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Abstract. For irreducible f(T ) ∈ Z[T ], a conjecture of Hardy–Littlewood predicts how
often f has prime values. The asymptotic frequency of these prime values is believed
to be controlled by local obstructions. We discuss an analogue of the Hardy–Littlewood
conjecture for irreducible f(T ) ∈ κ[u][T ], with κ a finite field. Here, local obstructions are
not sufficient. When f is inseparable over κ(u), there is a new obstruction that is global,
and it is quantified and effectively computable through the average of the Möbius function
on specializations of f(T ).

We build on some old results of Swan to prove the surprising fact that the “Möbius
average” for f(g)’s with g ∈ κ[u] of large degree n has periodic behavior in n when f is
inseparable over κ(u). The periodicity enables us to prove in specific examples that the
naive version of the Hardy–Littlewood conjecture over κ[u] is false. We use periodic Möbius
average behavior to formulate a modified conjecture that agrees well with numerical data.

1. Introduction

A well-known conjecture going back to Bouniakowsky [5] says that a nonconstant irre-
ducible polynomial in Z[T ] has infinitely many prime values in Z unless there is a divisibility
obstruction, meaning that all values of the polynomial on Z are divisible by a nontrivial
common factor. For example, 3T 2 − T + 2 is irreducible in Z[T ] but 3n2 − n + 2 is always
even (and thus hardly ever prime) for n ∈ Z.

Quantitatively, when f(T ) ∈ Z[T ] is nonconstant and irreducible with no divisibility
obstructions, it is expected that

(1.1) #{1 ≤ n ≤ x : f(n) prime} ?∼ C(f)
deg f

x

log x
,

where the constant C(f) is a certain (nonzero) infinite product whose definition will be
recalled in §2. The notation ?∼ denotes a conjectural asymptotic relation. It is traditional
to assume that f has a positive leading coefficient, but if we allow negative prime values then
this positivity condition on the leading coefficient of f(T ) is unnecessary. (The sampling
range 1 ≤ n ≤ x is also traditional. It could be replaced with |n| ≤ x, after making an
obvious change on the right side.)

The relation (1.1) is a special case of the Hardy–Littlewood conjecture (also called the
Bateman–Horn conjecture). The only proved case of (1.1) is in degree 1: the prime number
theorem is the case f(T ) = T and Dirichlet’s theorem is the case f(T ) = aT + b with
a and b nonzero and relatively prime. The Hardy–Littlewood conjecture allows several
polynomials, such as twin-prime pairs. No version of the conjecture for several polynomials
has been proved, even qualitatively.
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In this paper, we discuss an analogue of the Hardy–Littlewood conjecture in κ[u][T ] with
κ a finite field. An extension of this work, with κ[u] replaced by the coordinate ring of any
smooth affine curve over κ with one geometric point at infinity, will be the subject of [9].
The proofs in [9] do not supersede the material here, but rather will depend upon it.

Qualitatively, the usual dictionary between Z and κ[u] suggests that a polynomial f(T )
in κ[u][T ] that is nonconstant in T should have infinitely many prime (i.e., irreducible)
specializations on κ[u] if and only if f is irreducible and f has no divisibility obstructions
(i.e., values of f(T ) on κ[u] do not all share a common nontrivial factor). For the rest of
this Introduction, it is assumed that f ∈ κ[u][T ] satisfies the previous three conditions: it
has positive T -degree, it is irreducible in κ[u][T ], and it has no divisibility obstructions. We
will call these the Bouniakowsky conditions. Setting q = #κ, it is natural to guess that for
such f ,

(1.2) #{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ C(f)
degT f

(q − 1)qn

log(qn)
as n →∞, where the constant C(f) 6= 0 is similar to the classical paradigm over Z. (For the
definition of C(f), see (3.7) with r = 1.) Note that sampling in (1.2) is over all polynomials
in κ[u] of degree n, not just monics; this is why q−1 occurs in (1.2). Although it is traditional
to believe that problems over Z become more accessible when they are reformulated over
κ[u], the only proved instance of (1.2) is degT f = 1, just as in the classical situation.
Counting g in (1.2) with deg g ≤ n (or (deg g)|n) instead of deg g = n does not simplify
matters, and in fact we shall see that counting by separate degrees is essential for a proper
understanding of the situation.

Numerical evidence supports (1.2) when f is separable over κ(u), e.g., when f is irre-
ducible in κ[T ]. The raison d’être of this paper is the discovery that (1.2) can be wrong
when f is inseparable over κ(u), e.g., when f(T ) = T p + u. Thus, we call the right side of
(1.2) the naive estimate. The rest of this Introduction provides compelling numerical evi-
dence that (1.2) is not generally true and describes both proved counterexamples to (1.2)
and our proposed correction to (1.2), relying on new nontrivial theorems about polynomials
over finite fields.

Example 1.1. In Table 1.1, we count prime values of f(g), where f(T ) = T 12+(u+1)T 6+u4

and g runs over polynomials of degree n in F3[u], with 9 ≤ n ≤ 17. (Here and in later
examples, checking the Bouniakowsky conditions for f is left to the reader. All computations
in this paper were carried out using PARI, NTL, and MAGMA, with deterministic primality
testing.) An estimate for C(f) is 3.52138375. Our range of degrees in Table 1.1 is small,
but the sampling sets are substantial; e.g., there are 9,565,938 polynomials of degree 14 in
F3[u]. After each count of prime values in the table, we give the naive estimate for that
count according to (1.2) and we give the ratio of these quantities. These data suggest the
ratio tends to a number ≈ 1.33 rather than to 1.

Remark 1.2. To keep the presentation of data in our tables clean and informative, we
round naive estimates (that is, the right side of (1.2)) to one digit after the decimal point –
as a simple reminder that they are only estimates – and we round ratios between the two
sides of (1.2) to three digits after the decimal point. In some tables, this has the effect of
making the ratio of the two sides of (1.2) appear (for small n) to be more accurate than
is justified by our rounded estimate presented on the right side of (1.2). Our policy has
been to compute C(f) (as described in the appendix) to high enough accuracy to convince
ourselves that we have correctly rounded all estimates presented in the tables; we have not
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worried about giving rigorous proofs of the correctness of the rounding in these tables, since
the data in the tables merely serve to illustrate and motivate theorems and conjectures. We
will not comment on this issue again.

n Count Naive Est. Ratio
9 1624 1168.3 1.390

10 4228 3154.5 1.340
11 11248 8603.2 1.307
12 31202 23658.7 1.319
13 87114 65516.5 1.330
14 244246 182510.2 1.338
15 683408 511028.6 1.337
16 1914254 1437268.0 1.332
17 5409728 4058168.4 1.333

Table 1.1. T 12 + (u + 1)T 6 + u4 over F3[u]

Example 1.3. Consider T 3 + u over F3[u]. Here C(f) = 1/ log 3. In Table 1.2, the
ratio between the count and the naive estimate in (1.2) seems to fall into four interlaced
statistics with limiting values 1, 2, 1, 0. In particular, it appears that g3 + u is reducible
when n = deg g is a positive multiple of 4. (This includes n = 4, which is not in the table.)

n Count Naive Est. Ratio
5 36 32.4 1.111
6 144 81.0 1.778
7 216 208.3 1.037
8 0 546.8 0
9 1404 1458.0 0.963

10 7776 3936.6 1.975
11 10746 10736.2 1.001
12 0 29524.5 0
13 82140 81760.2 1.005
14 455256 227760.4 1.999
15 637440 637729.2 1.000
16 0 1793613.4 0
Table 1.2. T 3 + u over F3[u]

Example 1.4. Let us extend the constant field in Example 1.3: consider T 3 +u over F9[u].
In Table 1.3, there appear to be two interlaced statistics, rather than four. These look as
expected in odd degree (the ratio is near 1) but no prime values are arising in positive even
degree. (The expected behavior over any F3r [u] is described in Example 9.8, using notation
that will be introduced later in this Introduction.)

Example 1.5. Consider T 8 + u3 over F2[u]. Although (1.2) predicts an exponentially
growing number of prime values in each degree, T 8 +u3 has no prime values on F2[u]! This
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n Count Naive Est. Ratio
1 24 24.0 1.000
2 0 108.0 0
3 648 648.0 1.000
4 0 4374.0 0
5 31104 31492.8 0.988
6 0 236196.0 0
7 1815696 1822083.4 0.996
8 0 14348907.0 0
Table 1.3. T 3 + u over F9[u]

was proved by Swan [31] in 1962, but the context of his work was sufficiently different from
the Hardy–Littlewood conjecture that a link between the two has not been identified before.
We recall Swan’s proof in Example 4.3, and we establish an analogous result in κ[u] for any
finite field κ in Example 4.15.

Example 1.5 is surprising from a classical point of view, but we regard Examples 1.3 and
1.4 as more instructive because they suggest that the ratio of the two sides of (1.2) can have
interlaced limiting values as a periodic function of n. These examples also suggest that the
limiting behavior of the ratio is sensitive to extension of the constant field κ.

Further numerical work leads to more non-constant polynomials f(T ) that do not appear
to satisfy (1.2). We observed the following three common features of such polynomials:

• f(T ) is a polynomial in T p, where p is the characteristic of κ.
• The ratio of the two sides in (1.2) appears to have 1, 2, or 4 limiting values as a

function of n mod 4 when n →∞.
• The numbers µ(f(g)), where µ is the Möbius function on κ[u] (see Definition 4.1)

and g runs over κ[u], exhibit unusual statistics. Essentially, this means the nonzero
values of µ(f(g)) are not equally often 1 and −1. We call this idea the Möbius bias.
One of the basic results in this paper is a theorem that lets us rigorously prove such
a bias can occur for polynomials in T p when p 6= 2 and in T 4 when p = 2.

For an algebraist, it is comforting to find apparent counterexamples to (1.2) only among
polynomials in T p, since irreducible polynomials in T p are already well-known to exhibit
peculiar algebraic properties in characteristic p. These are the irreducible f ∈ κ[u][T ]
that have positive degree in T and are inseparable over the field κ(u). While inseparable
irreducibles have no classical analogue, there is no reason to dismiss them from consideration
in (1.2). For instance, the nonvanishing of C(f) in (1.2) is unrelated to whether or not f(T )
is inseparable in T . Moreover, (1.2) does look good for many inseparable irreducibles. A
simple example is T p + u2 (see Example 4.14).

By studying apparent counterexamples to (1.2) in the context of our three observations
above, we were led to a new heuristic idea: statistics for irreducible values of f(g) as g
varies are influenced by an appropriate average value of µ(f(g)) as g varies. Averaging the
Möbius bias in the right way enables us to predict the 1, 2, or 4 apparent limits suggested
in all numerical examples that we have examined, and moreover these predicted values are
effectively computable rational numbers. Whereas Bouniakowsky’s divisibility obstruction
is of a local character (a divisibility obstruction, by its definition, comes from divisibility
by a common prime), the consideration of Möbius averages is fundamentally global. We are
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not aware of an explanation of the above phenomena in κ[u] by a heuristic use of the circle
method in characteristic p.

Let us illustrate our Möbius-bias heuristic for Example 1.1. For

f(T ) = T 12 + (u + 1)T 6 + u4

over F3[u], we will show in Example 5.2 that

(1.3) µ(f(g)) =
(

g(0)2(g(1)2 + 1)
3

)
for all g in F3[u], where ( ·3) is the Legendre symbol. (The term g(0)2 should not be omitted
from the Legendre symbol, since it could be 0.) As g runs over polynomials of a given
degree ≥ 2 in F3[u], (1.3) shows that µ(f(g)) is −1 twice as often as it is 1. The average
nonzero value of µ(f(g)) in each degree ≥ 2 is therefore (−1 − 1 + 1)/3 = −1/3 (not
just asymptotically, but exactly). Note that 1 − (−1/3) = 4/3 = 1.33 . . . seems to fit the
deviation from (1.2) in Table 1.1. Such agreement is purely numerical; we have no proof
linking µ(f(g)) to the primality statistics of f(g).

Remark 1.6. Since the Möbius bias is a global parity condition on squarefree factorizations
(with the squarefreeness of f(g) considered to be a preliminary local condition), it is natural
to ask if there are higher-order heuristic global obstructions to primality, such as a mod-3
condition on squarefree factorizations. We have studied many examples over small finite
fields (of characteristics 2, 3, 5, and 7) and have found that the Möbius bias leads to a
correction factor that gives an excellent numerical fit to all observed deviations from (1.2).
Without guidance provided by examples giving evidence to the contrary, it seems to us that
the Möbius-bias heuristic provides a satisfactory theory to account for all deviations from
(1.2).

To convert our heuristic into a correction term in (1.2), we now describe some new
theorems about the Möbius function on κ[u]. More accurately, our results concern the
behavior of µ(f(g)), where f(T ) is fixed in κ[u][T p] and g runs through κ[u].

The key result, to be made precise in Theorem 1.8 below, is that µ(f(g)) is essentially
a periodic function of g and we can provide a formula for a modulus of periodicity. When
f(T ) is monic in T , for instance, a modulus of periodicity is the radical of the κ[u]-resultant
of f(T ) and the u-partial derivative (∂uf)(T ) (this means the resultant of polynomials in T
with coefficients in κ[u]). As an example, let f(T ) be the polynomial in Example 1.1. The
F3[u]-resultant of f and ∂uf is u18(u − 1)18, whose radical is u(u − 1). This is consistent
with (1.3), where we see µ(f(g)) depends on g modulo u(u− 1).

Our results on µ(f(g)), which are inspired by our study of (1.2), do not require that f(T )
be irreducible in κ[u][T ]. We only need f(T ) to be squarefree, which unlike irreducibility
is a stable property under finite extension of the constant field (f(T ) in Example 1.1 is
reducible in F9[u][T ], but still squarefree). Therefore we now fix f(T ) ∈ κ[u][T p] that is
squarefree in κ[u][T ] and, to avoid trivialities, f 6∈ κ.

To generalize (to nonmonic polynomials) the resultant construction of a modulus of
periodicity for µ(f(g)), we use geometric language. Let Zf = {f(u, T ) = 0} be the affine
plane curve corresponding to f ∈ κ[u, T ]. The projection from Zf onto the T -axis is flat
and generically étale, so this projection is non-étale at a finite set of points on Zf , say at
the set B. Projecting B onto the u-axis gives a finite set of points. Define Mgeom

f to be
the monic polynomial in κ[u] whose roots are this finite set on the u-axis, each root having
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multiplicity 1 (that is, Mgeom
f is squarefree). We label this polynomial Mgeom

f since it is
unaffected by replacing κ with a finite extension.

Remark 1.7. Concretely, an element u0 in an algebraic closure of κ is a root of Mgeom
f

precisely when the specializations f(u0, T ) and (∂uf)(u0, T ) have a common T -root. This
condition is the same as u0 being a root of the κ[u]-resultant of f and ∂uf only when the
u0-specialization of either f or ∂uf has the same respective T -degree as f or ∂uf . An
equivalent description of this latter condition is: u0 is not a double root of the leading
coefficient of f as a polynomial in T .

For example, if f(T ) is monic in T , Mgeom
f is the radical of the κ[u]-resultant of f and

∂uf . For a contrast, let f = u2T p + u + 1 with p 6= 2; note that the leading coefficient of f
as a polynomial in T has a double root at u = 0. The projection from Zf to the T -axis is
non-étale only at (u0, t0) = (−2, 1/4), so Mgeom

f = u + 2. However, the κ[u]-resultant of f

and ∂uf is −up(u + 2), and this has an extra root at 0 in comparison with Mgeom
f .

The following theorem explains how Mgeom
f is essentially a modulus of periodicity for

µ(f(g)), and that it is a minimal modulus of periodicity after a suitable finite extension
of the constant field. In the theorem, the quadratic character of κ× is denoted χ, with
χ(0) = 0. (A more accurate notation than µ(f(g)) and χ is µκ[u](f(g)) and χκ, since the
Möbius function and the quadratic character are sensitive to the choice of constant field κ.)

Theorem 1.8. Let κ have odd characteristic p and f(T ) ∈ κ[u][T p] be squarefree in κ[u][T ]
and not lie in κ.

There is a nonzero polynomial Mf,κ in κ[u] such that for g1 = c1u
n1 + · · · and g2 =

c2u
n2 + · · · in κ[u] with sufficiently large degrees n1 and n2,

(1.4) g1 ≡ g2 mod Mf,κ, n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2)).

If −1 is a square in κ or degT f is even, the second congruence in (1.4) may be relaxed to
n1 ≡ n2 mod 2.

One choice for the modulus Mf,κ is Mgeom
f . Using this choice, there is a lower bound on

n1 and n2 beyond which (1.4) holds when κ is replaced by any finite extension.
The monic modulus Mmin

f,κ of minimal degree in κ[u] that makes (1.4) true for large n1

and n2 is a factor of any other Mf,κ. Moreover, there is a finite extension κ′/κ such that
Mmin

f,κ′′ = Mgeom
f whenever κ′′ is a finite extension of κ′.

Examples 1.3 and 1.4 showed replacing the constant field with a finite extension is in-
triguing in the context of (1.2). (Example 5.9 gives an example where Mmin

f,κ 6= Mgeom
f .)

Motivated by our examples and the technical needs of proofs, throughout the paper we will
keep track of the behavior of bounds and other parameters with respect to replacing κ with
an arbitrary finite extension κ′ while using the same f .

In the proof of Theorem 1.8, the importance of f(T ) being a polynomial in T p is that its
T -partial derivative is 0. That implies, for any g ∈ κ[u], the u-derivative of f(g(u)) ∈ κ[u] is
(∂uf)(g(u)). In other words, ∂u(f(u, g(u))) = (∂uf)(u, g(u)) if we consider f as a function
of two variables u and T . Therefore the u-derivative of f(g) is a polynomial in g with no
dependence on g′(u) in such cases.

Remark 1.9. From the geometric point of view, it is surprising to have an implication as
in (1.4) that can relate polynomials gj with different degrees. Since the quadratic nature
of −1 in κ× influences whether or not (1.4) depends on deg g mod 4 or on deg g mod 2, it



IRREDUCIBLE SPECIALIZATION IN GENUS 0 7

seems unlikely that there can be a purely geometric proof of (1.4), although geometric ideas
do play a prominent role in our proof.

Example 1.10. Let f(T ) = T 12+(u+1)T 6+u4 in F3[u][T ], as in Example 1.1. Remark 1.7
and an earlier calculation imply that Mgeom

f = u(u− 1) , so Theorem 1.8 says that µ(f(g))
depends on g mod u(u − 1) for deg g � 0. This is consistent with the formula in (1.3),
which can be proved in an elementary way without Theorem 1.8, and moreover the mod-4
and quadratic-character conditions in (1.4) drop out and the condition that deg g � 0 can
be made explicit: deg g ≥ 2.

Remark 1.11. For both theoretical and numerical purposes, it would be useful to establish
a lower bound on n1 and n2 beyond which (1.4) holds even if κ is replaced by any finite
extension. In every example that we have checked for odd p, the integer 1 + deg(Mgeom

f )
has been such a lower bound. We do not have any theorems in this direction.

Example 1.12. Let

f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 ∈ κ[u][T ]

with finite κ of characteristic 3. As a preparation for the proof of Theorem 1.8, in Exam-
ple 5.3 we will show

(1.5) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2)χ(g(2))

when g = cun + · · · , with n ≥ 1. Therefore µ(f(g)) depends on g mod (u − 1)(u − 2),
deg g mod 4, and the quadratic character of c = lead g. (One checks that f and ∂uf have
κ[u]-resultant −(u−1)6(u−2)9 whose monic radical is (u−1)(u−2), so (1.5) and Remark 1.7
recover Theorem 1.8 in this case.) Formula (1.5) shows that Möbius behavior can change
upon extension of the ground field: when −1 is a square in κ, the term χ(−1)n(n−1)/2 drops
out, so dependence of µ(f(g)) on deg g mod 4 drops to dependence on deg g mod 2.

