2

((∂T H)(G2)(GG′))2

(∂uH)(G2)H(G2)
du

and P = H(G2), so by (6.5) we conclude that in W/8W

2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= 2 · Resα
(∂T H)(G2)G

H(G2)
dG + 4 · Resα

((
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dP

P

)
.

The first residue on the right side is ResαωH,G. The second residue only matters modulo 2.
Reducing it modulo 2 gives the square of the residue at α of

(∂T h)(g2)gg′

(∂uh)(g2)
· d(h(g2))

h(g2)
(∂T h)(g2)g2

h(g2)
· dg

g
ωh,g

since Resx(spdr/r) = Resx(sdr/r)p in characteristic p > 0. This establishes (6.6).
Using (6.6), expanding the product on the left side of (6.4) modulo 8 gives

(6.7) 1 + 2
∑
α

ResαωH,G + 4
∑

α1 6=α2

Resα1ωh,gResα2ωh,g + 4
∑
α

Resα(ωh,g)2,

where α1 and α2 in the second sum run over unordered pairs of distinct F -roots of H(G2).
By the residue theorem in characteristic 0, the first sum over the zeros α of H(G2) in (6.7)
is equal to

−Res∞

(
(∂T H)(G2)G2

H(G2)
· dG

G

)
= deg G degT H = deg g degT h

since (∂T H)(G2)G2 and H(G2) have the same degree and have leading coefficients with
ratio degT H.

Since (6.7) is being considered in W/8W , the final sum in (6.7) only matters in W/2W ,
where it can be computed to be(∑

α

Resα(ωh,g)

)2

= Res∞(ωh,g)2Res∞(ωh,g) ·
∑
α

Resα(ωh,g)

by the residue theorem in characteristic 2. The second and third sums in (6.7) therefore
combine to give 4s2(ωh,g) in (6.4). �

By (4.1), (6.2), and Theorem 6.4, if deg g � 0 and h(g2) is separable then the discriminant
discW (H(G2)) is congruent modulo 8W to

(6.8)
(−1)δg(δg−1)/2

(leadH(G2))2δg−1−dG
RW (H(G2), (∂uH)(G2))(1 + 2 deg g degT h + 4s2(ωh,g)),

where
δg = deg(h(g2)) = deg(leadT h) + 2 deg g degT h

and dG is given by Remark 6.1; the exponent 2δg−1−dG of leadH(G2) in (6.8) is linear in
deg g = deg G when deg g is large. Since −4 ≡ 4 mod 8, discW (H(G2)) mod 8W is therefore
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equal to

RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

((−1)δg(δg−1)/2(1 + 2 deg g degT h) + 4s2(ωh,g)).

Write δg = c + 2ab, with c = deg(leadT h), a = deg g, and b = degT h, so

δg(δg − 1)
2

≡ c(c− 1)
2

+ ab mod 2

and (by checking cases for ab modulo 4)

(−1)ab(1 + 2ab) ≡ 1 + 4
⌊

1 + ab

2

⌋
mod 8;

here, b·c denotes the greatest-integer function. Thus, separability of h(g2) implies that
discW (H(G2)) mod 8W is equal to

(6.9)
RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

(−1)deg(leadT h)(deg(leadT h)−1)/2(1 + 4(mg + s2(ωh,g))),

where mg = b(1 + (deg g)(degT h))/2c and deg g � 0.
If we had instead chosen g of large degree such that h(g2) is not separable and G ∈ W [u]

is a lift of g with lead(G) ∈ W×, then since H(G2) has the same degree as its reduction
h(g2) we see via (4.4) that RW (H(G2), (∂uH)(G2)) has reduction that is a k×-multiple
(depending on G) of

Rk(h(g2), (∂uh)(g2)) = Rk(h(g2), h(g2)′) = 0.

Thus, RW (H(G2), (∂uH)(G2)) ∈ 2W in such cases, so although discW (H(G2)) may not be
congruent modulo 8 to (6.9) when h(g2) is not separable, the expression (6.9) always makes
sense in W and is a non-unit precisely when discW (H(G2)) is a non-unit. Thus, we can use
the resultant RW (H(G2), (∂uH)(G2)) from characteristic 0 to study discW (H(G2)) mod 8W
even though usually (∂uH)(G2) 6= H(G2)′ in characteristic 0.

Since leadT H ∈ W [u] has leading coefficient in W× and h = H mod 2 ∈ k[u, T ] is not in
k and has no irreducible factors in k[T ] (as h(T 2) is squarefree), we conclude that H is not
in W and H has no irreducible factors in W [T ]. Moreover, since h is squarefree in k[u, T ] we
see that its lift H is squarefree in W [u, T ]. The same therefore holds using F -coefficients,
so ∂uH 6= 0 and the zero loci ZH = {H = 0} and Z∂uH = {∂uH = 0} in A2

F have finite
intersection by Lemma 4.6. In particular,

RH := ResW [u](H, ∂uH) ∈ W [u]

is nonzero and we may form the monic squarefree polynomial Mgeom
H ∈ F [u] as in Defini-

tion 4.5, where the geometric roots of Mgeom
H are the u-coordinates of intersection points of

ZH and Z∂uH in A2
F .

We may use Theorem 5.7 to obtain the identity of algebraic functions

(6.10) RF (H(G), (∂uH)(G)) = β0β
n
1 · lead(G)m0+m1n ·

∏
x

Px,n(G)ex

on Polyn/F for large n, where the integers m0,m1 ∈ Z and the scalars β0, β1 ∈ F× are
independent of n, the indexing set {x} is the set of intersection points of ZH and Z∂uH in
A2

F , ex is the intersection number of ZH and Z∂uH at x, and Px,n(G) = NF (x)/F (G(ux)− tx)
where (ux, tx) are the coordinates of x ∈ A2

F . Of course, all of the parameters in (6.10) may
depend on the fixed choice of H lifting h (subject to the conditions that degT H = degT h
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and degu(leadT (H)) = degu(leadT (h))). When G ∈ W [u], the left side of (6.10) is a
resultant over W . We now show that the identity (6.10) over F can be factored in a manner
that is well-behaved with respect to W .