The case of characteristic 2 lies deeper than the case of odd characteristic. Our treatment
of characteristic 2 uses liftings to characteristic 0, via Witt vectors. (Readers not interested
in characteristic 2 can skip ahead to the paragraph after Remark 1.14.) Here is an analogue
of Theorem 1.8 in characteristic 2 for the case of polynomials in T 4; in §8 we will state and
prove a more technical theorem that applies to polynomials in T 2.

Theorem 1.13. Let κ be a finite field with characteristic 2. Fix a nonzero f(T ) ∈ κ[u][T 4]
that is squarefree in κ[u][T ] and assume f 6∈ κ. There is a nonzero Mf,κ in κ[u] such
that for g ∈ κ[u] with sufficiently large degree, µ(f(g)) is determined by g mod Mf,κ and
deg g mod 2. If [κ : F2] is even or degT f ≡ 0 mod 8, then there is no dependence on
deg g mod 2.

Let W (κ) be the Witt vectors of κ. The modulus Mf,κ may be chosen to be a polynomial
that is the reduction of a certain geometrically-constructed squarefree polynomial in W (κ)[u].
For this choice of modulus, the “sufficient largeness” on deg g in the previous paragraph may
be chosen uniformly with respect to finite extensions of κ.

An interesting example of Theorem 1.13 is f(T ) = T 8 + (u3 + u)T 4 + u over any finite
field κ with characteristic 2. For g ∈ κ[u], the proof of Theorem 1.13 implies Mf,κ = 1 and
µ(f(g)) = 1 for deg g � 0. Thus (1.2) fails in this example. See Example 8.14 for further
information.
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It seems likely that the modulus Mf,κ in Theorem 1.13 need not be squarefree, which is
a contrast with Theorem 1.8. For example, when κ has characteristic 2 and

f(T ) = T 16 + (u9 + u4 + u2 + u)T 8 + u5 + u3 ∈ κ[u][T ],

then the proof of Theorem 1.13 yields

(1.6) g1 ≡ g2 mod u9(u + 1)4 ⇒ µ(f(g1)) = µ(f(g2))

when deg gj ≥ 2 (see Example 8.15), and numerical evidence suggests (but we cannot prove)
that the modulus in (1.6) cannot be replaced with its radical, even if we restrict attention
to deg gj � 0 instead of to deg gj ≥ 2. Over some fields it seems probable that u9(u+1)4 in
(1.6) can be replaced with a proper factor; for example, when κ = F2 the data suggest (but
we cannot prove) that u3(u+1) may be used as a modulus in (1.6) when taking deg gj ≥ 0.

Remark 1.14. It appears from numerics that there is not always a periodicity property
for µ(f(g)) when f ∈ κ[u][T 2]. For this reason, generalizing Theorem 1.13 beyond the case
f ∈ κ[u][T 4] will require further work.

Returning to the faulty (1.2), we modify it as follows. Let f(T ) satisfy the Bouniakowsky
conditions: f has positive T -degree, is irreducible in κ[u][T ], and has no divisibility obstruc-
tions. Assume, furthermore, that f(T ) is a polynomial in T p when p 6= 2 or is a polynomial
in T 4 when p = 2. Define

(1.7) Λκ,M (f ;n) := 1−
∑

deg g=n,gcd(f(g),M)=1 µ(f(g))∑
deg g=n,gcd(f(g),M)=1 |µ(f(g))|

,

where M ∈ κ[u] is any modulus Mf,κ from Theorem 1.8 or Theorem 1.13; both sums run
over g, and the denominator is nonzero for large n by Lemma 9.3. Note Λκ,M (f ;n) is a
rational number in [0, 2].

There are two senses in which the sequence Λκ,M (f ;n) turns out to be independent of
M :

(1) for any two choices of modulus M , we will prove in Corollary 9.11 that the corre-
sponding sequences Λκ,M (f ;n) agree for large n,

(2) in many (but not all!) examples, Λκ,M (f ;n) = Λκ,1(f ;n) for large n (that is, the
constraint (f(g),M) = 1 in (1.7) can be dropped), even when 1 is not a genuine
modulus for g 7→ µ(f(g)).

In Remark 9.14, we will give a general criterion for (2) to hold, which in particular applies to
Example 1.1. (We will also explain in that remark why we use the condition gcd(f(g),M) =
1 in the definition of Λκ,M (f ;n).) Because of (1), we may abbreviate Λκ,M (f ;n) to Λκ(f ;n),
provided the properties that we care about are limited to large n, as they usually are.

The marvelous surprise (Theorem 9.10) is that Λκ(f ;n) is periodic in n with period
1, 2, or 4 for sufficiently large n; intuitively, this is a consequence of Theorems 1.8 and
1.13, and consequently Λκ(f ;n) is far simpler than it at first appears to be. The deviation
of this periodic function from the constant function 1, or equivalently the deviation of∑

µ(f(g))/
∑
|µ(f(g))| from 0, measures the tendency of µ(f(g)) to be biased toward −1

or 1 when f(g) is squarefree and deg g mod 4 is fixed (and deg g is large). This makes the
following proposed correction to (1.2) simple to appreciate: we conjecture that when f ∈
κ[u][T p] satisfies the Bouniakowsky conditions, with the extra restriction that f ∈ κ[u][T 4]
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when p = 2,

(1.8) #{g ∈ κ[u] : deg g = n, f(g) prime} ?∼ Λκ(f ;n)
C(f)

degT f

(q − 1)qn

log(qn)

as n → ∞. If Theorem 1.13 can be generalized to allow f ∈ κ[u][T 2] (see Remark 1.14),
it should be possible to use it to formulate a version of (1.8) in characteristic 2 for any
f ∈ κ[u][T 2] that satisfies the Bouniakowsky conditions.

Example 1.15. Let f1(T ) = T 12 + (u + 1)T 6 + u4 and f2(T ) = T 3 + u. We will later
establish (in Examples 5.2 and 9.8) the periodic behavior ΛF3(f1;n) = 4/3 for n ≥ 2,
ΛF3(f2;n) = 1, 2, 1, 0, 1, 2, 1, 0, . . . for n ≥ 1, and ΛF9(f2;n) = 1, 0, 1, 0, 1, 0, . . . for n ≥ 1.
Thus, (1.8) appears to fix the discrepancies in the ratio columns for Tables 1.1, 1.2, and 1.3
when we stay away from (periodic!) n � 0 such that Λκ(f ;n) = 0.

As a consistency check between (1.2) and (1.8), we have always been able to prove
Λκ(f ;n) = 1 for large n in examples where data suggest that (1.2) holds. Our experience
suggests that the naive estimate (1.2) is correct for many T -inseparable f as in Theorem
1.8, and likewise our computer work suggests that Λκ(f ;n) = 1 for n � 0 for the same f .
Nevertheless, other possibilities do occur, as we have seen.

The possibility that 0 lies in the period of Λκ(f ;n) requires a clarification on the meaning
of (1.8) as an asymptotic relation. When 0 is in the period of Λκ(f ;n), what does (1.8)
mean for the n’s where Λκ(f ;n) is periodically 0? The vanishing of Λκ(f ;n) implies that for
all g of degree n, either µ(f(g)) = 1 or (f(g),Mf,κ) 6= 1. When n is large, both cases imply
that f(g) is reducible. Therefore, the appearance of 0 in the period for Λκ(f ;n) implies
that both sides of (1.8) vanish for such n, which proves there is a periodic lack of irreducible
specializations f(g). For instance, the mod-4 and mod-2 patterns of 0’s in Tables 1.2 and
1.3 provably continue for all larger n. For other large degrees n, where Λκ(f ;n) 6= 0, we
only conjecture that (1.8) is a genuine asymptotic relation.

When κ has characteristic p 6= 2 and f(T ) ∈ κ[u][T ] is irreducible with positive T -
degree, we believe the correct κ[u]-variant on Bouniakowsky’s (qualitative) conjecture is
the following: f(g) is irreducible for infinitely many g ∈ κ[u] except in the following two
cases: f(T ) has a divisibility obstruction or f(T ) is a polynomial in T p with Λκ(f ;n) = 0 for
n � 0. Both types of obstructions can be checked with a finite amount of computation. An
example which fits the second case but not the first is f(T ) = T 4p + u; for any nonconstant
g in κ[u], f(g) is reducible. For details, see Example 4.13. (We do not make any analogous
conjecture in characteristic 2 because the case of characteristic 2 is still not adequately
understood when f is a polynomial in T 2 but not a polynomial in T 4.)

In order that our results are not misunderstood, we want to stress that when n runs
through a sequence in which Λκ(f ;n) does not vanish, we do not prove a connection between
Λκ(f ;n) and irreducibility counts for f(g) with deg g = n. All we can say is that numerics
in those cases suggest that (1.8) holds.

Here is an outline of the paper. In §2, we recall the usual Hardy–Littlewood conjecture
in Z[T ], in a form slightly different from (1.1), and §3 gives additional apparent counterex-
amples to (1.2). In §4 and §5 we build on work of Swan to develop an understanding of
µ(f(g)) as in Theorem 1.8, which we restate as Theorem 5.7. Our proof of Theorem 5.7 is
given in §6 and §7, and it uses a mixture of polynomial algebra and algebraic geometry. In
particular, we only begin to prove some non-trivial results in §6ff; the development in §1–§5
is largely a discussion of examples and some classical facts. Since the phenomena we are
coming to terms with is unrelated to any classical ideas about prime values of polynomials,
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we feel that this preliminary discussion will help the reader to understand the nature of the
theorems that we prove in §6ff.

In §8, we treat characteristic 2. Theorem 1.13 appears in a more precise form as Theo-
rem 8.11 and Corollary 8.12. Its proof uses ideas from our treatment of odd characteristic
and some considerations with residues of differential forms on the projective lines in char-
acteristics 2 and 0. Finally, §9 returns to conjectures, discussing the new factor Λκ(f ;n) in
(1.8). This leads to our modified Hardy–Littlewood conjecture, given as Conjecture 9.12.
In an appendix we explain how to compute constants such as C(f) in (1.1) and (1.2); this
is important for numerical work, without which most of the nontrivial phenomena in this
paper would not have been discovered.

Let us conclude this Introduction by using our work in characteristic p to suggest a link be-
tween some classical conjectures in analytic number theory. The classical Hardy–Littlewood
conjecture (1.1) is not expected to have any counterexamples. Since counterexamples to
(1.2) in characteristic p appear to be explained by non-vanishing Möbius averages, it seems
reasonable to conjecture that if f(T ) is irreducible in Z[T ] and has no divisibility obstruc-
tions then it has a vanishing Möbius average:

(1.9)

∑
n≤x µ(f(n))∑

n≤x |µ(f(n))|
→ 0

as x →∞. By [14], the abc-conjecture implies that (1.9) is equivalent to

(1.10)
∑
n≤x

µ(f(n)) = o(x).

For linear f , (1.10) is true [30]. Numerical evidence for (1.10) in other cases is encouraging.
After being led to (1.10) by analogy with our work in characteristic p, we learned that it is a
folklore conjecture for all non-constant f(T ). The case f(T ) = T 2+1 is posed in [12, p. 417].

The interesting aspect of the above considerations in the classical case is that since some
(inseparable) polynomials in characteristic p have nonzero Möbius average, we arrive at a
new perspective on (1.10): the way that we were just led to (1.10) suggests that any coun-
terexample to (1.10) is probably a counterexample to the classical Hardy–Littlewood con-
jecture. That is, the classical Hardy–Littlewood conjecture should imply (1.9) and (1.10).
Can such an implication be proved, perhaps assuming some other standard conjectures?

Notation and Terminology. Throughout the paper, κ denotes a finite field of size
q. For nonzero g ∈ κ[u], we set Ng = qdeg g. We often let µ, rather than µκ[u], denote
the Möbius function on κ[u], relying on the context to make clear the ring in which we are
computing the Möbius function; see Definition 4.1. We likewise often write χ instead of χκ

to denote the quadratic character on the multiplicative group κ× of a finite field with odd
characteristic.

We write a typical polynomial in κ[u][T ] as f(T ), suppressing the dependence on u in the
notation to make analogies to the classical situation more apparent. When, for geometric
and other reasons, we want to make the u-dependence explicit, we write f(T ) as f(u, T ).

For a nonzero polynomial h in one variable, we write the leading coefficient as leadh. For
a nonzero polynomial f in two variables u and T over a ring R, the T -degree of f and the
leading coefficient of f as a polynomial in T are indicated with a subscript: degT f ≥ 0 and
leadT f ∈ R[u]. An element in R[u] is primitive when its coefficients generate the unit ideal
in R. For a domain K, the discriminant of a one-variable polynomial with coefficients in K
is denoted disc h, or discK h for emphasis. Our definition of discriminants does not match
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the usual definition when the polynomial is not monic; see (4.1) and (4.2). Our notation
for resultants is introduced in §5.

All algebras in this paper are assumed to be commutative.
When R is a local ring with residue field k, a lift of a polynomial h ∈ k[u, T ] is a

polynomial H ∈ R[u, T ] whose reduction to k[u, T ] is h. We call the lift unitary when
degT H equals degT h and leadT H ∈ R[u] is a lift of leadT h ∈ k[u] with the same u-degree.
In particular, leadT H ∈ R[u] has unit leading coefficient, hence the terminology.

Acknowledgments. We thank C. Elsholtz, O. Gabber, A. Granville, A. J. de Jong, M.
Larsen, B. Poonen, A. Silberstein, and H. Stark for their advice and encouragement. B.C.
thanks the NSF and the Sloan Foundation for support during work on this paper. K.C.
thanks the Clay Mathematics Institute and the Number Theory Foundation.

2. The Classical Case

This section is intended for readers who are unfamiliar with the Hardy–Littlewood con-
jecture, and it also serves to fix some terminology. Experts can start in §3.

For irreducible f1(T ), . . . , fr(T ) in Z[T ], where none is a unit multiple of the others, let

(2.1) πf1,...,fr(x) = #{1 ≤ n ≤ x : f1(n), . . . , fr(n) are all prime}.

This counts how often the fj ’s all take prime values over positive integers up to x.
For g(T ) ∈ Z[T ] and a prime p, set

(2.2) ωg(p) := #{n ∈ Z/(p) : g(n) ≡ 0 mod p}.

The “probability” that g(n) is not a multiple of p, as n runs over Z, is 1−ωg(p)/p. Clearly
ωg(p) ≤ p. When ωg(p) = p, i.e., the function g : Z → Z/(p) is identically zero, we say g has
a local obstruction at p. (A polynomial g that has no local obstructions must be primitive.
For any primitive g, the only primes p at which g can have a local obstruction are those
p ≤ deg g.)

Conjecture 2.1 (Hardy–Littlewood). Pick f1(T ), . . . , fr(T ) ∈ Z[T ] with no fi a unit mul-
tiple of fj for i 6= j, and let f(T ) be their product. Assume the following two conditions:

1) The fj(T )’s are irreducible and pairwise coprime in Q[T ].
2) The product f =

∏r
i=1 fi has no local obstructions, i.e., ωf (p) < p for all p.

Then

(2.3) πf1,...,fr(x) ?∼ C(f)
∑
n≤x

′ 1
log |f1(n)| · · · log |fr(n)|

,

where

(2.4) C(f) =
∏
p

1− ωf (p)/p

(1− 1/p)r

and the ′ in the summation indicates that we sum only over n large enough so that |fj(n)| > 1
for all j.

The second hypothesis in the Hardy–Littlewood conjecture is equivalent to f having a
pair of relatively prime values, which is how the second hypothesis is checked in practice.
For example, T (T 2+2) has a local obstruction at 3 because n(n2+2) is divisible by 3 for any
n. This implies that n and n2 +2 are not simultaneously prime infinitely often. The infinite
product C(f), taken in order of increasing p, is usually only conditionally convergent.
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Replacing each fj(n) with its leading term as a polynomial in n simplifies (2.3) to

(2.5) πf1,...,fr(x) ?∼ C(f)
(deg f1) · · · (deg fr)

x

(log x)r
.

While (2.3) is a more complicated estimate than (2.5), it is the estimate that follows more
directly from heuristics based on probability or the circle method, and it is numerically
more accurate than (2.5). As Hardy and Littlewood [16, p. 38] write,

For the asymptotic formula, naturally, it is indifferent which [formula] we
adopt. But, for purposes of verification within the limits of calculation, it is
by no means indifferent [and] it will be found that it makes a vital difference
in the plausibility of the results.

We conclude this section with some remarks on the literature. The second condition
in Conjecture 2.1 was first recognized by Bouniakowsky [5]. He stated Conjecture 2.1
for r = 1, with only the qualitative conclusion πf (x) → ∞; i.e., f(n) is prime infinitely
often. Extensions of this qualitative conjecture are due to Dickson [11] for any number of
polynomials in Z[T ] of degree 1, and to Schinzel [24] for any number of polynomials in Z[T ]
of any degree. Schinzel’s conjecture is usually called Hypothesis H. A precise qualitative
number-field extension to S-integers is due to Serre [7, §4]. Applications of these qualitative
conjectures are in [7], [21], [23], [24], [32], and [34].

3. A conjecture in κ[u] and counterexamples

In this section we consider a κ[u]-analogue of (2.3). Pick f ∈ κ[u] with degT f > 0. Write

(3.1) f(T ) = αd(u)T d + αd−1(u)T d−1 + · · ·+ α0(u),

with αd(u) 6= 0 and d > 0. When g 6= 0 in κ[u] and

(3.2) deg(αdg
d) > deg(αig

i)

for each i < d such that αi 6= 0 ((3.2) is vacuous when αi = 0), then f(g) 6= 0 and the
degree and leading coefficient of f(g) in κ[u] are the same as those for αdg

d:

(3.3) deg(f(g)) = d · deg g + deg αd = (degT f)n + deg(leadT f),

(3.4) lead(f(g)) = (leadαd)(lead g)d,

where n = deg g. The lower bounds (3.2) hold provided deg g > ν(f), where

(3.5) ν(f) = max
0≤i≤d−1

deg αi − deg αd

d− i
.

In this maximum, terms with αi = 0 are omitted, or use the convention that deg 0 = −∞.
For completeness, when f(T ) = α(u)T d is a T -monomial, take ν(f) = 0.

Definition 3.1. The polynomial f(T ) has a local obstruction at an irreducible π ∈ κ[u]
when f(g) ≡ 0 mod π for all g ∈ κ[u].

In practice, one checks that f(T ) has no local obstructions by finding two specializations
of f(T ) on κ[u] that are relatively prime.

Suppose f1(T ), . . . , fr(T ) ∈ κ[u][T ] are each irreducible over κ(u) with no fi a unit multi-
ple of fj in κ[u][T ] for i 6= j, and assume that their product f(T ) has no local obstructions.
Define

πf1,...,fr(n) = #{g ∈ κ[u] : deg g = n, all fj(g) prime}.



IRREDUCIBLE SPECIALIZATION IN GENUS 0 13

A conjecture analogous to (2.3) is

(3.6) πf1,...,fr(n) ?∼ C(f)
∑

deg g=n

1
log N(f1(g)) · · · log N(fr(g))

,

where Nh = qdeg h and

(3.7) C(f) = (log q)r
∏
(π)

1− ωf (π)/ Nπ

(1− 1/ Nπ)r
, ωf (π) = #{g mod π : f(g) ≡ 0 mod π},

the product running over nonzero prime ideals in κ[u]. We sometimes write C(f) as Cκ[u](f)
to emphasize the base ring κ[u] (especially the choice of κ). By (3.3), deg(fj(g)) depends
on g only through deg g when deg g � 0, so all terms in the sum in (3.6) are equal for large
n. When r = 1, (3.6) is essentially the same as (1.2).