Lemma 6.5. For large n (uniform with respect to perfect extensions of k), the algebraic
maps

(6.11) β0 ·
∏

|ux|≤1,|tx|>1

P ex
x,n(·), βn

1 ·
∏

|ux|>1

P ex
x,n(·) : Poly≤n/F → A1

F

extend uniquely to W -maps Poly≤n/W → A1
W with nonzero reduction. That is, these poly-

nomial functions in a0, . . . , an have W -coefficients and have nonzero reduction.

Proof. When |ux| ≤ 1 and |tx| > 1, we have an identity

(6.12) Px,n(G) = NF (x)/F (G(ux)− tx) = NF (x)/F (tx) ·NF (x)/F (t−1
x G(ux)− 1)

as algebraic functions of G ∈ Poly≤n/F . Likewise, if we let G∗ denote the polynomial of
(possibly fake) degree n obtained by reversing the order of the coefficients of G, then for
|ux| > 1 we have an identity

(6.13) Px,n(G) = NF (x)/F (G(ux)− tx) = NF (x)/F (ux)n ·NF (x)/F (G∗(1/ux)− u−n
x tx)

with |u−n
x tx| � 1 for large n. Hence, to see that (6.11) extends over W it is enough to show

that the elements

(6.14) b0 := β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex , b1 := β1 ·
∏

|ux|>1

NF (x)/F (ux)ex

in F are integral. We shall prove these are in fact units in W . It then follows trivially that
the first map in (6.11) extends over W and has constant reduction b0 ∈ k×. Likewise, the
second map in (6.11) then extends over W and has reduction

g 7→ b1 · an(g)
P

|ux|>1[F (x):F ]ex

for g =
∑

i≤n ai(g)ui, since G ∈ Poly≤n/F (F ) = F
n+1 has coefficients in W and G∗(1/ux)

has the same reduction as G∗(0) = an(G) when |ux| > 1.
We have seen (in the beginning of this section) that for all large n there exists gn ∈ k[u]

of degree n such that
Rk(h(gn), (∂uh)(gn)) 6= 0.

For Gn ∈ W [u] lifting any such gn with lead(Gn) ∈ W×, clearly the W -resultant of H(Gn)
and (∂uH)(Gn) is a unit in W . Thus, the left side of (6.10) is a unit in W when evaluated
at Gn. Now consider the right side of (6.10) when evaluated at Gn. The contribution of
lead(Gn) is an integral unit, so we conclude

β0β
n
1

∏
x

Px,n(Gn)ex ∈ W×.

By the norm-scaling calculations (6.12) and (6.13), we thereby obtain

(β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex)(β1 ·
∏

|ux|>1

NF (x)/F (ux)ex)n ·
∏

|ux|,|tx|≤1

Px,n(Gn)ex ∈ W×,

or equivalently
b0b

n
1 ·

∏
|ux|,|tx|≤1

Px,n(Gn)ex ∈ W×.
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Obviously a W -point x = (ux, tx) in the zero loci of H and ∂uH reduces to a geometric
point in the zero loci of h and ∂uh. Thus, for such x we conclude via Lemma 5.4 that the
reduction of Px,n(Gn) ∈ W must be nonzero, since the resultant of h(gn) and (∂uh)(gn)
is nonzero. Hence, Px,n(Gn) ∈ W× for such x, so b0b

n
1 ∈ W× for all large n. This forces

b0, b1 ∈ W×. �

In the study of (6.10) on G2 for G ∈ W [u] with unit leading coefficient, we will be able
to ignore x’s with |ux| > 1 due to:

Theorem 6.6. For G ∈ W [u] with unit leading coefficient and large degree n (uniform with
respect to perfect extensions of k),

β2n
1 ·

∏
|ux|>1

Px,2n(G2)ex ∈ (W×)2.

Proof. By Lemma 6.5, the square β2n
1 ·

∏
|ux|>1 NF (x)/F (ux)2nex = b2n

1 is a unit, so we may
divide by this without harm. This leaves us with

(6.15)
∏

|ux|>1

NF (x)/F (G∗(1/ux)2 − u−2n
x tx)ex ,

where G∗ is the polynomial of (possibly fake) degree n obtained by reversing the order of the
coefficients of G. Note that the square G∗(1/ux)2 is a unit when |ux| > 1, as its reduction
is lead(g)2 6= 0. Since u−2n

x tx → 0 as n →∞, for large n we see that G∗(1/ux)2 − u−2n
x tx is

very close to a unit square in the valuation ring W (x) of F (x). Hence, depending just on
the amount of ramification in F (x) (bounded by [F (x) : F ]), we can make n large enough,
uniformly with respect to perfect extensions of k, such that G∗(1/ux)2− u−2n

x tx is a square
in W (x)×. Passing to n so uniformly large for all finitely many x’s such that |ux| > 1, the
norm-product (6.15) is a unit square in W . �

To emphasize that b0 ∈ W× in (6.14) depends on H, we now rename it: define

ηH = β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex ∈ W×,

so ηH depends on H since the algebraic factorization on the right side of (6.10) depends
on H. Using Lemma 6.5 and Theorem 6.6, together with the obvious fact that lead(G2)
is a unit square when G ∈ W [u] has unit leading coefficient, the identity (6.10) yields an
identity

(6.16) RH(G) ∈ ηH ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex · (W×)2

when G ∈ W [u] with lead(G) ∈ W× and deg G � 0, where

RH(G) := RW (H(G2), (∂uH)(G2)).

Since ηH ∈ W× and all terms in the products in (6.16) are visibly integral, the resultant
RH(G) is a unit in W if and only if each of the terms in the products in (6.16) is a unit, in
which case the image of RH(G) in W×/(W×)2 is represented by the expression in (6.16).