For computational purposes, it is expedient to remove the implicit factors of log q that
arise in (3.6), both in C(f) and in each log N(fj(g)) = (log q) deg(fj(g)). These factors of
log q cancel, and we record the corresponding alternative form of (3.6) in the case of interest
to us here, r = 1 (and writing f1 as f):

(3.8) #{g ∈ κ[u] : deg g = n, f(g) prime} ?∼
∏
(π)

1− ωf (π)/ Nπ

1− 1/ Nπ
· (q − 1)qn

(degT f)n + deg(leadT f)
,

provided f(T ) satisfies the Bouniakowsky conditions. The term deg(leadT f) could of course
be dropped off for asymptotic purposes, although to avoid confusion we will not drop this
term when we provide numerical data related to (3.8).

To avoid any conceptual misunderstandings, it is worth stressing that the product over (π)
on the right side of (3.8) is not the correct κ[u]-analogue of the classical product in (2.4), even
though they formally look the same. The correct analogue is C(f) in (3.7), with the factor
(log q)r. This logarithmic power is crucial for good base-change properties of constants like
C(f), and the importance of (log q)r is not evident from (2.4) because Ress=1 ζZ(s) = 1,
whereas Ress=1 ζκ[u](s) = 1/ log q 6= 1. (We have no use for base-change properties of such
constants in this paper, however.) Since, when r = 1, (3.8) is computationally preferable
to (3.6), in numerical work (with r = 1) we compute C(f)/(log q) rather than C(f).

We call (3.8), or the more general (3.6), the naive Hardy–Littlewood conjecture over κ[u].
It is an obvious conjecture to make, but in the Introduction we saw apparent (and proved)
counterexamples. For future reference, we now look at additional apparent (and proved)
counterexamples to (3.8). We omit the verification of the Bouniakowsky conditions.

Example 3.2. Let f(T ) = T pb
+ u over Fp[u] with b ≥ 1. Here ωf (π) = 1 for all π, so

(3.8) says

(3.9) #{g ∈ Fp[u] : deg g = n, gpb
+ u prime} ?∼ (p− 1)pn−b

n
.

In Table 3.1, we see (3.9) over F2[u] looks correct for T 2 + u, but there is a deviation for
T 4 + u: there appears to be a discrepancy factor that has periodic limits 2,0. In Table 1.2,
we already saw that the discrepancy factor for T 3 + u seems to have periodic limits 1,2,1,0.
In Table 3.2, the prediction for T 5 +u looks good in high odd degree, but fails spectacularly
in even degree.

The periodic absence of prime specializations for T 3 + u, T 4 + u, and T 5 + u is proved in
Examples 4.5 and 8.13, showing (3.9) is wrong in these cases.
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T 2 + u T 4 + u
n Count Naive Est. Ratio Count Naive Est. Ratio
9 32 28.4 1.127 24 14.2 1.690

10 48 51.2 0.938 0 25.6 0
11 96 93.1 1.031 92 46.5 1.978
12 136 170.7 0.797 0 85.3 0
13 336 315.1 1.066 336 157.5 2.133
14 568 585.1 0.971 0 292.6 0
15 1136 1092.3 1.040 1076 546.1 1.970
16 1904 2048.0 0.930 0 1024.0 0
17 3824 3855.1 0.992 3904 1927.5 2.025

Table 3.1. T 2 + u and T 4 + u in F2[u]

n Count Naive Est. Ratio
1 4 4.0 1.000
2 0 10.0 0
3 40 33.3 1.200
4 0 125.0 0
5 680 500.0 1.360
6 0 2083.3 0
7 9080 8928.6 1.017
8 0 39062.5 0
9 173340 173611.1 0.998

10 0 781250.0 0
11 3546020 3551136.4 0.999
12 0 16276041.7 0
13 75117240 75120192.3 1.000

Table 3.2. T 5 + u over F5[u]

Example 3.3. Let f(T ) = uT 8 + 1 over F2[u], Since ωf (π) = 1 for π 6= u and ωf (u) = 0,

(3.8) suggests #{g ∈ F2[u] : deg g = n, f(g) prime} ?∼ 2n+1/(8n + 1), but Table 3.3 suggests
an asymptotic discrepancy factor of 2. Example 4.4 and the Möbius bias (as discussed in
the Introduction) give a good heuristic explanation for this doubling.

Example 3.4. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 over F3[u].
According to (3.8), #{g ∈ F3[u] : deg g = n, f(g) prime } ?∼ C · 2 · 3n−2/n, where C =
CF3[u](f)/ log 3 ≈ 1.01570541. Table 3.4 suggests this asymptotic relation is wrong for odd
n. The absence of prime f(g) for deg g ≡ 1 mod 4 is proved in Example 9.9.

Example 3.5. Let f(T ) = T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u over
F3[u]. According to (3.8), #{g ∈ F3[u] : deg g = n, f(g) prime} ?∼ C · 3n−1/2n, where
C = CF3[u](f)/ log 3 ≈ 2.13579992. In Table 3.5, the count systematically falls below the
estimate from (3.8) by a factor that seems to be converging to .66 . . . . In §9 (see Table 9.1)
we will propose general correction factors, and in the present case this correction factor is
2/3.
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n Count Naive Est. Ratio
13 310 156.0 1.987
14 542 290.0 1.869
15 1111 541.6 2.051
16 2000 1016.1 1.968
17 3855 1913.5 2.015
18 7202 3615.8 1.992
19 13657 6853.4 1.993
20 26296 13025.8 2.019
Table 3.3. uT 8 + 1 over F2[u]

n Count Naive Est. Ratio
5 0 11.0 0
6 28 27.4 1.022
7 146 70.5 2.071
8 173 185.1 0.935
9 0 493.6 0

10 1345 1332.8 1.009
11 7348 3634.9 2.022
12 10138 9996.1 1.014
13 0 27681.4 0
14 77288 77112.5 1.002
15 432417 215915.0 2.003

Table 3.4. T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 over F3[u]

n Count Naive Est. Ratio
9 526 778.5 0.676

10 1346 2101.9 0.640
11 3910 5732.6 0.682
12 10456 15764.6 0.663
13 28956 43655.8 0.663
14 80720 121612.7 0.664
15 227434 340515.5 0.668

Table 3.5. T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u over F3[u]

Example 3.6. For an example in characteristic 5, with a nonmonic polynomial, let f(T ) =
(2u2 + u + 3)T 15 + (4u2 + u + 3)T 5 + 4u2 + u + 3 over F5[u]. The prediction from (3.8)
is #{g ∈ F5[u] : deg g = n, f(g) prime } ?∼ C · 4 · 5n/(15n + 2), where C ≈ 1.82326856.
Table 3.6 looks good in odd degree, but not in even degree. We will return to this in
Example 9.6.
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n Count Naive Est. Ratio
5 297 296.0 1.003
6 1563 1238.6 1.262
7 5264 5325.0 0.989
8 30436 23351.3 1.303
9 103702 103972.9 0.997

10 609531 468562.0 1.301
Table 3.6. (2u2 + u + 3)T 15 + (4u2 + u + 3)T 5 + 4u2 + u + 3 over F5[u]

4. The Möbius function over finite fields

In the Introduction we gave a heuristic explanation of the data in Example 1.1 as an
effect of a Möbius bias. We speak of a Möbius bias when, roughly speaking, µκ[u](f(g))
does not take its nonzero values 1 and −1 equally often on average as g varies. In this
section, we begin the systematic investigation of Möbius fluctuations in characteristic p,
with the ultimate goal of using this work to correct the faulty (1.2). The first step in the
analysis of µκ[u](f(g)) as g varies is the description of a formula for µκ[u](h) (h ∈ κ[u]) other
than its definition; the existence of an alternative Möbius formula on κ[u] has no parallel
in Z. We will then apply the formula to compute µκ[u](f(g)) for varying g in some simple
cases.

Definition 4.1. Let R be a Dedekind domain. The Möbius function on nonzero ideals of
R is given by µR(p1 · · · pm) = (−1)m for distinct nonzero prime ideals pj , µR((1)) = 1, and
µR(b) = 0 for any nonzero ideal b ⊆ R divisible by the square of a prime. For nonzero
r ∈ R, we define µR(r) = µR(rR). If R is understood from context, we write µ rather than
µR.

When F is a field and h in F [u] is nonconstant of degree d with roots γ1, · · · , γd (counted
with multiplicity) in a splitting field, we define the discriminant of h to be

(4.1) disc h :=
∏
i<j

(γi − γj)2 ∈ F,

whether or not h is monic. (For nonzero constant h, this empty product is understood to
be 1.) In terms of the derivative of h, (4.1) is the same as

(4.2) disc h =
(−1)d(d−1)/2

(leadh)d

d∏
i=1

h′(γi).

The factor (lead h)d in (4.2) reflects our convention on discriminants of nonmonic poly-
nomials in (4.1). When h is not monic, a variant on (4.1) is often used in the literature to
define disc h (e.g., [18, p. 204]). This variant equals (4.1) multiplied by (leadh)2d−2. In par-
ticular, the two competing definitions of the discriminant of a polynomial differ by a nonzero
square factor in F×. We prefer (4.1) for nonmonic h since it agrees with the universally
accepted definition of discF (F [u]/(h)) ∈ F relative to the ordered basis {1, u, . . . , ud−1}.

A generalization of the discriminant of a nonzero polynomial over a field F is the dis-
criminant discF A of a finite F -algebra A. Such discriminants are only well-defined up to
multiplication by squares in F× due to variation in the choice of F -basis of A. We do not
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define the discriminant of the zero polynomial, just as the discriminant is not defined for
an F -algebra with infinite dimension as an F -vector space.

When R = Fp[u], there is a classical formula for the Möbius function on R in terms of
discriminants and the Legendre symbol ( ·p) (recall that (a

2 ) = (−1)(a
2−1)/8 for odd a and

(a
2 ) = 0 for even a):

Theorem 4.2 (Pellet [19]). For a nonzero polynomial h ∈ Fp[u],

(4.3) µ(h) = (−1)deg h

(
disc h

p

)
with the convention that when p = 2 we replace disc h with disc H for any monic H ∈ Z[u]
lifting h.

Note that (4.3) is trivial when h has a multiple factor, because then µ(h) = disc h = 0.
When h is squarefree in Fp[u] with mh irreducible factors, (4.3) can be rewritten as

(4.4)
(

disc h

p

)
= (−1)deg h−mh .

In this form, (4.4) is essentially a famous formula of Stickelberger’s from algebraic number
theory, on the quadratic character of the discriminant of a number field [6, Prop. 4.8.10].
What is crucial for us is not simply the formula itself but its interpretation: classically, one
uses (4.3) – or rather the special case, (4.4) – with fixed h ∈ Z[u] and varying p. Instead we
will use (4.3) with fixed p and varying h ∈ Fp[u]. This is an idea that goes back to Swan [31],
although he only considered separable h and did not bring out the Möbius aspect of the
formula.

We will prove a generalization of Theorem 4.2 soon (see Theorems 4.7 and 4.9), but now
we want to illustrate the utility of Theorem 4.2 in some simple examples. These examples
show that µ(f(g)) is sometimes an easily computable function of g.

Example 4.3 (Swan). For g in F2[u] let h(u) = g(u)8 + u3 in F2[u], as in Example 1.5.
If g(0) = 0 then µ(h) = 0 and h(u) is reducible. We shall now prove that if g(0) = 1 then
µ(h) = 1, so h(u) is again reducible. (This explains Example 1.5.) The case g = 1 is trivial,
so assume deg g > 0. By (4.3), µ(h) =

(
disc H

2

)
where H is any monic lift of h to Z[u].

Choose H = G8 + u3, where G is a monic lift of g to Z[u]. Note 8|deg H. Let E/Q be a
splitting field of H. By (4.2), with h there equal to the polynomial H here,

disc H =
∏

H(γ)=0

H ′(γ) ≡
∏

H(γ)=0

3γ2 = 3deg HH(0)2 mod 8OE .

Since H(0) is odd, we get disc H ≡ 1 mod 8. Thus µ(h) = 1.

Example 4.4. Let h(u) = ug(u)8 + 1 in F2[u] with g(u) 6= 0, as in Example 3.3. We show
µ(h) = −1. By Theorem 4.2, µ(h) = −

(
disc H

2

)
, with H = uG8 + 1 and G a monic lift of g

to Z[u]. Let E/Q be a splitting field of H. As in the previous example, (4.2) implies

disc H =
∏

H(γ)=0

H ′(γ) ≡
∏

H(γ)=0

G(γ)8 mod 8OE .

Since G(γ)8 = −1/γ, disc H ≡ H(0)−1 ≡ 1 mod 8. Thus µ(h) = −1.
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Example 4.5. Let p 6= 2. We treat some examples related to Example 3.2 with b = 1.
Pick g in Fp[u] with deg g ≥ 1. We will compute a formula for µ(gp + u) that exhibits
dependence only on deg g mod 4 and on the quadratic character of the leading coefficient of
g. (There is also dependence on p mod 4, but p is fixed.) Set h = gp + u, so h is separable
over Fp, and let n = deg g. Since n ≥ 1, the degree of h is d = pn. Let g have leading
coefficient c, so h has leading coefficient cp = c. Since h′(u) = 1, (4.2) shows

(4.5) disc h =
(−1)pn(pn−1)/2

cpn
=

(−1)n(pn−1)/2

cn
.

Since d ≡ n mod 2, (4.3) says

(4.6) µ(gp + u) = (−1)n

(
disc h

p

)
= (−1)n

(
c

p

)n(−1
p

)n(n+1)/2

.

When n = deg g is odd, µ(gp + u) = −( c
p)(−1

p )(n+1)/2. As g runs over polynomials of odd
degree n, this formula shows µ(gp + u) is 1 and −1 equally often, with the Möbius value
determined by the leading coefficient of g.

When n = deg g is even, µ(gp + u) = (−1
p )n/2. In particular, µ(gp + u) = 1 when

n ≡ 0 mod 4. This explains the 0’s in Table 1.2 and some of the 0’s in Table 3.2. When
n ≡ 2 mod 4, µ(gp+u) = 1 for all g of degree n when (−1

p ) = 1. This explains the remaining
0’s in Table 3.2. On the other hand, if (−1

p ) = −1 then µ(gp +u) = −1 for all g with degree
≡ 2 mod 4. This is a total bias towards Möbius value −1, and numerics suggest that for
varying g with fixed large degree n such that n ≡ 2 mod 4 (and p ≡ 3 mod 4), gp + u is
irreducible approximately twice as often as predicted by (3.8). We saw such doubling in
Table 1.2 when n ≡ 2 mod 4.

Definition 4.6. Let κ be a finite field. For a finite κ-algebra A, let µ(A) = (−1)# Spec A if
A is étale over κ (i.e., reduced) and let µ(A) = 0 otherwise.

Note that µ(A) only depends on the underlying ring structure of A and not on its κ-
algebra structure. If h ∈ κ[u] is nonzero, then µ(κ[u]/(h)) = µκ[u](h). The following
elementary result extends an observation of Swan.

Theorem 4.7. Suppose κ is finite with odd characteristic, and let χκ be the quadratic
character on κ×, with χκ(0) = 0. For any finite κ-algebra A,

(4.7) µ(A) = (−1)dimκ Aχκ(discκ A).

Proof. Both sides of (4.7) vanish when A is not étale over κ, so we may assume A is étale
over κ. Both sides are multiplicative with respect to finite products in A. The case A = 0
is trivial, so we reduce to the case when A = κ′ is a finite extension of κ, and we want to
prove

(4.8) χκ(discκ κ′) = (−1)d−1

in Z, where d = [κ′ : κ]. Let γ be a field generator for κ′ over κ. Since κ does not have
characteristic 2, discκ κ′ is a square in κ precisely when a generator for Gal(κ′/κ) acts as an
even permutation on the κ-conjugates of γ. Since this permutation of the roots is a d-cycle,
its sign is (−1)d−1. �

Remark 4.8. Theorem 4.7 and its proof carry over verbatim to finite algebras over any
perfect field k with characteristic not 2 and with only cyclic Galois extensions; e.g., we could
take k = C((X)). See [25, XIII, Exercise 3] for artificial examples in positive characteristic.
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The proof of Theorem 4.7 works for étale algebras A in characteristic 2 if we formulate the
result in terms of signs of certain permutations rather than in terms of quadratic characters
of certain discriminants. (See [13, p. 237] for an application of this idea.) For our purposes,
the role of discriminants is critical and therefore we need an analogue of Theorem 4.7
in characteristic 2 that involves discriminants. This analogue will use a lifting of A into
characteristic 0. We shall now formulate a setup for finite κ with arbitrary characteristic
(which for odd characteristic will recover a reformulation of Theorem 4.7).

Let κ be any finite field (of characteristic p, say), F the unramified extension of Qp with
residue field κ, and W = W (κ) the valuation ring of F . (In other words, W is the ring of
Witt vectors of κ.) We extend Theorem 4.7 to all characteristics by using finite flat liftings
of A over W ; i.e., finite flat W -algebras Ã such that Ã/pÃ is isomorphic to A as κ-algebras.
For instance, a finite flat lifting of κ[u]/(h(u)) over W is W [u]/(H(u)), where H ∈ W [u]
satisfies H mod p = h and deg H = deg h. By Hensel’s lemma, if A is étale over κ then Ã
exists (and is finite étale over W ) and is unique up to unique W -isomorphism. If A is not
étale over κ, a finite flat lifting of A over W may not exist (see [2, Example 3.2(4)]).

When κ has characteristic 2 and A is étale over κ, discW Ã lies in W×/(W×)2. Writing
W× = κ××(1+2W ) (Teichmüller decomposition), note that the 1-unit part of discW Ã lies
in 1 + 4W . (Ambiguity of discW Ã up to a unit-square does not affect the meaning of this
assertion, since (1+2w)2 ∈ 1+4W .) Indeed, to prove discW Ã has its 1-unit part in 1+4W

we may make a finite étale local base change on W to split the finite étale W -algebra Ã,
and the discriminant with respect to a primitive idempotent basis is 1.

Here is a Möbius formula using liftings to characteristic 0.

Theorem 4.9. For any finite κ-algebra A that admits a finite flat lifting Ã of A over W ,

(4.9) µ(A) = (−1)dimκ Aχ̃(discW Ã),

where χ̃ is the unique quadratic character on W×/(W×)2 ' κ×/(κ×)2 when κ has odd
characteristic and is the unique quadratic character on

(4.10) (κ× × (1 + 4W ))/((κ× × (1 + 4W )) ∩ (W×)2) ' (1 + 4W )/((1 + 4W ) ∩ (W×)2)

when κ has characteristic 2. In both cases, χ̃ is extended by 0 to pW .

Before we prove Theorem 4.9, we make some remarks on the case char(κ) = 2.

Remark 4.10. When κ has characteristic 2, we do not need to extend χ̃ to 1 + 2W or to
all of W×, and there is no canonical extension anyway. Note that (1 + 4W )∩ (W×)2 is the
index-2 kernel of

1 + 4W // // (1 + 4W )/(1 + 8W ) ' W/2W = κ
Trκ/F2 // // F2,

where the middle isomorphism is induced by 1 + 4x 7→ x.

Proof. (of Theorem 4.9) The case A = 0 is trivial. Since the reduction of discW Ã modulo
pW is discκ A, (4.9) is trivial when A is non-étale over κ. (All we need to know about χ̃
here is that, by definition, it vanishes on pW .)

When A is étale over κ, the uniqueness of Ã lets us assume A = κ′ is a field, say of degree
d over κ, so Ã is the valuation ring Wd of an unramified extension of W of degree d and the
desired Möbius formula is equivalent to

(4.11) χ̃(discW (Wd)) = (−1)d−1.
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By the definition of χ̃, this formula says that discW Wd is a square in W× if and only if d is
odd. This criterion for being a square is proved via the argument used to prove (4.8). �

Remark 4.11. Theorem 4.9 and its proof apply with κ replaced with any perfect field k
of positive characteristic such that all finite Galois extensions of k are cyclic. When k has
characteristic 2, Artin-Schreier theory ensures that the subgroup {x2 + x |x ∈ k} has index
≤ 2 in k. However, there is no description of this subgroup akin to Remark 4.10 when k is
infinite.

Taking A = κ[u]/(h) for nonzero h ∈ κ[u], Theorems 4.7 and 4.9 specialize to say

(4.12) µ(h) =

{
(−1)deg hχ(discκh), if κ has odd characteristic,
(−1)deg hχ̃(discW H), if κ has any characteristic,

where χ and χ̃ are described in Theorems 4.7 and 4.9, and H is a lifting of h into W [u]
with deg H = deg h.

Remark 4.12. Our formula in (4.12) for the case of characteristic 2 uses a discriminant
in characteristic 0. There is an intrinsic characteristic 2 variant of the discriminant, due to
Berlekamp [1] (and developed by later authors, such as Wadsworth [33]), but we have not
found this to be useful for our purposes.

Example 4.13. Let κ be a finite field with characteristic p. For nonconstant g in κ[u],
µ(g4p + u) = 1. Indeed, for p 6= 2, this follows from (4.12) because disc(g4p + u) is a square
in κ by (4.2). For p = 2, let W = W (κ). By (4.2),

discW (G8 + u) ∈ (W×)8 · (1 + 8W ) ∈ (W×)2.

Therefore, χ̃(discW (G8 + u)) = 1 when G is a polynomial in W [u] with positive degree and
unit leading coefficient. Thus, by (4.12), µ(g4p + u) = 1 for nonconstant g ∈ κ[u] when
p = 2.

Example 4.14. Let κ be a finite field with characteristic p 6= 2. Generalizing (4.6), for
nonconstant g = cun + · · · ∈ κ[u] we see via (4.12) that

µ(gp + u) = (−1)nχ(c)nχ(−1)n(n+1)/2.

When n is odd, this equals 1 and −1 equally often as g varies. When n is even, µ(gp + u)
equals χ(−1)n/2 for all g.

We also find

µ(gp + u2) = (−1)n(χ(−1))n(pn+1)/2χ(2)nχ(c)n+1χ(g(0)).

In particular, for fixed n ≥ 1, µ(gp + u2) is equal to 1 as often as it is equal to −1.
Therefore there is no Möbius bias, in contrast with µ(gp + u) when deg g is even and
−1 ∈ κ× is a square. Numerical tests over F3, F5, F7, and F9 suggest that (3.8) is correct
for f(T ) = T p + u2.

Example 4.15. Let κ have size q and characteristic p. Choose an integer b such that
1 < b < 4q and (b, p(q− 1)) = 1 (e.g., b = 2q− 1). Then the polynomial f(T ) = T 4q + ub is
irreducible in κ(u)[T ] by [18, p. 297] and has no local obstructions, but f(g) is reducible in
κ[u] for every g ∈ κ[u]. Indeed, this holds when g = c is constant since ub + c is non-linear
and has a root. When g is nonconstant, then f(g) has u as a multiple factor if g(0) = 0
and (4.12) implies µ(f(g)) = 1 if g(0) 6= 0.

When q = 2 and b = 3, we recover Example 4.3.
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Example 4.16. Consider f(T ) = T 8 + u3 on κ[u] with κ of size q = 2m. Extending the
work in Example 4.3, the reader can check that as g runs over κ[u], µ(f(g)) only has values 0
or 1, unless m is even and g is a (constant) noncube in κ×. In particular, the specializations
of T 8 + u3 on κ[u] are irreducible only finitely many times (with fixed κ).

This completes our discussion on generalities about the Möbius function over finite fields.
Theorems 4.7 and 4.9 are also important in a version of the Hardy–Littlewood conjecture
for function fields of higher genus curves, as we will explain in [9]. In the present paper, we
will prove a refinement of (4.12) when h = f(g) with f ∈ κ[u][T p] nonzero and fixed and
g ∈ κ[u] varying. Our main results in this direction are Theorems 5.7, 6.4, 7.1, and 8.11
(and Corollary 8.12).

5. Discriminants and Resultants

For nonconstant f ∈ κ[u][T p], we wish to understand the behavior of µ(f(g)) as g varies
in κ[u] with large degree. The formulas (3.3) and (4.12) suggest that we should study
disc(f(g)) as an algebraic function of varying g with large but fixed degree. Following
Swan [31], we will find it useful to work with resultants and not discriminants. The relation
between resultants and discriminants is given by the formula

(5.1) disc h =
(−1)d(d−1)/2R(h, h′)

(leadh)2d−1
.

Here d = deg h ≥ 1 and R(h, h′) is the resultant of h and h′. We now review some of the
basic formalism of resultants.

Recall that for an integral domain A, the resultant of two nonzero polynomials h1 and
h2 in A[T ], denoted RA(h1, h2) = R(h1, h2), is defined to be

(5.2) R(h1, h2) = (lead h1)deg h2
∏

h1(α)=0

h2(α)

with the product running over the roots of h1 (counted with multiplicity) in a splitting field
over the fraction field of A. In [18, p. 200], an expression for R(h1, h2) is given as a universal
determinant in the coefficients of h1 and h2. An essential aspect of this universal formula is
that the size of the determinant defining the resultant depends on the degrees of h1 and h2.
We may write Rd1,d2(h1, h2) to indicate that hj is being treated as a polynomial of degree
dj for the resultant calculation via a universal determinant; in some later considerations
it will be very natural to use Rd1,d2(h1, h2) when dj > deg hj for some j, and so we make
the convention that when a resultant R(h1, h2) appears without degree subscripts then it
is defined in terms of the actual degrees of its arguments if h1 and h2 are nonzero. We
also agree to define R(h1, h2) = 0 when at least one hj vanishes. This latter definition is
compatible with universal determinants that define resultants (when the zero polynomial is
assigned whatever nonnegative degree we please).

The effect of a fake higher degree in the second argument goes as follows. If nonzero h1

and h2 have actual degrees d1 and d2, then for any d3 ≥ d2,

(5.3) Rd1,d3(h1, h2) = (lead h1)d3−d2Rd1,d2(h1, h2).

Thus, giving the second polynomial h2 a fake higher degree d3 may change the resultant,
although it does not change the property of vanishing or nonvanishing for the resultant (we
only work with resultants over domains, not over arbitrary commutative rings). The two
resultants in (5.3) agree when h1 is monic, no matter what d3 is. Beware that (5.2) is valid
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as written when h2 is given a fake higher degree (still denoted deg h2), but it is generally
not valid when h1 is given a fake higher degree; also keep in mind that in general R(h1, h2)
and R(h2, h1) are related by a sign (the precise sign-factor will be recorded shortly in a list
of standard algebraic properties of resultants).

Warning. Failure to remember that the construction of resultants is sensitive to degrees
can lead to errors when standard formulas are used carelessly, especially in specialization
arguments. For instance, (5.1) is a specialization of a universal polynomial identity over Z,
where h has degree d > 0 and h′ has degree d− 1. The resultant in (5.1) is a (d + (d− 1))-
dimensional determinant, even under specialization to characteristic p where h′ may have
degree less than d − 1 (perhaps even h′ = 0). We should write the resultant in (5.1) as
Rd,d−1(h, h′) to remind us of the dimensions of the determinant. If deg h′ < d − 1, then
h′ must be given fake degree d − 1, using initial coefficients that are equal to 0. This is
consistent with (5.1) when h′ = 0 (and h 6= 0 with deg h > 0).

Example 5.1. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 in κ[u][T ], where
κ has characteristic 3 (κ = F3 is Example 3.4). For nonconstant g = cun + . . . in κ[u] with
c 6= 0, f(g) has degree 9n and f(g)′ = (∂uf)(g) has degree 6n + 1 < 9n − 1. The “true”
resultant of f(g) and (∂uf)(g) is R9n,6n+1(f(g), f(g)′), but the resultant needed to compute
disc f(g) in (5.1) is

(5.4) R9n,9n−1(f(g), f(g)′) = (c9)3n−2R9n,6n+1(f(g), (∂uf)(g)).

Thus

(5.5) disc f(g) =
(−1)n(n−1)/2(c9)3n−2R9n,6n+1(f(g), (∂uf)(g))

c9(18n−1)
.

If we forget that (5.1) is a universal identity over Z then we overlook the factor of (c9)3n−2.
This power of c affects the quadratic nature of the right side of (5.5), so in view of (4.12)
such an error would be serious.

Resultants have several useful algebraic properties. We summarize six of them without
proof, as in [31], and we include (5.3) in the list. In this list, polynomials are nonzero and
have coefficients in a domain A.

(1) R(h1, h2) = (−1)(deg h1)(deg h2)R(h2, h1).
(2) R(h1, h2) is bimultiplicative: R(h1h3, h2) = R(h1, h2)R(h3, h2) and R(h1, h2h3) =

R(h1, h2)R(h1, h3).
(3) R(u, h) = h(0). More generally, R(u− c, h) = h(c) and R(h, u− c) = (−1)deg hh(c)

for c ∈ A.
(4) R(c, h) = R(h, c) = cdeg h for c ∈ A, h 6= 0. Thus, R(c1, c2) = 1 for c1, c2 6= 0 in A.
(5) When h1 has degree d1, h2 has degree d2, and d3 ≥ d2,

Rd1,d3(h1, h2) = (lead h1)d3−d2Rd1,d2(h1, h2).

(6) For nonzero M , h1, h2 in A[u],

h1 ≡ h2 mod M =⇒ R(M,h1) = (lead M)deg h1−deg h2R(M,h2),

where we recall that lead M denotes the leading coefficient of M ∈ A[u].
We call property (6) the quasi-periodicity of the resultant (in its second argument). When

M is monic, R(M,h) is genuinely periodic in h, with period (M). More generally (and of
greater relevance to our work), for monic M in A[u] and any b(T ) ∈ A[u][T ], R(M, b(h)) is
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genuinely periodic in h. Swan’s definition of R(h1, h2) in [31] is what we call R(h2, h1), so
property (1) warns us that any comparison with [31] must keep this distinction in mind.

The following two examples use the resultant to compute a formula for µ(f(g)) as a
function of g:

Example 5.2. Let f(T ) = T 12 + (u + 1)T 6 + u4 ∈ κ[u][T ] with finite κ of characteristic 3.
(Example 1.1 is κ = F3.) Let q denote the size of κ and let χ be the quadratic character
on κ×, with χ(0) = 0. We shall compute µ(f(g)) when n = deg g ≥ 1.

Since 4|deg(f(g)) and lead(f(g)) is a square, (4.12) and (5.1) with h = f(g) give

µ(f(g)) = χ(disc f(g))
= χ(R12n,12n−1(f(g), (f(g))′))

= χ(R12n,12n−1(f(g), (g2 + u)3))

= χ(R(g2 + u, f(g))).

Since f(g) ≡ u6 − u3 mod g2 + u and the leading coefficient of g2 + u is a square, quasi-
periodicity of the resultant gives (using cg to denote (lead g)12 deg g−6)

R(g2 + u, f(g)) = c2
gR(g2 + u, u6 − u3)

= c2
gR(g2 + u, u)3R(g2 + u, u− 1)3

= c2
gg(0)6(g(1)2 + 1)3,

so

(5.6) µ(f(g)) = χ(disc f(g)) = χ(g(0))2χ(g(1)2 + 1).

As g runs over all polynomials of a given degree n ≥ 2 in κ[u], g(0) and g(1) can be
“independently assigned” (think about g mod u(u − 1)). So, for instance, if −1 is not a
square in κ, we see that µ(f(g)) vanishes 1/q of the time (when g(0) = 0), and is −1 twice
as often as it is 1.

Example 5.3. Let κ be a finite field with characteristic 3, and χ the quadratic character
on κ×. Let

f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1
in κ[u][T ]. This polynomial was already met over F3[u] in Examples 3.4 and 5.1. We
will compute a formula for µ(f(g)) as g runs over nonconstant polynomials in κ[u]. The
argument is long compared to Example 5.2, but at the same time it is more indicative of
the general case, and thus is more instructive.

For nonconstant g(u) = cun + · · · with degree n ≥ 1, we have deg(f(g)) = 9n, so
µ(f(g)) = (−1)9nχ(disc f(g)) by (4.12). By (5.1), (5.3), and (5.4),

disc f(g) =
(−1)9n(9n−1)/2R9n,9n−1(f(g), f(g)′)

(c9)18n−1

=
(−1)n(n−1)/2(c9)3n−2R(f(g), (∂uf)(g))

(c9)18n−1
,

so

(5.7) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(R(f(g), (∂uf)(g))).

We now compute a universal formula for R(f(g), (∂uf)(g)) in five steps, working over
any field (or even domain) of characteristic 3. The formula is given in (5.12) as an algebraic
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identity, so for the purposes of the following calculation we may take g to be the universal
polynomial of degree n over a field of characteristic 3 (so g has coefficients in a rational
function field of transcendence degree n+1 over F3). In particular, the operation of division
by g(2) in Step 1 is not problematic.

Step 1. Explicitly,

(5.8) f(g) = g9+(2u2+u)g6+(2u+2)g3+u2+2u+1, (∂uf)(g) = (u+1)g6+2g3+2u+2.

Using (5.8), write R(f(g), (∂uf)(g)) = (−1)nR((∂uf)(g), f(g)) to make the lower-degree
term (∂uf)(g) appear as the first argument. We want to simplify the resultant by quasi-
periodicity, but the leading terms in (5.8) suggest it is easier to reduce (u + 1)f(g), rather
than f(g), modulo (∂uf)(g). Therefore we apply bimultiplicativity to introduce a factor of
u + 1:
(5.9)

R(f(g), (∂uf)(g)) =
(−1)nR((∂uf)(g), (u + 1)f(g))

R((∂uf)(g), u + 1)
=

(−1)nR((∂uf)(g), (u + 1)f(g))
g(2)3

.

Treating g as if it is generic (so g(2) is a unit) ensures that (5.9) is a meaningful (and cor-
rect) algebraic formula. Our derivation of (5.9) used bimultiplicativity to create convenient
leading terms for quasi-periodicity. This computational idea will be used again in Step 3.

Step 2. Since (u + 1)f(g) = (∂uf)(g)(g3 + 2u2 + u) + g6 + u2g3 + u + 1, quasi-periodicity
of the resultant implies (recall c = lead g)

R((∂uf)(g), (u + 1)f(g)) = (c6)9n+1−6nR((∂uf)(g), g6 + u2g3 + u + 1)
= (c6)3n+1R(g6 + u2g3 + u + 1, (∂uf)(g)).

The nonzero constant in front will disappear when we apply χ as part of (5.7).
Step 3. Since (∂uf)(g) ≡ 2(u+2)(u2+2u+2)g3+2(u+1)(u+2) mod g6+u2g3+u+1, quasi-

periodicity implies R(g6+u2g3+u+1, (∂uf)(g)) is the product of (c6)6n+1−(3n+3) = (c6)3n−2

and R(g6 + u2g3 + u + 1, 2(u + 2)(u2 + 2u + 2)g3 + 2(u + 1)(u + 2)). Writing the second
argument of this resultant as a product 2(u + 2)((u2 + 2u + 2)g3 + u + 1), this resultant is
a product of 26n = 1, (g(1)2 + g(1) + 2)3, and R((u2 + 2u + 2)g3 + u + 1, g6 + u2g3 + u + 1).
To simplify this last resultant, we again use bimultiplicativity to make leading terms more
compatible. This resultant equals the ratio

(5.10)
R((u2 + 2u + 2)g3 + u + 1, (u2 + 2u + 2)(g6 + u2g3 + u + 1))

R((u2 + 2u + 2)g3 + u + 1, u2 + 2u + 2)
.

Step 4. The denominator in (5.10) is 1 by quasi-periodicity (switch the two terms, which
introduces no sign, and then reduce mod u2 + 2u + 2). As for the numerator,

(u2 + 2u + 2)(g6 + u2g3 + u + 1) ≡ (2u + 2)g3 + 2u2 + u + 2 mod (u2 + 2u + 2)g3 + u + 1,

so the numerator of (5.10) is (c3)3n+1R((u2 + 2u + 2)g3 + u + 1, (2u + 2)g3 + 2u2 + u + 2).
The resultant factor equals

R(2(u+1)(g3+u+1), (u2+2u+2)g3+u+1) = (−1)ng(2)3R(g3+u+1, (u2+2u+2)g3+u+1).

Putting everything together into (5.9), we have a cancellation of g(2)3 and obtain

(5.11) R(f(g), (∂uf)(g)) = c45n−3(g(1)2 + g(1) + 2)3R(g3 + u + 1, (u2 + 2u + 2)g3 + u + 1).
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Step 5. Finally, (u2 + 2u + 2)g3 + u + 1 ≡ 2(u + 1)3 mod g3 + u + 1, so

R(g3 + u + 1, (u2 + 2u + 2)g3 + u + 1) = (c3)3n−1(−1)nR(2(u + 1)3, g3 + u + 1)
= (c3)3n−1g(2)9.

Feeding this into (5.11) gives the resultant formula

(5.12) R(f(g), (∂uf)(g)) = c54n−6(g(1)2 + g(1) + 2)3g(2)9.

Inserting (5.12) into (5.7), we find our Möbius formula:

(5.13) µ(f(g)) = (−1)nχ(−1)n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2))χ(g(2))

for nonconstant g in κ[u]. This depends on g mod (u− 1)(u− 2), deg g mod 4, and the qua-
dratic character of the leading coefficient of g. Taking κ = F3, we will show in Example 9.9
that (5.13) is numerically compatible with the statistics in Table 3.4.

Motivated by the goal of making patterns in µ(f(g)) provable when f(T ) is irreducible
and inseparable, as in Examples 5.2 and 5.3, we discovered that the function g 7→ µ(f(g))
admits a periodicity in g when f is squarefree with irreducible factors that are inseparable
(in T ). Before stating our periodicity theorem, we need a lemma.

Lemma 5.4. Let F be perfect of characteristic p > 0.
1) Choose a nonzero f ∈ F [u][T p] such that f is squarefree in F [u, T ]. Then f and ∂uf

have no nonconstant common factor in F [u, T ], or equivalently the zero loci {f = 0} and
{∂uf = 0} in the affine plane A2

F intersect at finitely many points.
2) The same conclusion holds if f ∈ F [u, T ] is nonzero and f(T p) is squarefree in F [u, T ]

(so f is squarefree in F [u, T ]).

Note that if f 6∈ F then f(T ) cannot lie in F [up, T ] under either hypothesis in the lemma,
so ∂uf 6= 0 in such cases. It may happen that ∂uf is constant; e.g., f = upT p + u + 1.

The second case in Lemma 5.4 will be used only when p = 2.

Proof. The case f ∈ F× is trivial, so we may assume f 6∈ F .
1) Since f is squarefree, the irreducible factors φ of f in F [u, T ] must all lie in F [u, T p],

so by perfectness of F none can lie in F [up, T ]; thus, such φ are separable over F (T ). Hence,
if Zf ⊆ A2

F is the (reduced) zero scheme of f then the projection prT from Zf onto the
T -axis is quasi-finite and flat, as well as generically étale. Thus, the non-étale locus of prT

is finite. This locus is exactly where Zf meets the zero locus of ∂uf .
2) Now suppose f ∈ F [u, T ] is nonconstant and f(T p) is squarefree. We first check

that f and ∂uf have no common factor in F [u]. Write f = b(u)h where b ∈ F [u] and
h ∈ F [u, T ] has no irreducible factors in F [u]. Since b must be squarefree, gcd(b, ∂ub) = 1.
Since ∂uf ≡ (∂ub) · h mod b, no irreducible factor of b can divide ∂uf . This rules out the
possibility of irreducible common factors of f and ∂uf in F [u].