Define

η̃H = (−1)deg(leadT h)(deg(leadT h)−1)/2 · lead(leadT H)eH · ηH ∈ W×

where eH = 1 if leadT H 6∈ W× and eH = deg(leadT ∂uH) if leadT H ∈ W×; η̃H absorbs
both the constant sign-factor and (by Remark 6.1) the odd-exponent power of the unit
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lead(H(G2)) in (6.9) modulo (W×)2. Choose g ∈ k[u] with large degree and choose G ∈
W [u] lifting g with deg G = deg g. When h(g2) is separable it follows from (6.9) that
discW (H(G2)) ∈ W× is a unit-square multiple of the visibly integral
(6.17)
η̃H · (1 + 4(mg + s̃2(ωh,g))) ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex ,

with mg = b(1 + deg g degT h)/2c and s̃2(ωh,g) ∈ W any lift of s2(ωh,g) ∈ k (see (6.3)). On
the other hand, if h(g2) is not separable then (6.16) implies that one of the terms Px,2n(G2)
with |ux|, |tx| ≤ 1 is in the maximal ideal of W , so (6.17) is also in the maximal ideal of W
in such cases.

Motivated by (6.17), consider the W -scheme map LH,n : Poly≤n/W → A1
W defined by

LH,n : G =
∑
i≤n

aiu
i 7→ η̃H ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex .

Each term on the right, viewed as an algebraic function of G, factors through the division-
algorithm morphism

(6.18) ρ̃n,H := ρn,(Mgeom
H )≤1 : Poly≤n/W → W [u]/((Mgeom

H )≤1)

to the affine W -scheme of remainders modulo the F -separable monic polynomial

(Mgeom
H )≤1 :=

∏
|ux|≤1

(u− ux) ∈ W [u].

Here, we are viewing W [u]/((Mgeom
H )≤1) as an affine space over Spec W . Since ρ̃n,H is

smooth and surjective, it follows by Yoneda’s lemma (or a direct construction with norms)
that LH,n = LH ◦ ρ̃n,H for a unique W -scheme map LH : W [u]/((Mgeom

H )≤1) → A1
W that is

independent of n
Summarizing the conclusions of the above efforts, for any g ∈ k[u] with large degree and

any G ∈ W [u] lifting g with deg G = deg g, we have
(6.19)
discW (H(G2)) ≡ (1 + 4(b(1 + deg g degT h)/2c+ s2(ωh,g))) · LH(ρ̃n,H(G)) · (W×)2 mod 8

when h(g2) is separable, and otherwise the right side lies in 2W/8W .
We will use the quadratic nature of (6.19) to investigate µ(h(g2)) in the case of finite k,

but before passing to the finite case we need to study the relationship between (Mgeom
H )≤1

and Mgeom
h . We may factor the separable monic Mgeom

H in F [u] into monic polynomials

Mgeom
H = (Mgeom

H )≤1(Mgeom
H )>1,

where the roots of (Mgeom
H )≤1 are the roots of Mgeom

H in W and (Mgeom
H )>1 contains the

other roots. Each root of the squarefree monic polynomial (Mgeom
H )≤1 ∈ W [u] is an integral

root of the resultant
RH = RW [u](H, ∂uH) ∈ W [u]− {0},

so RH is divisible by (Mgeom
H )≤1 in W [u].

Definition 6.7. The reduction of (Mgeom
H )≤1 is denoted M

geom
H .

Up to k×-multiple, M
geom
H is the mod-2 reduction of a primitively-scaled multiple of

Mgeom
H in W [u]. By reduction of divisibility over W we conclude that M

geom
H divides

Rk[u](h, ∂uh); note that M
geom
H need not be squarefree (see Example 6.14).
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Remark 6.8. Obviously Mgeom
h divides the radical of Rk[u](h, ∂uh). One can have proper

divisibility here if the nonzero leadT h ∈ k[u] has a double root at some c, since the resultant
Rk[u](h, ∂uh) vanishes at such c for determinantal reasons but the specializations h(c, T ) and
(∂uh)(c, T ) might not have a common geometric root; cf. Remark 1.6.

The general relationship between Mgeom
h and the radical of M

geom
H is:

Lemma 6.9. For all lifts H ∈ W [u][T ] of h ∈ k[u][T ] such that degT H = degT h and
leadT (H) ∈ W [u] has the same u-degree as leadT (h) ∈ k[u], Mgeom

h |Mgeom
H ; in particular,

the property of h(g2) being squarefree is determined by g mod M
geom
H . If leadT h is separable

(e.g., h is monic in T ), then Mgeom
h is the radical of M

geom
H .

Proof. Recall that by Corollary 5.6(2), g mod Mgeom
h determines whether or not h(g2) is

squarefree. Since Mgeom
h is squarefree, clearly Mgeom

h |Mgeom
H if and only if each root of Mgeom

h
is the reduction of an integral root of Mgeom

H . We will prove this root-lifting property by
using the structure theorem for quasi-finite separated morphisms.

We know h is not a unit in k[u, T ], and ∂uh is not a zero divisor in k[u, T ]/(h) since
no irreducible factor of h divides ∂uh (by Lemma 4.4(2)). Thus, k[u, T ]/(h, ∂uh) is a finite
k-algebra. Moreover, since W [u, T ] is W -flat, it follows from the local flatness criterion that
∂uH is nowhere a zero divisor on Spec W [u, T ]/(H) at points over the closed point of Spec W
and that Spec W [u, T ]/(H, ∂uH) is W -flat at points over the closed point of Spec W . On the
generic fiber over Spec F , F [u, T ]/(H, ∂uH) is a finite (flat) F -algebra since {H = 0} meets
{∂uH = 0} at only finitely many points in A2

F . To summarize, the finite-type separated
morphism Spec W [u, T ]/(H, ∂uH) → Spec W is quasi-finite and flat.