Since f and ∂uf are nonzero, to show that they have no common factor in F [u, T ] with
positive T -degree it is equivalent to proving RF [u](f, ∂uf) 6= 0. The case degT f = 0 is clear,
so we assume f has positive T -degree. We induct on degT f and the number of irreducible
factors of f . If f is irreducible and RF [u](f, ∂uf) = 0, then f and ∂uf have a common root
in an extension of F (u), so ∂uf = β(u)f for some β(u) ∈ F (u)× since ∂uf 6= 0. Since f is
irreducible in F [u, T ] with positive T -degree, β ∈ F [u]. A comparison of u-degrees on both
sides of the equation ∂uf = β(u)f gives a contradiction.
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More generally, suppose f = f1f2, where the fj ’s are non-constant, so each fj(T p) is
squarefree in F [u, T ] and gcd(f1, f2) = 1 in F (u)[T ]. Bimultiplicativity and periodicity for
resultants gives

RF [u](f, ∂uf) = (∗)RF [u](f1, ∂uf1)RF [u](f2, ∂uf2)RF [u](f1, f2)2,

where (∗) is a nonzero factor in F built up from signs and leading coefficients. The nonva-
nishing follows by induction. �

Definition 5.5. If f1, f2 ∈ F [u, T ] are two nonzero polynomials over a perfect field F such
that their zero loci Zf1 and Zf2 in A2

F have finite intersection, Mgeom
f1,f2

∈ F [u] is the monic
separable polynomial whose zero locus is the projection of Zf1 ∩ Zf2 onto the u-axis (so
Mgeom

f1,f2
= 1 if Zf1 ∩ Zf2 is empty, such as when some fj lies in F×). When f ∈ F [u, T ]

is nonconstant, define Mgeom
f = Mgeom

f,∂uf when this makes sense (i.e., when ∂uf 6= 0 and
Zf ∩ Z∂uf is finite).

Note that the formation of Mgeom
f1,f2

commutes with extension of the perfect ground field.
When leadT f is separable, Mgeom

f1,f2
is the radical of the resultant RF [u](f1, f2). (We saw in

Remark 1.7 that this need not hold when leadT f is not separable).
For f ∈ F [u, T ] with f 6∈ F , Lemma 5.4 gives some sufficient conditions for Mgeom

f to
be defined when F has positive characteristic. The next lemma gives a general geometric
criterion in any characteristic.

Lemma 5.6. If F is perfect with arbitrary characteristic and f ∈ F [u, T ] is not in F , then
the zero loci of f and ∂uf in A2

F have finite intersection if and only if f is squarefree in
F [u, T ] with no irreducible factors in F [T ] and the projection

prT : Zf = Spec F [u, T ]/(f) → Spec F [T ] = A1
F

onto the T -axis is generically étale on Zf . When this happens, the non-étale locus of prT

is finite and its projection onto the u-axis is the zero locus of Mgeom
f in A1

F .

The generically-étale property is always satisfied for squarefree nonzero f ∈ F [u, T ] in
characteristic 0 since prT is a priori quasi-finite and flat. We will apply this lemma over a
2-adic field in our later study of the Möbius bias in characteristic 2.

Proof. Necessity of the conditions that f be squarefree and have no irreducible factors in
F [T ] is clear. Granting these conditions, the plane curve Zf is reduced (hence geometrically
reduced since F is perfect) and its projection to the T -axis is quasi-finite and hence flat.
Thus, the property of prT being étale at a point of Zf may be checked on the geometric
fibers of prT . Extending scalars to an algebraic closure of F , we thereby see that the non-
étale locus for prT is where f = 0 meets ∂uf = 0 in A2

F . This completes the proof of
the desired equivalence, and also yields the asserted relationship between Mgeom

f and the
non-étale locus of prT . �

Here is our main result in odd characteristic. The proof will be given in §7, using
Theorem 6.4 and Theorem 7.1.

Theorem 5.7. Let κ be a finite field with odd characteristic p, and let χ be the quadratic
character of κ×. Fix a nonzero f(T ) ∈ κ[u][T p] that is squarefree in κ[u][T ]. Assume f 6∈ κ.

For g1 = c1u
n1 + . . . and g2 = c2u

n2 + . . . in κ[u] with sufficiently large degrees n1 and
n2 (depending on f), we have the implication

(5.14) g1 ≡ g2 mod Mgeom
f , n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2)).
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The largeness of degrees nj can be chosen uniformly with respect to finite extensions of κ.
If −1 is a square in κ or degT f is even, the second congruence in (5.14) may be relaxed

to n1 ≡ n2 mod 2.
If Mmin

f,κ ∈ κ[u] is the monic polynomial M of least degree such that

g1 ≡ g2 mod M, n1 ≡ n2 mod 4, χ(c1) = χ(c2) =⇒ µ(f(g1)) = µ(f(g2))

for all gj = cju
nj + . . . with sufficiently large degrees n1 and n2 then Mmin

f,κ is a factor of
any other nonzero polynomial M ∈ κ[u] with the same property (so Mf,κ|Mgeom

f ). For some
finite extension κ′/κ we have Mmin

f,κ′′ = Mgeom
f for any finite extension κ′′ of κ′.

Remark 5.8. The finiteness of κ in Theorem 5.7 may be relaxed in odd characteristic ex-
actly as in Remark 4.8 without changing the proofs, though we do not know any interesting
examples of this generalized theorem with infinite κ.

Although Theorem 5.7 does not say that g 7→ µ(f(g)) is genuinely periodic in g, we will
refer to any nonzero M satisfying the role of Mgeom

f in (5.14) as a modulus for µ(f(g)).
Since any congruence class in κ[u]/(M) may be represented by a polynomial of any large
degree with any desired leading coefficient, it is a trivial exercise with the Chinese remainder
theorem to check that for any two moduli M1 and M2 for µ(f(g)), gcd(M1,M2) is also a
modulus. It therefore follows trivially from (5.14) that Mmin

f,κ divides all other moduli for
µ(f(g)). The fact that Mmin

f,κ′′ = Mgeom
f for all finite extensions κ′′/κ containing some finite

extension κ′/κ will require an understanding of how we prove (5.14).
Examples 5.2 and 5.3 illustrated some techniques that will be used in the proof of The-

orem 5.7. The following examples focus only on explicit Möbius formulas, illustrating the
conclusions of Theorem 5.7.

Example 5.9. The variation of Mmin
f,κ as κ grows is interesting. Since Mmin

f,κ |M
geom
f , there

are only finitely many possibilities for Mmin
f,κ′ as κ′ varies over finite extensions of κ. We now

give an example where Mmin
f,κ 6= Mgeom

f

Let f(T ) = T 12 + (2u4 + u3 + u2 + 2)T 6 + 2u3 + 1 in κ[u][T ], where κ has characteristic
3. For nonconstant g in κ[u], the proof of Theorem 5.7 shows

µ(f(g)) = χ(g(0)2 + 1)2χ(g(1))χ(R(u2 + 1, f(g))).

Note that χ(g(0)2 + 1)2 is not always 1 because it may vanish. This Möbius formula,
like (5.6), has no dependence on deg g mod 4 or on the quadratic character of the leading
coefficient of g. Since R(u2 +1, f(g)) only depends on g modulo u2 +1 (by quasi-periodicity
of resultants), we see that µ(f(g)) only depends on g modulo u(u − 1)(u2 + 1). (Since
Rκ[u](f, ∂uf) = u12(u− 1)18(u2 + 1)12, we have Mgeom

f = u(u− 1)(u2 + 1).) When [κ : F3]
is odd, g(0)2 + 1 is nonzero, so µ(f(g)) only depends on g modulo (u− 1)(u2 + 1) for such
κ. This illustrates that the minimal modulus in Theorem 5.7 can be sensitive to a change
in the base field κ.

Example 5.10. Let f(T ) = T 12 + (2u4 + 2u3 + 2u2 + u + 1)T 6 + 2u3 + 2u2 + u in κ[u][T ],
where κ has characteristic 3. (See Example 3.5 for κ = F3.) For nonconstant g in κ[u], the
proof of Theorem 5.7 shows

µ(f(g)) = χ(g(0)2 + 1)χ(R(u2 + u + 2, (2u + 2)g6 + u + 1))χ(R(u2 + 2u + 2, 2ug6 + u + 1))2.

Thus µ(f(g)) only depends on g mod u(u2 + u + 2)(u2 + 2u + 2). In this case, Mgeom
f =

u(u2 + u + 2)(u2 + 2u + 2).
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Example 5.11. Let f(T ) = (2u2 + u + 3)T 15 + (4u2 + u + 3)T 5 + 4u2 + u + 3 in κ[u][T ],
where κ has characteristic 5. (See Example 3.6 for κ = F5.) For g(u) = cun + · · · in κ[u]
with degree n ≥ 1, the proof of Theorem 5.7 shows

(5.15) µ(f(g)) = (−1)nχ(3)n+1χ(c)nχ(g(0)3 + g(0) + 1)χ(g(−1)3 − g(−1)− 1).

In this formula, we see dependence on n mod 2, on χ(c), and on a congruence condition on
g modulo u(u + 1). In this case, Mgeom

f = u(u + 1).

6. A resultant formula via geometry

We will obtain Theorem 5.7 from a periodicity property for resultants over arbitrary
perfect fields. We indulge in the following notational device: for a field F and a nonzero
M ∈ F [u], we write F [u]/(M) to denote the vector-scheme of remainders upon long division
by M over F -algebras A. That is, F [u]/(M) is viewed as an affine space of dimension deg M ,
whose coordinates arise from coefficients of ui for 0 ≤ i < deg M . (This space is Spec F
when deg M = 0.) Such abuse of notation is standard for vector-schemes in the theory of
algebraic groups. The context will indicate whether F [u]/(M) denotes the affine space over
Spec F or its F -valued points, the “usual” F -vector space F [u]/(M).

We will also work with the scheme

Polyn/F = An ×F Gm = Spec F [a0, . . . , an, 1/an]

of polynomials of exact degree n ≥ 0, as well as the scheme

Poly≤n/F = An+1
F = Spec F [a0, . . . , an]

of polynomials of degree ≤ n. The coordinates (a0, . . . , an) correspond to
∑

i≤n aiu
i, with

Polyn/F the locus in Poly≤n/F where an is a unit. For example, given nonconstant M ∈ F [u]
and any n ≥ deg M , formation of remainders under long division by M defines an algebraic
morphism

(6.1) ρn,M : Polyn/F → F [u]/(M) ' Poly≤(deg M−1)/F

of smooth F -schemes and this is a smooth surjection (it is a trivial Polyd/F -bundle with
d = n− deg M , by the division algorithm). When M ∈ F×, the map

(6.2) ρn,M : Polyn/F → Spec F

is the structure map to a point.
Since deg(f(g)) is determined by n = deg g for g of large degree (depending on f , as in

(3.3)), there is a well-posed algebraic function

(6.3) disc ◦ f : Polyn/F → A1
F

defined by g 7→ disc(f(g)) when n is sufficiently large; note that (6.3) does not extend to an
algebraic function on Poly≤n/F (cf. Remark 1.9). Our aim is to understand the structure
of the algebraic function (6.3) for f as in Lemma 5.6, and in particular the extent to which
it factors through some remainder morphism ρn,M for some nonzero M ∈ F [u].

To exploit inductive arguments, it is convenient to re-interpret our discriminant problem
as the study of the resultant R(f(g), (∂uf)(g)) for varying g of large (fixed) degree; the
utility of this point of view is that it allows us to consider the more general algebraic
function Polyn/F → A1

F defined by

g 7→ R(f1(g), f2(g))
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for large n, with fixed nonzero relatively prime f1, f2 ∈ F [u, T ] (a condition satisfied for
f1 = f and f2 = ∂uf under either hypothesis in Lemma 5.4 when f 6∈ F ). The merit of
this generality is that we may separately vary f1 and f2. Restricting attention to finite or
perfect F of positive characteristic is not adequate: our later work in characteristic 2 will
use the present considerations with a 2-adic field F .

Let us now fix a pair of nonzero relatively prime elements f1, f2 ∈ F [u, T ], so the zero loci
Zf1 = {f1 = 0} and Zf2 = {f2 = 0} are (possibly empty) curves in A2

F with no common
irreducible components. For g ∈ F [u] of degree n, (3.3) gives the degree of fj(g) ∈ F [u]
when n � 0. We give this formula the label dj,n. That is,

(6.4) dj,n := (degT fj)n + deg(leadT fj).

The largeness of n = deg g that makes (3.3) hold for both f1 and f2 depends only on
degT f1, degT f2, and the u-degrees of the coefficients of f1 and f2 when the fj ’s are viewed
as polynomials in T . See (3.5) for an explicit universal lower bound on n that makes (3.3)
valid when g is a point of Polyn/F with values in any F -algebra domain.

Fixing such large n, let

G = a0 + a1u + · · ·+ anun ∈ F [a0, . . . , an][u]

denote the universal polynomial over the scheme Poly≤n/F = Spec F [a0, . . . , an] of polyno-
mials of degree ≤ n over F -algebras; we are not requiring an to be a unit. We wish to study
the following universal polynomial depending on f1 and f2:

(6.5) Rn(G) := RF [a0,...,an](f1(G), f2(G)) ∈ F [a0, . . . , an],

where the resultant is computed by viewing fj(G) as having u-degree dj,n; since n is large,
dj,n is also the u-degree of the specialization of fj(G) at all field-valued points of the open
subscheme Polyn/F ⊆ Poly≤n/F where an is a unit.

Lemma 6.1. Rn(G) 6= 0.

Proof. We need to prove that the nonzero f1(G) and f2(G) have no common factor in
F (a0, . . . , an)[u]. We first show that the fj(G)’s in F [a0, . . . , an][u] have no non-trivial
common factor that lies in F [u]. We may assume F is algebraically closed, so it suffices to
prove that for each c ∈ F , f1(c,G(c)) and f2(c,G(c)) do not both vanish in F [a0, . . . , an].
Since some fjc(u, T ) is not divisible by u − c, as f1(u, T ) and f2(u, T ) cannot both be
divisible by u− c, so fjc(c, T ) 6= 0, clearly fjc(c,G(c)) 6= 0 since G(c) is transcendental over
F .

Since f1 and f2 have no common factor in F [u, T ], and hence no common factor in F [u],
we may assume that f1 and f2 are not divisible by nonunits in F [u]. In particular, if some
fj has T -degree equal to 0 then that fj lies in F×. Hence, we may assume both degT fj ’s
are positive. The relative primality of f1 and f2 ensures that we can find q1, q2 ∈ F [u, T ]
such that

q1f1 + q2f2 = h(u) ∈ F [u]− {0},
so if f1(G) and f2(G) have a non-trivial common factor in F (a0, . . . , an)[u] then such a
factor must divide h(u) and so must lie in F [u]. Thus, there is no such factor. �

We want to understand the structure of Rn(G) as an algebraic function in the aj ’s. For
each of the finitely many intersection points x = (ux, tx) of Zf1 and Zf2 in A2

F , the finite
extension F (x)/F is generated over F by the subextensions F (ux) and F (tx).
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Definition 6.2. For n ≥ 1, define Px,n(a0, . . . , an) to be the norm-form polynomial

NF (x)[a0,...,an]/F [a0,...,an](a0 + a1ux + · · ·+ anun
x − tx) ∈ F [a0, . . . , an].

For any F -algebra F ′ and any g ∈ Poly≤n/F (F ′), we have

Px,n(g) = N(F (x)⊗F F ′)/F ′(g(ux)− tx ⊗ 1) ∈ F ′.

Lemma 6.3. Assume n ≥ 1. For each x ∈ Zf1 ∩ Zf2 such that F (x)/F is separable, Px,n

is irreducible in the coordinate ring of Poly≤n/F . If x and x′ are two such distinct points,
then Px,n and Px′,n are not unit-multiples of each other in this coordinate ring.

If we do not assume F (x)/F to be separable, then Px,n need not be irreducible. For
example, if F has characteristic p > 0 and F (x) is a purely inseparable extension of F with
degree p2 such that the fields F (ux) and F (tx) have degree p over F , then Px,n is a pth
power.

Proof. Since the extension F (x)/F is finite separable and Px,n is a norm-form of a poly-
nomial in F (x)[a0, . . . , an] whose coefficients generate F (x) over F (since n ≥ 1), the ir-
reducibility is obvious. If L/F is a finite Galois extension into which F (x) admits an
F -embedding, then over L we see that Px,n factors as a product of linear forms Pxi,n de-
fined by the L-points xi of A2

F that lie over x. Thus, if x′ is another point on Zf1 ∩ Zf2

such that F (x′)/F is separable, then the geometric zero locus of Px,n is distinct from that
of Px′,n. Hence, Px,n and Px′,n are not unit-multiples of each other. �

Now assume F is perfect, so Lemma 6.3 applies to all x ∈ Zf1 ∩ Zf2 . Recall that in
Definition 5.5 we defined

(6.6) Mgeom
f1,f2

(u) :=
∏
ux

NF (ux)/F (u− ux) ∈ F [u]− {0},

where ux runs over the distinct images of the x’s on the u-axis. In particular, Mgeom
f1,f2

= 1
if Zf1 and Zf2 are disjoint. If g1, g2 ∈ F [u] have respective large degrees n1 and n2, then
from (6.6) and the definition Px,n(g) = NF (x)/F (g(ux)− tx) for n ≥ deg g we see

g1 ≡ g2 mod Mgeom
f1,f2

=⇒ Px,n1(g1) = Px,n2(g2)

where nj = deg gj .
For M := Mgeom

f1,f2
6= 0, consider the division-algorithm morphism ρn,M as in (6.1) and

(6.2). Assume Zf1 ∩ Zf2 is nonempty, so M 6∈ F . Choose x ∈ Zf1 ∩ Zf2 , so M(ux) = 0.
Clearly Px,n = Px,M ◦ ρn,M for the algebraic function Px,M on Poly≤(deg M−1)/F given by
the norm construction g 7→ N(F (x)⊗F F ′)/F ′(g(ux)− tx) for F -algebras F ′ and g ∈ F ′[u] with
degree ≤ deg M − 1.

Theorem 6.4. Let f1, f2 ∈ F [u, T ] be nonzero and relatively prime such that the zero-loci
Zf1 and Zf2 of f1 and f2 in A2

F have finite intersection. Assume that F is perfect. For
x ∈ Zf1 ∩ Zf2 and n sufficiently large, there exist unique bn ∈ F× and integers en ≥ 0 and
ex > 0 such that

(6.7) Rn(G) = bnaen
n ·

∏
x

P ex
x,n = bnaen

n ·
∏
x

P ex
x,M ◦ ρn,M

as algebraic functions on Polyn/F , where M = Mgeom
f1,f2

. The exponent en is positive if and
only if degT f1,degT f2 > 0.
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The functorial construction of Rn(G) as a universal resultant for large n (an alternative
to the explicit definition (6.5)) only makes sense over Polyn/F and not over Poly≤n/F , so
it does not seem possible to use geometric methods alone to determine how the discrete
parameters en and bn depend on n (though clearly bn is generally sign-dependent on the
ordering of the pair f1 and f2). In §7 we shall prove via algebraic methods that for large
n, en is a linear polynomial in n and bn = β0β

n
1 for some β0, β1 ∈ F×. The products over

x ∈ Zf1 ∩ Zf2 in (6.7) are understood to be 1 if Zf1 ∩ Zf2 is empty.

Proof. We will first establish a weaker identity

(6.8) Rn(G) = bnaen
n ·

∏
x

P
ex,n
x,n

on Poly≤n/F for large n, with bn ∈ F×, exponents ex,n > 0 that a priori might depend on
n, and an exponent en ≥ 0 that is positive if and only if both degT fj ’s are positive.

Let us first show an|Rn(G) if and only if both degT fj ’s are positive. Specializing Rn(G)
into a field in which an vanishes causes Rn(G) to specialize to 0 if both degT fj ’s are positive
and n is large (as then the fj(G)’s have leading coefficients divisible by an). If some degT fj

vanishes, say degT f1 = 0, then specializing an to zero causes Rn(G) to have non-vanishing
specialization because f1(u) must be relatively prime to f2(u, a0 + a1u + · · · + an−1u

n−1)
(as f1(u) is relatively prime to f2(u, T )). Thus, the geometric zero locus for Rn(G) ∈
F [a0, . . . , an] on Poly≤n/F ' An+1

F contains the hyperplane an = 0 when both degT fj ’s are
positive and otherwise it does not contain this hyperplane.