By the structure theorem for quasi-finite separated schemes over a henselian local base [15,
18.5.11], it follows that W [u, T ]/(H, ∂uH) = Rf × R′, where Rf is a finite product of finite
local W -algebras and R′ is a quasi-finite (hence finite) F -algebra. Moreover, Rf must be
W -flat. The image of the map

Spec Rf
∐

Spec R′ = Spec W [u, T ]/(H, ∂uH) → Spec W [u] = A1
W

is topologically a union of a closed subscheme that is finite flat over W (the image of
Spec Rf) and an F -finite closed subscheme of the generic fiber (the image of Spec R′).
The geometric points of this image in the closed and generic geometric fibers of A1

W over
Spec W are the roots of Mgeom

h and Mgeom
H respectively. Thus, the problem of identifying

roots of Mgeom
h with reductions of integral roots of Mgeom

H is brought down to the problem of
realizing each geometric closed point of a finite flat W -scheme (specifically, Spec Rf) as the
specialization of an integral generic-fiber geometric point. For this we may reduce ourselves
to the consideration of a finite flat local W -scheme S that is irreducible and reduced. We
can replace S with its normalization, so S = Spec B where B is the integral closure of W
in a finite extension of F . This situation is trivial to handle.

To prove that Mgeom
h is the radical of M

geom
H when leadT h is separable, we check that

if (c, t) is a geometric point in the common zero locus of H and ∂uH, where c is integral
(such c’s are the roots of (Mgeom

H )≤1), then t is also integral. It suffices to show that
H(c, T ) or (∂uH)(c, T ) has unit leading coefficient. That is, if (leadT h)(c) = 0 then we
want (leadT h)′(c) 6= 0. Since leadT h is separable, we are done. �

Now let g ∈ k[u] be arbitrary with large degree. By Lemma 6.9, whether or not h(g2) is
separable is determined by g mod M

geom
H , and even by g modulo the radical of M

geom
H . Thus,
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the monic M
geom
H constructed by reduction from characteristic 0 controls the separability

of h(g2) in characteristic 2 when deg g is large.
Let us now specialize to the case of a finite field k = κ of characteristic 2. We fix

nonconstant h ∈ κ[u, T ] such that h(T 2) is squarefree. Choose a lift H of h as in Lemma
6.9. Pick g ∈ κ[u] of large degree, and choose a lift G ∈ W [u] of g with the same degree
(i.e., with unit leading coefficient). Hence, H(G2) is a lift of h(g2) with the same degree,
and discW (H(G2)) is a unit precisely when h(g2) is separable. Recall also (as we explained
above Theorem 3.5) that if discW (H(G2)) ∈ W× then it lies in κ× × (1 + 4W ); that is, its
1-unit part lies in 1 + 4W , not merely in 1 + 2W , when it is a unit in W .

By Theorem 3.5 and Remark 3.6,

(6.20) µ(h(g2)) = (−1)deg(leadT h)χ̃(discW (H(G2))),

where χ̃ is defined to vanish on 2W and is defined on (κ× × (1 + 4W ))/(W×)2 by

(6.21) χ̃(c · (1 + 4w)) = (−1)Trκ/F2
(w mod 2).

We can now prove an analogue of (5.9) in characteristic 2:

Theorem 6.10. Let κ be finite of characteristic 2, and h ∈ κ[u, T ] be such that h 6∈ κ and
h(T 2) is squarefree in κ[u, T ]. Fix H ∈ W [u, T ] lifting h such that degT (H) = degT (h) and
leadT (H) ∈ W [u] has unit leading coefficient (so degu(leadT (H)) = degu(leadT (h))).

For g of sufficiently large degree n,

(6.22) µ(h(g2)) = (−1)deg leadT (h)+[κ:F2]b(1+n degT h)/2c+Trκ/F2
(s2(ωh,g)) · χ̃(LH(ρ̃n,H(G))),

where G ∈ W [u] is any lift of g with degree n. Here, s2(ωh,g) is defined by (6.3), ρ̃n,H is
defined by (6.18), and LH is defined below (6.18). The “sufficient largeness” for deg g may
be chosen uniformly with respect to finite extensions of κ.

In particular, if g1, g2 ∈ κ[u] have sufficiently large degrees, deg g1 ≡ deg g2 mod 4, and
g1 ≡ g2 mod M

geom
H , then

(6.23) (−1)Trκ/F2
(s2(ωh,g1

))µ(h(g2
1)) = (−1)Trκ/F2

(s2(ωh,g2
))µ(h(g2

2)).

The “sufficient largeness” for deg g1 and deg g2 may be chosen uniformly with respect to
finite extensions of κ.

If degT h is even, the congruence on deg gj’s need only be taken modulo 2, and if 4|degT h
or if [κ : F2] is even then no congruence is necessary on the deg gj’s.

Proof. The preceding calculations ensure that LH(ρ̃n,H(G)) ∈ W lies in κ× × (1 + 4W )
when it is a unit (because the same is true for both discW (H(G2)) and squares in W×).
Thus, the asserted formula (6.22) for µ(h(g2)) makes sense and is immediate from (6.20),
(6.21), and (6.19). Since any two elements g1, g2 ∈ κ[u] that are congruent modulo the
reduction M

geom
H of the monic (Mgeom

H )≤1 may be respectively lifted to G1, G2 ∈ W [u] with
unit leading coefficients such that G1 ≡ G2 mod (Mgeom

H )≤1 (so ρ̃n1,H(G1) = ρ̃n2,H(G2) with
nj = deg Gj = deg gj), we conclude via (6.22) that the indicated congruence conditions on
gj ’s and deg gj ’s are enough to imply (6.23). �

An easy argument with the Chinese remainder theorem shows that Theorem 6.10 remains
true with M

geom
H ∈ κ[u] replaced by the greatest common divisor, say M̃h,κ, of all M

geom
H ’s

as H runs over all lifts of h to W [u, T ] with the same T -degree and with leadT (H) ∈ W [u]
having unit leading coefficient in W . Though M̃h,κ is a multiple of Mgeom

h (by Lemma 6.9)
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and is a factor of Rκ[u](h, ∂uh), it probably can fail to be squarefree (see Example 6.14 be-
low). We do not know if M̃h,κ is the “minimal modulus” for g 7→ (−1)Trκ/F2

(s2(ωh,g))µ(h(g2))
when specializing at elements g ∈ κ[u] with large degree (but see Remark 7.4).

Corollary 6.11. Let κ be finite of characteristic 2, and h ∈ κ[u, T ] be such that h 6∈ κ and
h(T 2) is squarefree in κ[u, T ]. Fix H ∈ W [u, T ] lifting h as in Theorem 6.10.

For g of sufficiently large degree n,

µ(h(g4)) = (−1)deg leadT h+[κ:F2](degT h)·n · χ̃(LH(ρ̃n,H(G))),

where G ∈ W [u] is any lift of g with degree n.
In particular, for g1, g2 ∈ κ[u] of sufficiently large degrees,

(6.24) g1 ≡ g2 mod M
geom
H , deg g1 ≡ deg g2 mod 2 ⇒ µ(h(g4

1)) = µ(h(g4
2)).

The “sufficient largeness” for deg gj’s may be chosen uniformly with respect to finite exten-
sions of κ. There is no dependence on deg g mod 2 if [κ : F2] or degT h is even.

We now give some Möbius calculations in characteristic 2, using Corollary 6.11 (and
omitting further tables of data). Our second and third example will justify what we said
above Remark 1.13 in the Introduction.

Example 6.12. Let f(T ) = T 4+u. Take H(T ) = T +u ∈ W [u][T ] as a lift of h(T ) = T +u

from κ[u][T ]. Clearly M
geom
H = 1 in κ[u], so µ(f(g)) = (−1)[κ:F2] deg g when deg g � 0. The

treatment of µ(g2 + u) in [9] (replacing g with g2 and taking simplifications into account)
lets us make the condition “deg g � 0” effective: deg g ≥ 1. It follows that the conjecture
for T 4 +u in (2.3) fails in even degrees when [κ : F2] is odd, and in all degrees when [κ : F2]
is even. See [8, Table 1] for data on irreducible values of T 4 + u over F2[u].

Example 6.13. Let f(T ) = T 8+(u3+u)T 4+u in κ[u][T ]. Take H(T ) = T 2+(u3+u)T +u.
A calculation shows Mgeom

H = 6u5 + 2u3 + 1, so M
geom
H = 1 and degT H is even. Thus,

µ(f(g)) = 1 for deg g � 0. A closer analysis, carried out in [9], shows that µ(f(g)) = 1 for
deg g ≥ 3 and µ(f(cu2)) = −1 for some c ∈ κ×, so the lower bound on deg g is sharp.

Example 6.14. In κ[u][T ], let f(T ) = T 16 + (u9 + u4 + u2 + u)T 8 + u5 + u3. Using the
proof of Theorem 6.10 to make sufficient largeness explicit, for g1 and g2 with degree at
least 2 we have

g1 ≡ g2 mod u9(u + 1)4 =⇒ µ(f(g1)) = µ(f(g2)).
Numerical evidence suggests that we can use u3(u+1) instead of u9(u+1)4 when κ = F2,

and it seems likely that the minimal modulus is not squarefree for any κ. Unfortunately,
we do not have proofs for these two assertions.

7. Conjectures over κ[u]

We now correct the naive conjecture (2.3) over κ[u]. Numerical testing supports the belief
that (2.3) is correct when f is separable (in any characteristic). We have seen that (2.3) is
not always true for inseparable f . To define a correction factor we begin with a definition
that is sensitive to the constant field κ, and in characteristic 2 we have to stay away from
the inseparable cases that are not polynomials in T 4.

Definition 7.1. Let κ be a finite field. Pick f(T ) in κ[u][T p] with p 6= 2 (resp. in κ[u][T 4]
with p = 2) such that f 6∈ κ and f is squarefree in κ[u][T ]. Define Mmin

f,κ to be the unique
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monic polynomial M in κ[u] of minimal degree that satisfies the property of Mgeom
f in (4.15)

(resp. the property of M
geom
H in (6.24), with f(T ) = h(T 4)).

By the Chinese remainder theorem, all nonzero M ∈ κ[u] satisfying (4.15) (resp. (6.24))
are divisible by Mmin

f,κ . If κ′/κ is a finite extension then it seems to be a rather subtle
problem to relate Mmin

f,κ and Mmin
f,κ′ . In odd characteristic we always have Mmin

f,κ |M
geom
f , so

Mmin
f,κ is squarefree. In characteristic 2 we have Mmin

f,κ |Rκ[u](h, ∂uh) with Rκ[u](h, ∂uh) 6= 0
(by Lemma 4.4(2)), so again the polynomials Mmin

f,κ′ have only finitely many possibilities as
κ′ varies over finite extensions of κ. For characteristic 2 the situation is more subtle, so we
will return to the nature of Mmin

f,κ in characteristic 2 later.
The definition of the correction factor for the naive conjecture over κ[u] requires a lemma:

Lemma 7.2. Let κ be a finite field of characteristic p and let f ∈ κ[u][T p] be squarefree
in κ[u, T ], and assume that f has no local obstructions (so in particular, f has no irre-
ducible factors in κ[u]). For any nonzero M ∈ κ[u], there exist elements g ∈ κ[u] with any
sufficiently large degree (depending on M and f) such that f(g) is squarefree in κ[u] and
gcd(f(g),M) = 1.

Proof. The case f ∈ κ× is trivial, so we may assume f 6∈ κ. We must find g in large degree
n with f(g) relatively prime to M ·f(g)′ = M ·(∂uf)(g). Obviously ∂uf 6= 0 since f 6∈ κ. By
Lemma 4.4(1), f and ∂uf have no common irreducible factor in κ[u][T ]. For any irreducible
monic π ∈ κ[u], define

cπ = #{t ∈ κ[u]/(π) : f(t) ≡ M · (∂uf)(t) ≡ 0 mod π}.
The absence of local obstructions ensures 1− cπ/Nπ > 0 for each π.