Since the irreducible Px,n’s are not scalar multiples of an, to establish (6.8) it remains
(by the Nullstellensatz) to show that the restriction of Rn(G) to Polyn/F has geometric
zero locus equal to the union of the geometric zero loci of the Px,n’s. If F/F is an algebraic
closure, then since F (x)/F is separable (as F is perfect) the irreducible factorization of
Px,n in F [a0, . . . , an] is as the product of the Pxi,n’s for the F -points xi of A2

F over the
physical point x. Thus, we may assume F is algebraically closed and we wish to prove
that if g ∈ F [u] has large exact degree n then the resultant of f1(u, g(u)) and f2(u, g(u))
vanishes if and only if g(ux) = tx for some x in the intersection of the zero-loci Zfj

. But
this is obvious since the vanishing of the resultant says that f1(u, g(u)) and f2(u, g(u)) have
a common root u0 ∈ F , and then x = (u0, g(u0)) lies on both zero-loci Zfj

. This completes
the proof of (6.8).

It remains to prove that ex,n in (6.8) is independent of n for large n. Due to the simple
behavior of Px,n under extension F ′/F (since F (x)/F is separable), we have ex,n = ex′,n

for any F ′-point x′ of A2
F lying over x. Thus, we may (and do) now assume that F is

algebraically closed.
We will use deformation-theoretic reasoning to prove that the sequence {ex,n} for fixed x is

monotone decreasing for large n, so this sequence eventually becomes constant. Our original
proof proceeded by constructive methods. We are grateful to de Jong for suggesting that
we work out a (non-effective) deformation-theoretic approach, since it turns out to adapt
to higher genus (see [9]) while the constructive method does not. The reader who prefers
constructive methods can rediscover our original proof by developing an expanded version
of the proof of Theorem 7.1. This will lead to a constructive algebraic proof that ex,n is
independent of large n. Such a proof appears to give a poor bound on how large n must be
for the sequence {ex,n} to become constant.
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The first step in the study of ex,n for fixed x is a description of resultants in terms of
norms. For large n, the polynomial fj(G) has leading coefficient that is an F×-multiple
of a power of an (possibly the power a0

n = 1 when fj ∈ F [u]), so over the coordinate ring
of Polyn/F we see that fj(G) has degree dj,n (see (6.4)) and a unit leading coefficient. In
particular,

F [a0, . . . , an, 1/an][u]/(fj(G))

is a finite free module of rank dj,n over the coordinate ring F [a0, . . . , an, 1/an] of Polyn/F .

Lemma 6.5. For sufficiently large n, there exist cn ∈ F× and ẽn ∈ Z such that

Rn(G) = cnaẽn
n N(On[u]/(f1(G)))/On

(f2(G))

in On = F [a0, . . . , an, 1/an].

Proof. Let dj = degT fj ≥ 0. By reduction to the universal case of unitary polynomials,
and then factoring out unit leading coefficients, it suffices to prove that for universal monic
polynomials

h1 = ud1 + ad1−1u
d1−1 + · · ·+ a0, h2 = ud2 + bd2−1u

d2−1 + · · ·+ b0

of degrees d1 ≥ 0 and d2 ≥ 0 over O = Z[ai, bj ] (so hk = 1 if dk = 0), the resultant
RO(h1, h2) ∈ O is equal to the norm N(O[u]/(h1))/O(h2).

Let K be the fraction field of the domain O, so clearly h1 and h2 are separable over K.
Let K ′/K be a splitting field for the hj ’s, so if {α} is the set of roots of h1 in K ′ then by
definition

RO(h1, h2) = RK(h1, h2) =
∏
α

h2(α).

Since K ′[u]/(h1) '
∏

α K ′ via u 7→ (α) we also have

N(O[u]/(h1))/O(h2) = N(K[u]/(h1))/K(h2) = N(K′[u]/(h1))/K′(h2) =
∏
α

h2(α).

�

Consider the algebraic function Polyn/F → A1
F defined by

(6.9) Nn : g 7→ N(F [u]/(f1(g)))/F (f2(g))

for g ∈ Polyn/F (F ′) for F -algebras F ′. Let ηx,n be the codimension-1 generic point of the
hypersurface {P 0

x,n = 0} in the F -smooth variety Polyn/F , where P 0
x,n = Px,n|Polyn/F

. By
Lemmas 6.1 and 6.5, Nn 6= 0 and for large n we may identify ex,n with the order of Nn at
ηx,n. We will prove that this order is a monotonically decreasing function of large n for a
fixed x = (ux, tx) ∈ Zf1 ∩ Zf2 . Since F is algebraically closed, so x ∈ A2

F is F -rational,
we may make an additive translation on T so that tx = 0. Hence, the locus {P 0

x,n = 0} is
the space of g’s of exact degree n such that g(ux) = 0. For generic such g, clearly g has a
simple zero at ux and g(ux′) 6= tx′ for x′ 6= x = (ux, 0). Obviously

ordux(f1(g)) ≥ rx := min
j≤degT f1

(ordux(αj) + j) > 0

where f1 =
∑

αj(u)T j ∈ F [u, T ]. Note that rx is independent of n. By replacing g with a
generic F×-multiple we can eliminate any cancellation of contributions from parts of order
rx in the sum

∑
αjg

j (work in the ring F [u]/(urx+1)). Thus, ordux(f1(g)) = rx for a generic
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choice of closed point g in {P 0
x,n = 0}. Likewise, if we write f2 =

∑
βj(u)T j ∈ F [u, T ] and

define
sx = min

j≤degT f2

(ordux(βj) + j),

then ordux(f2(g)) = sx for a generic choice of closed point g ∈ {P 0
x,n = 0}.

Fix large n0, with n0 > max(rx, sx), and choose a closed point gn0 ∈ {P 0
x,n0

= 0} such
that ordux(f1(gn0)) = rx and ordux(f2(gn0)) = sx. Taking εj = cj(u − ux)j for generic
cj ∈ F×, we may arrange that for all n > n0 we have that

(6.10) gn := gn0 + εn0+1 + · · ·+ εn ∈ {P 0
x,n = 0}

satisfies ordux(f1(gn)) = rx and ordux(f2(gn)) = sx and that gn 6∈ {Px′,n = 0} for all x′ 6= x,
so in particular f2(gn) is non-vanishing at all roots of f1(gn) away from ux. To be precise
about the genericity of the cj ’s, for any fixed n we may suppose that (c1, . . . , cn) ∈ Fn is
generic (i.e., it avoids any desired proper Zariski-closed condition on An

F ).
Let Vn = Poly≤n/F and V 0

n = Polyn/F , so a system of linear coordinates on Vn is given by
the basis {y0, . . . , yn} dual to the basis {ε0, . . . , εn} of Vn(F ), where ε0 ∈ F× and necessarily
y0 is an F×-multiple of the linear functional Px,n : g 7→ g(ux), and the element

guniv
n = 1⊗ gn +

∑
0≤j≤n

(yj − yj(gn))⊗ εj ∈ OV 0
n ,gn

⊗F F [u]

is an algebraized universal deformation of gn. Obviously y0(gn) = 0 and y1, . . . , yn restrict
to a system of linear coordinates on the hyperplane {Px,n = 0} = {y0 = 0} in Vn. In
particular, the residue field F (ηx,n) at the generic point ηx,n of {P 0

x,n = 0} is canonically
identified with F (y1, . . . , yn).

The quotient ring

(6.11) (OV 0
n ,gn

⊗F F [u])/(f1(guniv
n ))

is finite and free as an OV 0
n ,gn

-module since the leading coefficient of f1(guniv
n ) is

1 + (yn − yn(gn)) = yn ∈ O×
V 0

n ,gn

(as yn(gn) = 1, due to (6.10)). Thus, the maximal ideals of (6.11) are in bijective corre-
spondence with the maximal ideals of the quotient F [u]/(f1(gn)) of (6.11) by the maximal
ideal of OV 0

n ,gn
. As we noted above, f2(gn) is non-vanishing at all roots of f1(gn) away

from u = ux, so the image of f2(gn) in F [u]/(f1(gn)) has a unit component in all local
factor-rings away from u = ux. In particular, upon localizing (6.11) at ηx,n and extending
scalars to the completion ÔV 0

n ,ηx,n
' F (ηx,n)[[y0]] (an isomorphism of F -algebras), we get a

product-decomposition of rings

(6.12) (ÔV 0
n ,ηx,n

⊗F F [u])/(f1(guniv
n )) ' (ÔV 0

n ,ηx,n
[[u− ux]]/(f1(guniv

n )))×∆n

such that the first factor-ring is local and finite free over the discrete valuation ring ÔV 0
n ,ηx,n

and (by computing modulo the uniformizer y0) has rank ρx,n equal to the F (ηx,n)-dimension
of the ux-factor of the finite F (ηx,n)-algebra

(6.13) (F (ηx,n)⊗F F [u])/(f1(1⊗ gn +
∑

0<j≤n

(yj − yj(gn))⊗ εj)).
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Lemma 6.6. The image of f2(guniv
n ) in ∆n is a unit and ρx,n = rx. In particular, the

image of f1(guniv
n ) in ÔV 0

n ,ηx,n
⊗̂F ÔA1

F ,ux
= (F (ηx,n)[[y0]])[[u − ux]] is a unit multiple of a

unique Weierstrass polynomial of degree rx in (F (ηx,n)[[y0]])[u− ux].

Proof. Consider the unique splitting of (6.13) into a product of two F (ηx,n)-algebras with
one factor having support equal to the section induced by u = ux. This splitting is the
reduction of (6.12), and by denominator-chasing in F (ηx,n) it may be extended to a splitting
over some dense open Wx,n of {ηx,n} = {P 0

x,n = 0} with factor rings that are finite and free
over OWx,n , so the rank ρx,n can be computed upon generically specializing y1, . . . , yn into
F .

We have seen that at a generically-chosen closed point g ∈ {P 0
x,n = 0} the F -finite

quotient F [u]/(f1(g)) has ux-factor with F -dimension equal to rx and f2(g) has a unit
component in all other local factors. Thus, ρx,n = rx and the element f2(guniv

n ) in (6.12) has
component in ∆n with reduction modulo mηx,n that has unit specialization at generically-
chosen closed points of the irreducible {ηx,n}. Hence, f2(guniv

n ) has unit image in ∆n. �

For Nn defined as in (6.9), Lemma 6.6 ensures that the image of Nn in ÔV 0
n ,ηx,n

is a unit
multiple of the norm
(6.14)

Nn(guniv
n ) = N

((Ô
V 0

n ,ηx,n
⊗̂F Ô

A1
F

,ux
)/(f1(ĝuniv

n )))/Ô
V 0

n ,ηx,n

(f2(ĝuniv
n )) ∈ ÔV 0

n ,ηx,n
' F (ηx,n)[[y0]],

where
ĝuniv
n = 1⊗̂gn0 + y0⊗̂ε0 +

∑
0<j≤n

(yj − yj(gn))⊗̂εj

(recall y0(gn) = 0 and ε0 ∈ F×) and the norm is taken with respect to the local ring
extension

F (ηx,n)[[y0]] = ÔV 0
n ,ηx,n

→ (ÔV 0
n ,ηx,n

⊗̂F ÔA1
F ,ux

)/(f1(ĝuniv
n ))

= (F (ηx,n)[[y0]])[[u− ux]]/(f1(ĝuniv
n ))

that is finite free of rank equal to rx. Thus, the integer ex,n > 0 is the y0-adic order of
(6.14), and this order is what we will now prove is monotonically decreasing for large n.

To compute (6.14) up to unit multiple, we may replace both f1(guniv
n ) and f2(guniv

n ) with
their Weierstrass-polynomial parts w1,n(u − ux) and w2,n(u − ux) with respective degrees
necessarily equal to rx and sx. To compute the Weierstrass-polynomial part w1,n(u − ux)
of

(6.15) f1(gn0 + y0ε0 +
∑

0<j≤n

(yj − yj(gn))εj) ∈ (F (y1, . . . , yn)[[y0]])[[u− ux]]

observe that since ordux(εj) = j, for j > rx the εj-term makes no contribution to (u− ux)-
monomials in (6.15) in degree ≤ rx. Thus, when computing w1,n(u − ux) by recursive
substitution in (u− ux)-degrees > rx we may work in the subring

(K[yrx+1, . . . , yn][[y0]])[[u− ux]] ⊆ (F (y1, . . . , yn)[[y0]])[[u− ux]]

with K = F (y1, . . . , yrx). In particular,

w1,n ∈ (K[yrx+1, . . . , yn][[y0]])[u− ux]
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and specializing yn to 1 yields w1,n−1 since yj(gn) = yj(gn−1) for all j ≤ n − 1. Similarly,
such specialization carries w2,n to w2,n−1.

Thus, if mx = max(rx, sx) and K ′ = F (y1, . . . , ymx) then the norm

Nn(guniv
n ) ∈ K ′[ymx+1, . . . , yn][[y0]] ⊆ F (y1, . . . , yn)[[y0]]

specializes to the norm

Nn−1(guniv
n−1 ) ∈ K ′[ymx+1, . . . , yn−1][[y0]] ⊆ F (y1, . . . , yn−1)[[y0]]

when yn is specialized to 1. Since ordy0 ’s cannot increase under specialization of coefficients,

ex,n = ordy0(Nn(guniv
n )) ≤ ordy0(Nn−1(guniv

n−1 )) = ex,n−1,

proving the desired monotonic decay for large n. This completes the proof of Theorem 6.4.
�

Corollary 6.7. Let F be a perfect field with positive characteristic p and f(T ) ∈ F [u, T ] a
nonzero squarefree element.

1) If f lies in F [u][T p] then, for g of sufficiently large degree, the property of f(g) being
separable in F [u] is determined by g mod Mgeom

f .
2) If f(T p) is squarefree in F [u, T ], then for g of sufficiently large degree, the property of

f(gp) being separable in F [u] is determined by g mod Mgeom
f .

The “sufficient largeness” of deg g may be chosen uniformly with respect to arbitrary
extensions of F .

For the study of p = 2 we will need the second case in this corollary.

Proof. The case f ∈ F× is trivial, so we may assume f 6∈ F . Thus, in either case, Lemma 5.4
assures us that ∂uf 6= 0 and that f and ∂uf have no nonconstant common factor in F [u, T ]
(so Mgeom

f makes sense). Hence, we may apply Theorem 6.4 with f1 = f and f2 = ∂uf to
conclude that for g with large degree, the vanishing of the resultant of f(g) and (∂uf)(g)
only depends on g mod Mgeom

f . Also, f(g) is inseparable in F [u] precisely when it has a
common geometric root with its derivative f(g)′.

In case (1), f(g)′ = (∂uf)(g) has a common geometric root with f(g) if and only if the
resultant of f(g) and (∂uf)(g) vanishes. Since (f(gp))′ = (∂uf)(gp), in case (2) we see that
separability of f(gp) only depends on gp mod Mgeom

f for deg(g) � 0. �

7. A refined resultant formula via algebra

A defect in Theorem 6.4 is that it does not provide a description of how bn and en depend
on n. These deficiencies are settled by:

Theorem 7.1. Let F be a perfect field and f1, f2 ∈ F [u, T ] nonzero and relatively prime. Let
bn and en be as in Theorem 6.4 for the ordered pair (f1, f2). There exist unique β0, β1 ∈ F×

such that bn = β0β
n
1 for large n, and en is a linear polynomial in n for large n.

In particular, for the fixed choice of ordered pair (f1, f2), there exist c ∈ F×, integers m0

and m1 with m1 ≥ 0, and an algebraic function Lf1,f2 : F [u]/(M) → A1
F for some nonzero

M ∈ F [u] such that for large n there is an equality of algebraic functions

(7.1) Rn(G) = cnam0+m1n
n · (Lf1,f2 ◦ ρn,M )

on Polyn/F , with ρn,M as in (6.1) or (6.2).

Before we prove Theorem 7.1, we use it to prove Theorem 5.7.
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Proof. (of Theorem 5.7) For g in κ[u] of sufficiently large degree, f(g) is nonzero and (4.12)
and (5.1) yield

µ(f(g)) = (−1)dχ(disc f(g))

= (−1)dχ(lead g)(χ(−1))d(d−1)/2χ(Rd,d−1(f(g), f(g)′)),

with d = deg f(g). Since f is squarefree and f 6∈ κ, so (∂uf)(T ) 6= 0 by Lemma 5.4, we
have (∂uf)(g) 6= 0 when deg g � 0.

Taking into account that f(g)′ = (∂uf)(g) may have smaller degree than d−1, (5.3) gives

χ(Rd,d−1(f(g), f(g)′)) = χ((lead f(g))kgR(f(g), (∂uf)(g))),

where kg = deg f(g)− 1− deg(∂uf)(g). When deg g � 0, kg is linear in deg g. Combining
this with Theorem 6.4 and Theorem 7.1, there exists ε1 ∈ {±1} and integers m0 and m1

such that for deg g � 0,

(7.2) µ(f(g)) = εdeg g
1 (χ(−1))(deg f(g))(deg f(g)−1)/2χ(lead g)m0+m1 deg gχ(L(g))

where L is an algebraic function on the affine space κ[u]/Mgeom
f over κ. This formula

depends on deg g modulo 4. If −1 is a square in κ or degT f is a multiple of 4, then the
formula (7.2) depends on deg g modulo 2.

Now let us establish the final part of Theorem 5.7 concerning the behavior of Mmin
f,κ′ for

sufficiently large finite extensions κ′ of κ. Let κ′/κ be a finite extension such that all points
in the finite set Zf ∩Z∂uf ⊆ A2

κ are κ′-rational, and so in particular Mgeom
f splits into linear

factors in κ′[T ]. This rationality property is inherited by all finite extensions of κ′.
We claim that no proper factor of Mgeom

f can serve as a modulus for µκ′′[u](f(g)) with κ′′

any finite extension of κ′. Since Mmin
f,κ′′ |M

geom
f , we can assume Mgeom

f is nonconstant.
Choose a monic linear factor of Mgeom

f in κ′[u], so it has the form h = u − ux for some
(κ′-rational) point x = (ux, tx) ∈ Zf ∩ Z∂uf . We can find polynomials g1 and g2 with
any large degree n and a common leading coefficient such that g1(ux) = tx 6= g2(ux) and
g1(ux′) = g2(ux′) 6= tx′ for all x′ ∈ Zf ∩ Z∂uf with x′ 6= x, in which case (6.7) and the
positivity of the exponents ex′ ensure that for sufficiently large n we have the vanishing
of the resultant of f(g1) and (∂uf)(g1) = f(g1)′ and the non-vanishing of the resultant
of f(g2) and f(g2)′; that is, µκ′[u](f(g1)) = 0 and µκ′[u](f(g2)) 6= 0. The same properties
persist after replacing κ′ with any finite extension κ′′. Since g1 and g2 are clearly congruent
modulo Mgeom

f /(u − ux), we conclude that this divisor of Mgeom
f cannot be a modulus for

µκ′′[u](f(g)) and so cannot be divisible by Mmin
f,κ′′ . Thus, the monic factor Mmin

f,κ′′ of the monic
Mgeom

f must equal Mgeom
f . �

Let us now prepare for the proof of Theorem 7.1. We first establish a key point: the
existence of a formula of the shape (7.1) for some M is equivalent to the claim that en is
linear in n for large n and that bn = β0β

n
1 for some β0, β1 ∈ F× for large n. Necessity is

obvious by Theorem 6.4, and for sufficiency we may replace M with MMgeom
f1,f2

to get to the
case where Mgeom

f1,f2
|M , so we have formulas

Rn(G) = bnaen
n

∏
x

P ex
x,M ◦ ρn,M

and
Rn(G) = cnam0+m1n

n · Lf1,f2 ◦ ρn,M
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on Polyn/F for large n. Thus, for large n the rational function

g 7→ bnc−nan(g)en−(m0+m1n)

on Polyn/F factors through ρn,M , or equivalently for generic (or universal) g it only depends
on g mod M . This forces en = m0 + m1n for large n, so

(bnc−n)
∏
x

P ex
x,M ◦ ρn,M = Lf1,f2 ◦ ρn,M

for large n. We can assume deg M > 0, so for large n we have

bnc−n
∏
x

P ex
x,M = Lf1,f2

on Poly≤(deg M−1)/F . Since Lf1,f2 and the P ex
x,M ’s do not depend on n, we conclude that

bnc−n ∈ F× is equal to a constant c′ that does not depend on large n. Thus, bn = c′cn for
c, c′ ∈ F× and large n, as desired.