Poonen [19] proved that the statistics for squarefree specializations of a squarefree polyno-
mial over κ[u] do agree with local-probability heuristics. More specifically, since 1−cπ/Nπ >
0 for each π, [19, Thm. 3.1] yields

lim
n→∞

#{g ∈ κ[u] | deg g ≤ n, f(g) squarefree, gcd(f(g),M) = 1}
(q − 1)qn

=
∏
π

(
1− cπ

Nπ

)
,

where the product is absolutely convergent (and in particular, nonzero). Letting P > 0
denote the value of the infinite product, we obtain

lim
n→∞

#{g ∈ κ[u] | deg g = n, f(g) squarefree, gcd(f(g),M) = 1}
(q − 1)qn

=
(

1− 1
q

)
P > 0.

�

Definition 7.3. Let κ be a finite field. Let f ∈ κ[u][T ] be squarefree and assume it is is a
polynomial in T p when p 6= 2 (resp. in T 4 for p = 2), and that f 6∈ κ. Assume also that f
has no local obstructions (so f has no irreducible factors in κ[u]). Define

(7.1) Λκ(f ;n) := 1−

∑
deg g=n,(f(g),Mmin

f,κ )=1 µ(f(g))∑
deg g=n,(f(g),Mmin

f,κ )=1 |µ(f(g))|
.

By Lemma 7.2, the denominator in (7.1) is positive for large n. Clearly Λκ(f ;n) lies in
the interval [0, 2] (when its denominator is nonzero) and it differs from 1 by a restricted
average on the nonzero Möbius value of f(g) in degree n. Loosely, the closer Λκ(f ;n) is to
1 (resp. to 0, to 2), the more equally distributed (resp. skewed towards −1, skewed towards
1) the nonzero Möbius values of f(g) are for g in degree n. We only care about Λκ(f ;n) for
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large n. Note that Λκ(f ;n) = 0 if and only if, for all g of degree n, f(g) has a nontrivial
factor in common with Mmin

f,κ or µ(f(g)) ∈ {0, 1}. Therefore, the vanishing of Λκ(f ;n) for
a sufficiently large n (uniform in finite extensions of κ) implies that for all g of degree n in
κ[u] the polynomial f(g) is reducible in κ[u].

We should address a uniformity for the nonvanishing of the denominator in (7.1) for large
n as we vary the constant field. There exists nonzero M ∈ κ[u] such that Mmin

f,κ′ |M in κ′[u]
for all finite extensions κ′ of κ: take M = Mgeom

f in odd characteristic and M = M
geom
H in

characteristic 2 (where H is a lift of h as in Theorem 6.10, with f = h(T 4)). Since f has
no local obstructions, by applying Lemma 7.2 to f and M we see that for large n there do
exist (many) g ∈ κ[u] of degree n such that f(g) ∈ κ[u] is squarefree and relatively prime to
M . Since the inclusion κ[u] ↪→ κ′[u] for any finite extension κ′/κ preserves separability and
relative primality, it follows that the denominator in the definition of Λκ′(f ;n) is nonzero
for large n uniformly with respect to κ′/κ.

Clearly (7.1) is not affected by replacing Mmin
f,κ with its radical. For large n depending

on f but uniform with respect to finite extensions of κ, Definition 7.3 is not affected by
replacing Mmin

f,κ with any fixed nonzero multiple of its radical (see Theorem 7.5). This
makes the computation of Λκ(f ;n) easier both in theory and in practice, since in odd
characteristic we can replace Mmin

f,κ with the radical polynomial Mgeom
f and in characteristic

2 with f = h(T 4) we can likewise replace Mmin
f,κ with the radical of Rκ[u](h, ∂uh).

Remark 7.4. In fact, in characteristic 2 we may be able to do much better than work
with Rκ[u](h, ∂uh), in the following sense. As we have noted earlier, by Lemma 4.4(2)
in characteristic 2 we have Mmin

f,κ |Rκ[u](h, ∂uh) with Rκ[u](h, ∂uh) 6= 0. The polynomial
Rκ[u](h, ∂uh) generally has factors with rather high multiplicities. It would therefore be
desirable to find better upper bounds on the multiplicities in Mmin

f,κ and to find an a priori
construction of the least common multiple of all Mmin

f,κ′ ’s (or at least its radical) as the
extension κ′/κ varies in characteristic 2. A nice “upper bound” on the radical of Mmin

f,κ

in characteristic 2, akin to the upper bound provided by Mgeom
f in odd characteristic, is

suggested by the following question: in characteristic 2 with f = h(T 4), is Mgeom
h the radical

of the least common multiple of the M
geom
H ’s over all lifts H of h as in Theorem 6.10? By

Lemma 6.9 we know that Mgeom
h divides this radical, and that this divisibility is an equality

in the “generic” case when leadT h ∈ κ[u] is separable. If this question has an affirmative
answer for h then we can replace Mmin

f,κ with the radical polynomial Mgeom
h in the definition

of Λκ(f ;n) for large n (depending on f , but uniform with respect to finite extensions of κ).

Our work in §3–§6 leads to the following important periodicity.

Theorem 7.5. Let κ be finite, and f(T ) be as in Definition 7.3. For any finite extension
κ′/κ, the sequence Λκ′(f ;n) is periodic with period dividing 4 for n � 0, and the largeness
is uniform with respect to κ′.

With f and κ fixed, for any large n � 0 that may be chosen uniformly with respect to
κ′/κ and the degree of a nonzero multiple M of Mmin

f,κ′ in κ′[u] we may define Λκ′(f ;n) by
using M in place of Mmin

f,κ′ in Definition 7.3.

Proof. See [10, Thm. 8.1], where the argument is carried out in a more general setting, with
κ[u] replaced by the coordinate ring of any smooth affine κ-curve with one geometric point
at infinity. �
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We refer the reader to Remark 1.16 for a discussion of the asymptotic properties of
Λκ′(f ;n) as [κ′ : κ] →∞ with f fixed.

Example 7.6. Let κ be finite with odd characteristic p, and f(T ) = T p + u ∈ κ[u][T ].
Using Example 3.12,

Λκ(f ;n) =


1, if n is odd,

0, if n ≡ 0 mod 4,

1− χ(−1), if n ≡ 2 mod 4,

for n ≥ 1, where χ is the quadratic character on κ×. In particular, ΛF3(T
3 + u;n) is

1, 2, 1, 0, 1, 2, 1, 0, . . . and ΛF9(T
3+u;n) is 1, 0, 1, 0, 1, 0, 1, 0, . . . over F9[u]. This is consistent

with numerical data, e.g., g3 + u appears to fit (2.3) as g runs through polynomials with
odd degree in both F3[u] and F9[u], while g3 + u seems to be irreducible about twice as
often as (2.3) predicts for g ∈ F3[u] when deg g ≡ 2 mod 4. See [8, Table 2] for data on
irreducible values of T 3 + u over F3[u].

Example 7.7. Let f(T ) = T 12 + (u + 1)T 6 + u4 be the polynomial from Example 1.1, but
considered over any finite field κ of characteristic 3, not just F3 as in Example 1.1. Using
(4.7), for n ≥ 2 we have

Λκ(f ;n) = 1−
∑

a,b∈κ χ(a)2χ(b2 + 1)∑
a,b∈κ |χ(a)2χ(b2 + 1)|

=

{
1 + 1/q, if χ(−1) = 1,

1 + 1/(q − 2), if χ(−1) = −1.

In particular, ΛF3(f ;n) = 4/3 for all n ≥ 2. This agrees well with the data in Table 1.1.

Example 7.8. Let f(T ) be the polynomial from Example 1.3, but viewed in κ[u][T ] for
any κ of characteristic 3. This example will illustrate the importance of the condition
(f(g),Mmin

f,κ ) = 1 in the definition of Λκ(f ;n).
In Example 1.3, where κ = F3, we observed that f(g) seems to be reducible when

n = deg g satisfies n ≡ 1 mod 4, and f(g) has approximately twice as many irreducible
values as the naive conjecture (2.3) predicts when n ≡ 3 mod 4. We now compute Λκ(f ;n)
for any κ of characteristic 3, and we will find consistency with Table 1.2 for κ = F3.

We recall (4.14) from Example 4.3: when g = cun + · · · ∈ κ[u] with n = deg g ≥ 1,

(7.2) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2)χ(g(2)).

This formula implies Mmin
f,κ = (u− 1)(u− 2). Call this M for simplicity.

To compute Λκ(f ;n), we only count g of degree n such that (f(g),M) = 1, a condition
we want to make explicit in terms of g. Clearly (f(g),M) = 1 if and only if f(g)|u=1 6= 0
and f(g)|u=2 6= 0. Since

(7.3) f(g)|u=1 = (g(1)− 1)3(g(1)2 + g(1)− 1)3, f(g)|u=2 = (g(2))6(g(2) + 1)3,

the condition (f(g),M) = 1 is equivalent to the combined conditions that g(1) is not 1 or
1±

√
−1 (the term 1±

√
−1 appears only if [κ : F3] is even) and g(2) is not 0 or −1.

If κ has size q = 3m, then by separately treating the cases when m is even or odd and
when n is even or odd, elementary arguments resting on the preceding formulas (7.2) and
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(7.3) show that

Λκ(f ;n) =

{
1, if n > 0 is even,
1 + 2 · (−1)(n+1)/2/((q − 1)(q − 2)), if n is odd,

for odd m and

Λκ(f ;n) =

{
1, if n > 0 is even,
1 + 2/((q − 2)(q − 3)), if n is odd,

for even m. As a special case, for n ≥ 1 the periodic sequence of values ΛF3(f ;n) is

0, 1, 2, 1, 0, 1, 2, 1, · · · ,

which is an excellent fit with the discrepancies between Table 1.2 and the naive conjecture
for f(T ) on F3[u]. Here, if n ≡ 1 mod 4, then µ(f(g)) = −1 only when (f(g),M) 6= 1.
If n ≡ 3 mod 4 then µ(f(g)) = 1 only when (f(g),M) 6= 1. In particular, since M =
(u − 1)(u − 2) and deg f(g) > 1 when deg g ≥ 1, it follows that f(g) is reducible in F3[u]
whenever g ∈ F3[u] satisfies deg g ≡ 1 mod 4.

If we did not include the condition (f(g),M) = 1 in the definition of Λκ(f ;n) then this
sequence would be constant: {1, 1, . . . } for n ≥ 1. In other words, while the nonzero values
of µ(f(g)) for g of a fixed degree n ≥ 1 are equally often 1 and −1, what matters for the
link to irreducibility statistics appears to be the nonzero values of µ(f(g)) constrained by
the additional local condition (f(g),M) = 1.

Here, finally, is our correction to the naive conjecture.

Conjecture 7.9. Let κ be a finite field and let f ∈ κ[u, T p] be irreducible in κ[u][T ] with
no local obstructions. When f 6∈ κ[u, T p], then

#{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ C(f)
degT f

(q − 1)qn

log(qn)

n →∞. If p 6= 2 and f ∈ κ[u, T p], or p = 2 and f ∈ κ[u, T 4], then

#{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ Λκ(f ;n)
C(f)

degT f

(q − 1)qn

log(qn)

as n →∞. Here Λκ(f ;n) is defined in Definition 7.3 and is periodic in large n by Theorem
7.5.

Remark 7.10. In characteristic 2 our conjecture is incomplete because it does not make
a prediction for f = h(T 2) with h ∈ κ[u][T ] when h is not a polynomial in T 2. Due to
(6.23), our lack of understanding of the (generally nonzero) function g 7→ s2(ωh,g) is the
obstruction to formulating a conjecture that covers such cases at the present time.