We shall now aim to prove an identity of the form (7.1) by means of induction on the
ordered pair (f1, f2), and the flexibility in the choice of M will be essential for the success
of the induction. In what follows we will work with a generic field-valued point g of the
geometrically integral F -variety Polyn/F for a large n = deg g, though one can instead work
throughout with the universal unitary case in large degree n.

Note that although R(f1(g), f2(g)) generally depends on the ordering of f1 and f2, the
existence of an identity as in (7.1) does not depend on this ordering. Indeed, for deg g >
ν(f1), ν(f2) (see (3.5)),

R(f1(g), f2(g)) = (−1)(deg f1(g))(deg f2(g))R(f2(g), f1(g))

= (−1)e0(−1)e1 deg gR(f2(g), f1(g)),

where e0 = (deg α1,d1)(deg α2,d2) and e1 = d1 deg α2,d2 + d2 deg α2,d2 + d1d2, with dj =
degT fj and fj =

∑
αj,iT

i. Thus, we need not be concerned with sign-changes in resultants
when f1(g) and f2(g) are interchanged. We will use this repeatedly.

Our proof of Theorem 7.1 will roughly be a series of algebraic identities

(7.3) R(f1(g), f2(g)) = c0c
deg g
1 (lead g)m0+m1 deg gR(f3(g), f4(g))

for generic (or universal unitary) g of large degree, where c0, c1 ∈ F× and m0,m1 ∈ Z, and
the ordered pair (f3, f4) of nonzero relatively prime polynomials in F [u, T ] is in some sense
smaller than (f1, f2). (There is more than one sense that we use, depending on the stage
of our argument.) In this way, induction will establish (7.1).

To get started, the case when f1(T ) has T -degree 0, say f1(T ) = a(u) ∈ F [u], is trivial:
writing a(u) = ca1(u) with c ∈ F× and a1(u) monic,

(7.4) R(a(u), f2(g)) = R(c, f2(g))R(a1(u), f2(g)) = cdeg f2(g)R(a1(u), f2(g)).

For deg g > ν(f2), cdeg f2(g) = c0c
deg g
1 for suitable c0 and c1 in F× that are independent

of g. The factor R(a1(u), f2(g)) is an algebraic function of g modulo a1(u), since a1(u) is
monic.

To prove Theorem 7.1 in general, we can assume that the coefficients of f1 as a polynomial
in T have no common factor in F [u], and similarly for f2. Indeed, if f1(T ) = a(u)h(T ) for
a(u) in F [u], then

(7.5) R(f1(g), f2(g)) = R(a(u), f2(g))R(h(g), f2(g)),
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with the first factor satisfying (7.1), by (7.4). Removing a common factor from the coeffi-
cients of f2 as a polynomial in T is also compatible with Theorem 7.1.

We will prove Theorem 7.1 by two inductions: on the maximum of degT f1 and degT f2

when these degrees are distinct, and for f1 and f2 of equal T -degree we will induct on the
minimum u-degree of their leading coefficients as polynomials in T .

Lemma 7.2. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume α - β and β - α (so α, β 6∈ F ). There exist c ∈ F×, ε = ±1, m ∈ Z, and a second
pair of polynomials h̃1(T ) and h̃2(T ) in F [u][T ] with T -degree d whose leading coefficients
as polynomials in T , α̃(u) and β̃(u), satisfy

(7.6) min(deg α̃, deg β̃) < min(deg α, deg β)

such that for all extensions F ′/F and all g in F ′[u] with sufficiently large degree (depending
on h1 and h2, and uniform with respect to F ′)

(7.7) R(h1(g), h2(g)) = cεdeg g(lead g)mR(h̃1(g), h̃2(g)).

If the hj’s are relatively prime in F [u, T ] then the h̃j’s must be relatively prime in F [u, T ].

Proof. We will prove the lemma when deg α ≤ deg β. (When deg α > deg β, we can
reduce to the other case by interchanging h1 and h2, at the cost of changing c and ε in
the conclusion.) In F [u], write β(u) = α(u)q(u) + r(u), where r 6= 0 and deg r < deg α.
Since r 6= 0, k(T ) := h2(T )− q(u)h1(T ) has leading term r(u)T d as a polynomial in T with
coefficients in F [u]. For all g, clearly h2(g) ≡ k(g) mod h1(g). When deg g exceeds ν(h1),
ν(h2), and ν(k) (see (3.5)), quasi-periodicity gives

R(h1(g), h2(g)) = (leadh1(g))deg h2(g)−deg k(g)R(h1(g), k(g))
= c(lead g)mR(h1(g), k(g)),

where c = (leadα)deg β−deg r and m = d(deg β − deg r). Let h̃1 = h1 and h̃2 = k, or h̃1 = k

and h̃2 = h1. By Lemma 6.1, the identity (7.7) forces relative primality of the h̃j ’s when
the hj ’s are relatively prime. �

Now we modify the hypothesis in the previous lemma. Rather than assuming the leading
coefficients α(u) and β(u) do not divide each other, we assume h1(T ) and h2(T ) are relatively
prime as polynomials in T .

Lemma 7.3. Let h1(T ) and h2(T ) in F [u][T ] have common T -degree d ≥ 1:

h1(T ) = α(u)T d + · · · , h2(T ) = β(u)T d + · · · .

Assume the hj’s are relatively prime in F [u, T ]. There exist c ∈ F×, ε = ±1, m ∈ Z,
and a second pair of nonzero relatively prime polynomials h̃1(T ) and h̃2(T ) in F [u][T ] with
degT h̃1 < degT h̃2 = d such that for all extensions F ′/F and all g in F ′[u] with sufficiently
large degree (uniform with respect to F ′),

R(h1(g), h2(g)) = cεdeg g(lead g)mR(h̃1(g), h̃2(g)).
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Proof. If neither α nor β divides the other in F [u], apply Lemma 7.2 to get a second pair
of polynomials in F [u][T ] with T -degree d. Repeat this process if again neither leading
coefficient as a polynomial in T divides the other. (Note that terms like cεdeg g(lead g)m

behave well under multiplication: the c’s and ε’s are multiplicative, while the m’s are
additive.) The condition (7.6) ensures that we eventually reach the case where α(u)|β(u) or
β(u)|α(u). Thus, we may interchange h1 and h2 if necessary to suppose α(u)|β(u). Write
β(u) = α(u)q(u). The polynomial k(T ) := h2(T ) − q(u)h1(T ) has T -degree less than d.
This polynomial is nonzero and is relatively prime to h1 since gcd(h1, h2) = 1. Proceed as
in the proof of Lemma 7.2, taking h̃1 = k and h̃2 = h1. �

We are finally ready to prove Theorem 7.1:

Proof. (of Theorem 7.1). We argue by induction on max(degT f1,degT f2). Set d1 = degT f1

and d2 = degT f2. We can assume both d1 and d2 are positive, by (7.4). Remove any
common factors from the coefficients of f1(T ) as a polynomial in T , using (7.5), so f1(T ) is
primitive over F [u]. Similarly make f2 primitive. By Lemma 7.3 we may assume d1 6= d2,
and without loss of generality 0 < d1 < d2. Writing

(7.8) f1(T ) = α(u)T d1 + . . . , f2(T ) = β(u)T d2 + . . . ,

we wish to reduce to the case deg β < deg α (at the expense of possibly losing the primitivity
condition for f2 but not for f1).

Write β(u) = α(u)q(u) + r(u), where r = 0 or deg r < deg α. The polynomial k(T ) =
f2(T )−q(u)T d2−d1f1(T ) is nonzero and relatively prime to f1. If r is nonzero, then k(T ) has
leading term r(u)T d2 . If r = 0, then degT k < d2. In either case, f2(g) ≡ k(g) mod f1(g)
for all field-valued points g of Polyn/F . When n = deg g is sufficiently large,

R(f1(g), f2(g)) = (lead f1(g))deg f2(g)−deg k(g)R(f1(g), k(g)).

The power of lead f1(g) can be written in the form c0c
deg g
1 (lead g)m0+m1 deg g for suitable

c0, c1 in F× and integers m0 and m1 that do not depend on g. (The number m1 is nonzero
when degT k < d2.) We are now reduced to proving Theorem 7.1 with f2 replaced by k.

Either degT k = d2 and the leading coefficient of k as a polynomial in T has smaller degree
than deg α, or degT k < d2. In the latter case, max(degT f1,degT k) < d2, so Theorem 7.1
with f1 and k has already been proved by the inductive hypothesis. Thus, it remains to treat
the case (7.8) with deg β < deg α; observe that this reduction step preserves primitivity for
f1 but possibly loses it for f2.

Our resultant now looks like R(f1(g), f2(g)) = R(α(u)gd1 + · · · , β(u)gd2 + · · · ). Since
d1 < d2, it is natural to want to reduce f2(g) modulo f1(g) and use quasi-periodicity, hoping
to lower the maximum T -degree of the pair f1, f2 in our resultants. However, deg β < deg α,
so there is no progress through a division algorithm on the leading coefficients as in the
proof of Lemma 7.2.

We now apply a generalization of the trick with u + 1 in (5.9). Consider the universal
identity

(7.9) R(f1(g), α(u))R(f1(g), f2(g)) = R(f1(g), α(u)f2(g))

with universal unitary g of large degree n. The first term in (7.9) is nonzero, since prim-
itivity of f1 forces gcd(f1(g), α(u)) = 1. Since all three resultants admit expressions as in
Theorem 6.4 for a common modulus M , and since we know that an identity as in (7.1) is
equivalent to linearity of en in n and an identity of the form bn = β0β

n
1 for large n, it is
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obvious that (7.1) for two of the resultants in (7.9) implies (7.1) for the third resultant in
(7.9). Since (7.1) with a polynomial of T -degree zero has already been settled, it suffices to
prove (7.1) for the ordered pair (f1, α(u)f2).

The right side of (7.9) has the form R(α(u)gd1 + · · · , α(u)β(u)gd2 + · · · ). Let h(T ) =
α(u)f2(T ) − β(u)f1(T )T d2−d1 . Since gcd(f1, f2) = 1 and f1 is primitive over F [u], and
we may assume degT f1 > 0, it follows that h is nonzero and satisfies degT h < d2 and
gcd(f1, h) = 1. Since h(g) ≡ α(u)f2(g) mod f1(g) for all g, when deg g � 0 the right side
of (7.9) is

R(f1(g), α(u)f2(g)) = (lead f1(g))deg α+deg f2(g)−deg h(g)R(f1(g), h(g))

= c0c
deg g
1 (lead g)m0+m1 deg gR(f1(g), h(g))

for suitable c0, c1 in F× and integers m0 and m1. (For instance, m1 = d2 − degT h.) Since
degT f1 and degT h are both less than d2, there is a formula for R(f1(g), h(g)) as in (7.1),
by induction on the maximum T -degree. �

8. Characteristic 2

The analogue of Theorem 5.7 in characteristic 2 is subtle because (4.9) in characteristic
2 requires liftings into characteristic 0. Fix a perfect field k of characteristic 2, and let
W = W (k) (the Witt vectors of k) and F = Frac(W ).

Hypothesis. Our running convention throughout this section is that h denotes a poly-
nomial in k[u, T ] such that h 6∈ k and h(T 2) is squarefree in k[u, T ].

This hypothesis forces h to be squarefree in k[u, T ] and not to have any irreducible
factors in k[T ], and also forces h(g2) 6= 0 for all g ∈ k[u]. We are interested in studying
specializations of h(T 2) on k[u] for finite k, but we will initially focus on h(T ) for any perfect
k with characteristic 2.

Since h 6∈ k, Lemma 5.4(2) ensures ∂uh 6= 0 and that there is no common irreducible
factor of h and ∂uh in k[u, T ]. Thus, Rk[u](h, ∂uh) 6= 0 and we may define Mgeom

h as in
Definition 5.5. We emphasize that Mgeom

h is not to be confused with Mgeom
h(T 2)

; in our study
of Möbius bias for specializations of f(T ) = h(T 2) in characteristic 2, it is Mgeom

h that will
turn out to be of more interest than Mgeom

f . Corollary 6.7(2) ensures that the separability
property of h(g2) in k[u] only depends on g mod Mgeom

h provided that deg g is sufficiently
large, with largeness that depends on h and is uniform with respect to all perfect extensions
of k.

Since h(T 2) is squarefree in k[u, T ] and h 6∈ k, we can find g ∈ k[u] of any sufficiently
large degree such that h(g2) is nonconstant and separable in k[u]: use [20, Theorem 3.1]
if k is finite, and use Lemma 6.1 and the denseness of the locus of k-rational points in
an affine space over k if k is infinite. In particular, (∂uh)(g2) = h(g2)′ is nonzero and
Rk(h(g2), h(g2)′) is nonzero. Fix such a choice of g; concretely, g is a representative of some
(nonempty) collection of residue classes modulo Mgeom

h .

Definition 8.1. A lift H ∈ W [u, T ] of h ∈ k[u, T ] is called unitary if H has the same
T -degree as h and leadT H ∈ W [u] is a lift of leadT h ∈ k[u] with the same u-degree. In
particular, leadT H ∈ W [u] has unit leading coefficient.

Let H be a unitary lift of h and let G ∈ W [u] be a lift of g with unit leading coefficient
(so deg G = deg g). Assume deg g is sufficiently large so that the degree of h(g2) ∈ k[u]
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is given by a generic formula as in (3.3), and likewise for the degree of H(G2). Note that
H(G2) ∈ W [u] has unit leading coefficient (and hence the same degree as h(g2)). Hence,
W [u]/(H(G2)) is a finite flat W -algebra that lifts the finite étale k-algebra k[u]/(h(g2)); by
(4.12), we need to understand how the unit discriminant discW (H(G2)) mod 8W depends
on G.

Though H(G2)′ 6= (∂uH)(G2) in characteristic 0, the mod-2 reductions agree. Thus, the
F -resultants

(8.1) RF (H(G2),H(G2)′), RF (H(G2), (∂uH)(G2))

lie in W and have reductions in k that are k×-multiples of each other (see (5.3) and the
Warning above Example 5.1). Both reductions therefore lie in k× since h(g2) is separable,
so both terms in (8.1) lie in W×. The quadratic nature of the first resultant in (8.1)
intervenes in the study of discW (H(G2)), and the second resultant in (8.1) is a form to
which Theorem 6.4 and Theorem 7.1 may be applied (over the field F of characteristic
zero). We are going to show that the unit ratio of the resultants in (8.1) can be made
explicit in (W/8W )× modulo unit-square factors, so we will be able to use Theorems 6.4
and 7.1 to study the quadratic nature of discW (H(G2)).

The leading coefficient of H(G2) is a unit and the reduction h(g2) is separable, so the
roots of H(G2) in an algebraic closure F are integral, lie in an unramified extension of F ,
and have pairwise-distinct reductions. Let {α} be the (nonempty) set of roots of H(G2) in
F , with α denoting the reduction of α, so (∂uh)(g2)(α) = (h(g2))′(α) is nonzero and hence
(∂uH)(G2)(α) is an integral unit for all α.

Since H(G2)′ = (∂uH)(G2) + 2(∂T H)(G2)GG′, the classical formula (5.2) for resultants
in terms of products over geometric roots gives

(8.2)
RF (H(G2),H(G2)′)

RF (H(G2), (∂uH)(G2))
= lead(H(G2))dG

∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
α

)
,

where dG = deg(H(G2)′) − deg((∂uH)(G2)) is a linear polynomial in deg G = deg g when
deg g is large. The largeness depends on H but is uniform with respect to perfect extensions
of k.

Remark 8.2. For deg g large, dG = 0 if leadT H ∈ W [u] is nonconstant (or equivalently, if
leadT h ∈ k[u] is nonconstant). If leadT H ∈ W×, then for deg g large we have

dG = 2 degT h deg g − 1− deg(leadT ∂uH)− 2(degT ∂uH) deg G.

= 2(degT h− degT ∂uH) deg g − (1 + deg(leadT ∂uH)).

We need to understand the product in (8.2) modulo 8W . The remarkable surprise is that
there is a very simple formula for this product mod 8W (see (8.4)), and the formula only
depends on g and h (not on G or H). This formula uses residues of a certain differential
form. We need to make two definitions before we can state the formula of interest.

Definition 8.3. For any perfect field K and any rational differential form ω on P1
K , set

(8.3) s2(ω) :=
∑

{y1,y2}

Resy1ω · Resy2ω ∈ K

where the sum runs over unordered pairs of distinct geometric poles of ω on P1
K .

In words, s2(ω) is the second symmetric function of the geometric residues of ω. Our
interest in s2(ω) will be restricted largely to cases when ω has simple poles. We are grateful
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to Gabber for pointing out to us that, for ω varying with only simple geometric poles, s2(ω)
is not algebraic in ω if we do not fix the number of simple geometric poles of ω. For example,
let

ω = b · du

u
+

du

u− a
,

with b, b+1 6= 0. This has three simple poles when a 6= 0 and two simple poles when a = 0.
When a 6= 0, s2(ω) = −b(b + 1) − 1, but when a = 0, s2(ω) changes to −(b + 1)2. This
non-algebraicity is analogous to the fact that (6.3) does not extend to an algebraic function
on Poly≤n/F .

Definition 8.4. For γ ∈ k[u], define

ωh,γ :=
(∂T h)(γ2)γ

h(γ2)
dγ;

the initial hypotheses on h ∈ k[u][T ] in this section ensure that h(γ2) 6= 0.

When γ is a square in k[u] (so dγ = 0) or h is a polynomial in T 2 (so ∂T h = 0), clearly
ωh,γ = 0. For g ∈ k[u] with large degree such that h(g2) is separable, we may write

ωh,g =
(∂T h)(g2)g2

h(g2)
· dg

g
,

so this rational differential form on P1
k has simple poles. We will see in Theorem 8.11 that

s2(ωh,γ) intervenes in the behavior of µ(h(γ2)) when k is finite. The vanishing of s2(ωh,γ2)
will therefore make the behavior of µ(h(γ4)) quite tractable for finite k.

Theorem 8.5. Let H be a unitary lift of h, in the sense of Definition 8.1. For g ∈ k[u] of
large degree with h(g2) separable and G ∈ W [u] lifting g with lead(G) ∈ W×,

(8.4)
∏
α

(
1 + 2 · (∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

)
≡ 1 + 2 deg g degT h + 4s2(ωh,g) mod 8W,

where α runs over the geometric roots of H(G2). The largeness of deg g depends on H and
may be chosen uniformly with respect to perfect extensions of k.

Proof. Let P = H(G2). Since P has simple zeros at each of its roots α, and hence serves
as a local coordinate there, we get the residue description

(8.5)
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P

)
.

We will first show that

(8.6) 2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

≡ 2ResαωH,G + 4(ResαωH,G)2 mod 8W,

where W is the integral closure of W in an algebraic closure F of F . Note that we can replace
the residue in the final term in the mod-8 equation (8.6) with a residue in characteristic 2,
namely Resα(ωh,g) with α the reduction of α.