When 0 occurs in the period for Λκ(f ;n), we interpret the asymptotic in Conjecture 7.9
to mean the easily proved consequence (for such large n) that there is no g ∈ κ[u] in those
degrees such that f(g) is irreducible.

We collect sample periodic parts of Λ(f ;n) in Table 7.1. When the period is not 1, we
write the period so that the first term occurs when n � 0 and n ≡ 1 mod 4.

Each of the polynomials in Table 7.1 has been tested against (2.3) over the indicated
finite field. The last polynomial was tested over F3, F5, F7, and F9. The values of Λ(f ;n)
in each example are in excellent numerical agreement with the data.
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f(T ) Λ(f ;n)
T 3 + u/F3[u] 1, 2, 1, 0
T 5 + u/F5[u] 1, 0
T 12 + · · · /F3[u] (Examples 1.1, 4.2) 4

3
T 9 + · · · /F3[u] (Examples 1.3, 4.1, 4.3, 7.8) 0, 1, 2, 1
T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u/F3[u] 2

3
(2u2 + u + 3)T 15 + (4u2 + u + 3)T 5 + 4u2 + u + 3/F5[u] 1, 13

10
T p + u2/Fq[u], p 6= 2 (Example 3.12) 1

Table 7.1. Examples of Λ(f ;n) for n � 0

Remark 7.11. For f as in Conjecture 7.9, the definition of Λκ(f ;n) involves the constraint
(f(g),Mmin

f,κ ) = 1. We do not have a conceptually satisfying explanation for this relative
primality condition, so let us explain how it was found.

Initial deviations from (1.2) were discovered in situations like f(T ) = T 3 + u over F3[u],
which seem to require correction factors 0 or 2. Factorizations of f(g) in such cases revealed
extreme parity behavior: in certain degrees, the number of irreducible factors of f(g) had
the same parity for all g with a fixed positive degree, and (trivially) f(g) was always
squarefree. This suggested a link to Möbius fluctuations, and our first guess at a correction
factor was an expression, say Λ̃κ(f ;n), defined like Λκ(f ;n) but without the condition
gcd(f(g),Mmin

f,κ ) = 1. Periodicity of Λ̃κ(f ;n) follows by the same arguments as for Λκ(f ;n)
in the proof of Theorem 7.5.

When we found numerically, for the polynomial in Example 1.3, that Λ̃κ(f ;n) was not
the correct correction factor in (1.2), the reason that it failed (as seen in Example 7.8) led to
the consideration of the gcd constraint. Table 7.2 gives several examples over F3[u] where
Λ̃F3(f ;n) 6= ΛF3(f ;n). The first is a polynomial we have already met. The last example is
particularly interesting, since Λ̃F3(f ;n) and ΛF3(f ;n) lie on opposite sides of 1.

f(T ) Λ̃F3(f ;n) ΛF3(f ;n)
T 9 + · · · (Example 1.3) 1 (n ≥ 2) 0, 1, 2, 1, . . . (n ≥ 1)
T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u 20

21 (n ≥ 3) 2
3 (n ≥ 3)

(u2 + 2u + 1)T 6 + (u2 + 2u)T 3 + 2u2 1 (n ≥ 2) 0, 2, 0, 2, . . . (n ≥ 1)
(u + 2)T 12 + u2T 6 + u3 + 2 6

7 (n ≥ 3) 6
5 (n ≥ 4)

Table 7.2. Examples where Λ̃F3(f ;n) 6= ΛF3(f ;n) for n � 0

Whenever Λ̃κ(f ;n) = Λκ(f ;n) for n � 0 in examples, we have found a common expla-
nation: µ(f(g)) = 0 when (f(g),Mmin

f,κ ) 6= 1. This implies Λ̃κ(f ;n) = Λκ(f ;n) for n � 0
since it tells us that for any irreducible π dividing Mmin

f,κ , any root of f(T ) in κ[u]/(π) is a
multiple root. (This includes the vacuous case f has no values on κ[u] divisible by π.) Is
this always an explanation when Λ̃κ(f ;n) = Λκ(f ;n) for n � 0?

Remark 7.12. If we search for irreducible values of f(g) not over all g in each degree,
but just monic g in each degree (say), then we need a monic version of Λκ(f ;n). This is
a possibly new periodic sequence (with mod 4 periodicity, etc., by the same arguments).
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Numerical data support the use of this new sequence as correction factors in a “monic g”
version of Conjecture 7.9.

The most delicate part of numerical testing of Conjecture 7.9 is estimating the constant
C(f) = Cκ[u](f). We therefore conclude this paper with a consequence of our conjecture
that does not involve C(f) and so is much easier to check in practice.

Suppose p 6= 2 and f(T ) ∈ κ[u][T p] satisfies the Bouniakowsky conditions (we can also
take p = 2 if f(T ) ∈ κ[u][T 4]). We have f(T ) = F (T pm

) for a maximal m ≥ 1, and this
p-free part F (T ) of f(T ) satisfies the Bouniakowsky conditions and is separable in T . We
expect that F (T ) satisfies the first asymptotic formula in Conjecture 7.9 and that f(T )
satisfies the second one. Easily C(f) = C(F ), so dividing the asymptotic estimates for f
and F in Conjecture 7.9 leads to the prediction

(7.4)
#{g ∈ κ[u] : deg g = n, f(g) prime}
#{g ∈ κ[u] : deg g = n, F (g) prime}

?→ Λκ(f ;n)
pm

as n → ∞, where the contribution of the constant C(f) = C(F ) has cancelled out. The
right side of (7.4) is periodic in n mod 4 for n � 0, so this limit is understood to be taken
for (large) n running through a fixed congruence class modulo 4 (and it is implicitly part of
the prediction that the denominator on the left side is nonzero for large n). The two sides
of (7.4) can be computed independently for increasing n. If one accepts Conjecture 1.2 for
F , then (7.4) is equivalent to Conjecture 7.9 for f .
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