Since (H(G2))′ ≡ (∂uH)(G2) mod 2W [u] with H(G2)′(α) ∈ W
×, we have

Resα

(
((∂T H)(G2)GG′)2

(∂uH)(G2)H(G2)
du

)
≡ Resα

(
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dH(G2)
H(G2)

mod 2W.
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However,

(∂T H)(G2)GG′

(∂uH)(G2)
· dP

P
=

(∂T H)(G2)GG′((∂uH)(G2) + 2(∂T H)(G2)GG′)
(∂uH)(G2)H(G2)

du

=
(∂T H)(G2)G

H(G2)
dG + 2

((∂T H)(G2)(GG′))2

(∂uH)(G2)H(G2)
du

and P = H(G2), so by (8.5) we conclude that in W/8W

2
(∂T H)(G2)GG′

(∂uH)(G2)

∣∣∣∣
u=α

= 2 · Resα
(∂T H)(G2)G

H(G2)
dG + 4 · Resα

((
(∂T H)(G2)GG′

(∂uH)(G2)

)2 dP

P

)
.

The first residue on the right side is ResαωH,G. The second residue only matters modulo 2.
Reducing it modulo 2 gives the square of the residue at α of

(∂T h)(g2)gg′

(∂uh)(g2)
· d(h(g2))

h(g2)
=

(∂T h)(g2)g2

h(g2)
· dg

g
= ωh,g

since Resx(spdr/r) = Resx(sdr/r)p in characteristic p > 0. This establishes (8.6).
Using (8.6), expanding the product on the left side of (8.4) modulo 8 gives

(8.7) 1 + 2
∑
α

ResαωH,G + 4
∑

α1 6=α2

Resα1ωh,gResα2ωh,g + 4
∑
α

Resα(ωh,g)2,

where α1 and α2 in the second sum run over unordered pairs of distinct F -roots of H(G2).
By the residue theorem in characteristic 0, the first sum over the zeros α of H(G2) in (8.7)
is equal to

−Res∞

(
(∂T H)(G2)G2

H(G2)
· dG

G

)
= deg G degT H = deg g degT h

since (∂T H)(G2)G2 and H(G2) have the same degree and have leading coefficients with
ratio degT H.

Since (8.7) is being considered in W/8W , the final sum in (8.7) only matters in W/2W ,
where it can be computed to be(∑

α

Resα(ωh,g)

)2

= Res∞(ωh,g)2 = Res∞(ωh,g) ·
∑
α

Resα(ωh,g)

by the residue theorem in characteristic 2. The second and third sums in (8.7) therefore
combine to give 4s2(ωh,g) in (8.4). �

By (5.1), (8.2), and Theorem 8.5, since h(g2) is separable the discriminant discW (H(G2))
is congruent modulo 8W to

(8.8)
(−1)δg(δg−1)/2

(leadH(G2))2δg−1−dG
RW (H(G2), (∂uH)(G2))(1 + 2 deg g degT h + 4s2(ωh,g)),

where
δg = deg(h(g2)) = deg(leadT h) + 2 deg g degT h

and dG is given by Remark 8.2; the exponent 2δg−1−dG of leadH(G2) in (8.8) is linear in
deg g = deg G when deg g is large. Since −4 ≡ 4 mod 8, discW (H(G2)) mod 8W is therefore
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equal to

RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

((−1)δg(δg−1)/2(1 + 2 deg g degT h) + 4s2(ωh,g)).

Write δg = c + 2ab, with c = deg(leadT h), a = deg g, and b = degT h, so

δg(δg − 1)
2

≡ c(c− 1)
2

+ ab mod 2

and (by checking cases for ab modulo 4)

(−1)ab(1 + 2ab) ≡ 1 + 4
⌊

1 + ab

2

⌋
mod 8;

here, b·c denotes the greatest-integer function. Thus, separability of h(g2) implies that
discW (H(G2)) mod 8W is equal to

(8.9)
RW (H(G2), (∂uH)(G2))
(leadH(G2))2δg−1−dG

(−1)deg(leadT h)(deg(leadT h)−1)/2(1 + 4(mg + s2(ωh,g))),

where mg = b(1 + (deg g)(degT h))/2c.
If we had instead chosen g of large degree such that h(g2) is not separable and G ∈ W [u]

is a lift of g with lead(G) ∈ W×, then since H(G2) has the same degree as its reduction
h(g2) we see via (5.3) that RW (H(G2), (∂uH)(G2)) has reduction that is a k×-multiple
(depending on G) of

Rk(h(g2), (∂uh)(g2)) = Rk(h(g2), h(g2)′) = 0.

Thus, RW (H(G2), (∂uH)(G2)) ∈ 2W in such cases, so although discW (H(G2)) may not be
congruent modulo 8 to (8.9) when h(g2) is not separable, the expression (8.9) always makes
sense in W and is a non-unit precisely when discW (H(G2)) is a nonunit. Thus, we can use
the resultant RW (H(G2), (∂uH)(G2)) from characteristic 0 to study discW (H(G2)) mod 8W
even though usually (∂uH)(G2) 6= H(G2)′ in characteristic 0.

Since leadT H ∈ W [u] has leading coefficient in W× and h = H mod 2 ∈ k[u, T ] is not in
k and has no irreducible factors in k[T ] (as h(T 2) is squarefree), we conclude that H is not
in W and H has no irreducible factors in W [T ]. Moreover, since h is squarefree in k[u, T ]
we see that its unitary lifting H is squarefree in W [u, T ]. The same therefore holds using
F -coefficients, so ∂uH 6= 0 and the zero loci ZH = {H = 0} and Z∂uH = {∂uH = 0} in A2

F
have finite intersection by Lemma 5.6. In particular,

RH := ResW [u](H, ∂uH) ∈ W [u]

is nonzero and we may form the monic squarefree polynomial Mgeom
H ∈ F [u] as in Defini-

tion 5.5, where the geometric roots of Mgeom
H are the u-coordinates of intersection points of

ZH and Z∂uH in A2
F .

We may use Theorems 6.4 and 7.1 to obtain the identity of algebraic functions

(8.10) RF (H(G), (∂uH)(G)) = β0β
n
1 · lead(G)m0+m1n ·

∏
x

Px,n(G)ex

on Polyn/F for large n, where the integers m0,m1 ∈ Z and the scalars β0, β1 ∈ F× are
independent of n, the indexing set {x} is the set of intersection points of ZH and Z∂uH in
A2

F , the ex’s are positive integers, and Px,n(G) = NF (x)/F (G(ux) − tx) where (ux, tx) are
the coordinates of x ∈ A2

F . Of course, all of the parameters in (8.10) may depend on the
(fixed) choice of unitary H lifting h. When G ∈ W [u], the left side of (8.10) is a resultant



IRREDUCIBLE SPECIALIZATION IN GENUS 0 45

over W . We now show that the identity (8.10) over F can be factored in a manner that is
well-behaved with respect to W .

Lemma 8.6. For large n (uniform with respect to perfect extensions of k), the algebraic
maps

(8.11) β0 ·
∏

|ux|≤1,|tx|>1

P ex
x,n(·), βn

1 ·
∏

|ux|>1

P ex
x,n(·) : Poly≤n/F → A1

F

extend uniquely to W -maps Poly≤n/W → A1
W with nonzero reduction. That is, these poly-

nomial functions in a0, . . . , an have W -coefficients and have nonzero reduction.

Proof. When |ux| ≤ 1 and |tx| > 1, we have an identity

(8.12) Px,n(G) = NF (x)/F (G(ux)− tx) = NF (x)/F (tx) ·NF (x)/F (t−1
x G(ux)− 1)

as algebraic functions of G ∈ Poly≤n/F . Likewise, if we let G∗ denote the polynomial of
(possibly fake) degree n obtained by reversing the order of the coefficients of G, then for
|ux| > 1 we have an identity

(8.13) Px,n(G) = NF (x)/F (G(ux)− tx) = NF (x)/F (ux)n ·NF (x)/F (G∗(1/ux)− u−n
x tx)

with |u−n
x tx| � 1 for large n. Hence, to see that (8.11) extends over W , it is enough to

show that the elements

(8.14) b0 := β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex , b1 := β1 ·
∏

|ux|>1

NF (x)/F (ux)ex

in F are integral. We shall prove these are in fact units in W . It then follows trivially that
the first map in (8.11) extends over W and has constant reduction b0 ∈ k×. Likewise, the
second map in (8.11) then extends over W and has reduction

g 7→ b1 · an(g)
∑

|ux|>1[F (x):F ]ex

for g =
∑

i≤n ai(g)ui, since G ∈ Poly≤n/F (F ) = F
n+1 has coefficients in W and G∗(1/ux)

has the same reduction as G∗(0) = an(G) when |ux| > 1.
We have seen (in the beginning of this section) that for all large n there exists gn ∈ k[u]

of degree n such that
Rk(h(gn), (∂uh)(gn)) 6= 0.

For Gn ∈ W [u] lifting any such gn with lead(Gn) ∈ W×, clearly the W -resultant of H(Gn)
and (∂uH)(Gn) is a unit in W . Thus, the left side of (8.10) is a unit in W when evaluated
at Gn. Now consider the right side of (8.10) when evaluated at Gn. The contribution of
lead(Gn) is an integral unit, so we conclude

β0β
n
1

∏
x

Px,n(Gn)ex ∈ W×.

By the norm-scaling calculations (8.12) and (8.13), we thereby obtain

(β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex)(β1 ·
∏

|ux|>1

NF (x)/F (ux)ex)n ·
∏

|ux|,|tx|≤1

Px,n(Gn)ex ∈ W×,

or equivalently
b0b

n
1 ·

∏
|ux|,|tx|≤1

Px,n(Gn)ex ∈ W×.
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Obviously a W -point x = (ux, tx) in the zero loci of H and ∂uH reduces to a geometric
point in the zero loci of h and ∂uh. Thus, for such x we conclude via Theorem 6.4 that
the reduction of Px,n(Gn) ∈ W must be nonzero, since the resultant of h(gn) and (∂uh)(gn)
is nonzero. Hence, Px,n(Gn) ∈ W× for such x. Thus, b0b

n
1 ∈ W× for all large n. Hence,

b0, b1 ∈ W×. �

In the study of (8.10) on G2 for G ∈ W [u] with unit leading coefficient, we will be able
to ignore x’s with |ux| > 1 due to:

Theorem 8.7. For G ∈ W [u] with unit leading coefficient and large degree n (uniform with
respect to perfect extensions of k),

β2n
1 ·

∏
|ux|>1

Px,2n(G2)ex ∈ (W×)2.

Proof. By Lemma 8.6, the square β2n
1 ·

∏
|ux|>1 NF (x)/F (ux)2nex = b2n

1 is a unit, so we may
divide by this without harm. This leaves us with

(8.15)
∏

|ux|>1

NF (x)/F (G∗(1/ux)2 − u−2n
x tx)ex ,

where G∗ is the polynomial of (possibly fake) degree n obtained by reversing the order of the
coefficients of G. Note that the square G∗(1/ux)2 is a unit when |ux| > 1, as its reduction
is lead(g)2 6= 0. Since u−2n

x tx → 0 as n →∞, for large n we see that G∗(1/ux)2 − u−2n
x tx is

very close to a unit square in the valuation ring W (x) of F (x). Hence, depending just on
the amount of ramification in F (x) (bounded by [F (x) : F ]), we can make n large enough,
uniformly with respect to perfect extensions of k, such that G∗(1/ux)2− u−2n

x tx is a square
in W (x)×. Passing to n so uniformly large for all finitely many x’s such that |ux| > 1, the
norm-product (8.15) is a unit square in W . �

To emphasize that b0 ∈ W× in (8.14) depends on H, we now rename it: define

ηH = β0 ·
∏

|ux|≤1,|tx|>1

NF (x)/F (tx)ex ∈ W×,

so ηH depends on H since the algebraic factorization on the right side of (8.10) depends
on H. Using Lemma 8.6 and Theorem 8.7, together with the obvious fact that lead(G2)
is a unit square when G ∈ W [u] has unit leading coefficient, the identity (8.10) yields an
identity

(8.16) RH(G) ∈ ηH ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex · (W×)2

when G ∈ W [u] with lead(G) ∈ W× and deg G � 0, where

RH(G) := RW (H(G2), (∂uH)(G2)).

Since ηH ∈ W× and all terms in the products in (8.16) are visibly integral, the resultant
RH(G) is a unit in W if and only if each of the terms in the products in (8.16) is a unit, in
which case the image of RH(G) in W×/(W×)2 is represented by the expression in (8.16).

Define

η̃H = (−1)deg(leadT h)(deg(leadT h)−1)/2 · lead(leadT H)eH · ηH ∈ W×

where eH = 1 if leadT H 6∈ W× and eH = deg(leadT ∂uH) if leadT H ∈ W×; η̃H absorbs
both the constant sign-factor and (by Remark 8.2) the odd-exponent power of the unit
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lead(H(G2)) in (8.9) modulo (W×)2. Choose g ∈ k[u] with large degree and choose G ∈
W [u] lifting g with deg G = deg g. When h(g2) is separable it follows from (8.9) that
discW (H(G2)) ∈ W× is a unit-square multiple of the visibly integral
(8.17)
η̃H · (1 + 4(mg + s̃2(ωh,g))) ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex ,

with mg = b(1 + deg g degT h)/2c and s̃2(ωh,g) ∈ W any lift of s2(ωh,g) ∈ k (see (8.3)). On
the other hand, if h(g2) is not separable, then (8.16) implies that one of the terms Px,2n(G2)
with |ux|, |tx| ≤ 1 is in the maximal ideal of W , so (8.17) is also in the maximal ideal of W
in such cases.

Motivated by (8.17), consider the W -scheme map LH,n : Poly≤n/W → A1
W defined by

LH,n : G =
∑
i≤n

aiu
i 7→ η̃H ·

∏
|ux|≤1,|tx|>1

NW (x)/W (t−1
x G(ux)2 − 1)ex ·

∏
|ux|,|tx|≤1

Px,2n(G2)ex .

Each term on the right, viewed as an algebraic function of G, factors through the division-
algorithm morphism

(8.18) ρ̃n,H := ρn,(Mgeom
H )≤1 : Poly≤n/W → W [u]/(Mgeom

H )≤1

to the affine W -scheme of remainders modulo the F -separable monic polynomial

(Mgeom
H )≤1 :=

∏
|ux|≤1

(u− ux) ∈ W [u].

Here, we are viewing W [u]/(Mgeom
H )≤1 as an affine space over Spec W . Since ρ̃n,H is smooth

and surjective, it follows by Yoneda’s lemma (or a direct construction with norms) that
LH,n = LH ◦ ρ̃n,H for a unique W -scheme map LH : W [u]/(Mgeom

H )≤1 → A1
W that is

independent of n
Summarizing the conclusions of the above efforts, for any g ∈ k[u] with large degree and

any G ∈ W [u] lifting g with deg G = deg g, we have
(8.19)
discW (H(G2)) ≡ (1 + 4(b(1 + deg g degT h)/2c+ s2(ωh,g))) · LH(ρ̃n,H(G)) · (W×)2 mod 8

when h(g2) is separable, and otherwise the right side lies in 2W/8W .
We will use the quadratic nature of (8.19) to investigate µ(h(g2)) in the case of finite k,

but before passing to the finite case we need to study the relationship between (Mgeom
H )≤1

and Mgeom
h . We may factor the separable monic Mgeom

H in F [u] into monic polynomials

Mgeom
H = (Mgeom

H )≤1(Mgeom
H )>1,

where the roots of (Mgeom
H )≤1 are the roots of Mgeom

H in W and (Mgeom
H )>1 contains the

other roots. Each root of the squarefree monic polynomial (Mgeom
H )≤1 ∈ W [u] is an integral

root of the resultant
RH = RW [u](H, ∂uH) ∈ W [u]− {0},

so RH is divisible by (Mgeom
H )≤1 in W [u].

Definition 8.8. The reduction of (Mgeom
H )≤1 is denoted M

geom
H .

Up to k×-multiple, M
geom
H is the mod-2 reduction of a primitively-scaled multiple of

Mgeom
H in W [u]. By reduction of divisibility over W we conclude that M

geom
H divides

Rk[u](h, ∂uh); note that M
geom
H need not be squarefree (see Example 8.15).
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Remark 8.9. Obviously Mgeom
h divides the radical of Rk[u](h, ∂uh). One can have proper

divisibility here if the nonzero leadT h ∈ k[u] has a double root at some c, since the resultant
Rk[u](h, ∂uh) vanishes at such c for determinantal reasons but the specializations h(c, T ) and
(∂uh)(c, T ) might not have a common geometric root; cf. Remark 1.7.

The general relationship between Mgeom
h and the radical of M

geom
H is:

Lemma 8.10. For all unitary lifts H of h, Mgeom
h |Mgeom

H ; in particular, the property of
h(g2) being squarefree is determined by g mod M

geom
H . If leadT h is separable (e.g., h is

monic in T ), then Mgeom
h is the radical of M

geom
H .

Proof. Recall that by Corollary 6.7(2), g mod Mgeom
h determines whether or not h(g2) is

squarefree. Since Mgeom
h is squarefree, clearly Mgeom

h |Mgeom
H if and only if each root of Mgeom

h
is the reduction of an integral root of Mgeom

H . We will prove this root-lifting property by
using the structure theorem for quasi-finite separated morphisms.

We know h is not a unit in k[u, T ], and ∂uh is not a zero divisor in k[u, T ]/(h) since
no irreducible factor of h divides ∂uh (by Lemma 5.4(2)). Thus, k[u, T ]/(h, ∂uh) is a finite
k-algebra. Moreover, since W [u, T ] is W -flat, it follows from the local flatness criterion that
∂uH is nowhere a zero divisor on Spec W [u, T ]/(H) at points over the closed point of Spec W
and that Spec W [u, T ]/(H, ∂uH) is W -flat at points over the closed point of Spec W . On the
generic fiber over Spec F , F [u, T ]/(H, ∂uH) is a finite (flat) F -algebra since {H = 0} meets
{∂uH = 0} at only finitely many points in A2

F . To summarize, the finite-type separated
morphism Spec W [u, T ]/(H, ∂uH) → Spec W is quasi-finite and flat.

By the structure theorem for quasi-finite separated schemes over a henselian local base [15,
18.5.11], it follows that W [u, T ]/(H, ∂uH) = Rf × R′, where Rf is a finite product of finite
local W -algebras and R′ is a quasi-finite (hence finite) F -algebra. Moreover, Rf must be
W -flat. The image of the map

Spec Rf
∐

Spec R′ = Spec W [u, T ]/(H, ∂uH) → Spec W [u] = A1
W

is topologically a union of a closed subscheme that is finite flat over W (the image of
Spec Rf) and an F -finite closed subscheme of the generic fiber (the image of Spec R′).
The geometric points of this image in the closed and generic geometric fibers of A1

W over
Spec W are the roots of Mgeom

h and Mgeom
H respectively. Thus, the problem of identifying

roots of Mgeom
h with reductions of integral roots of Mgeom

H is brought down to the problem of
realizing each geometric closed point of a finite flat W -scheme (specifically, Spec Rf) as the
specialization of an integral generic-fiber geometric point. For this we may reduce ourselves
to the consideration of a finite flat local W -scheme S that is irreducible and reduced. We
can replace S with its normalization, so S = Spec B where B is the integral closure of W
in a finite extension of F . This situation is trivial to handle.

To prove that Mgeom
h is the radical of M

geom
H when leadT h is separable, we check that

if (c, t) is a geometric point in the common zero locus of H and ∂uH, where c is integral
(such c’s are the roots of (Mgeom

H )≤1), then t is also integral. It suffices to show that
H(c, T ) or (∂uH)(c, T ) has unit leading coefficient. That is, if (leadT h)(c) = 0 then we
want (leadT h)′(c) 6= 0. Since leadT h is separable, we are done. �

Now let g ∈ k[u] be arbitrary with large degree. By Lemma 8.10, whether or not h(g2) is
separable is determined by g mod M

geom
H , and even by g modulo the radical of M

geom
H . Thus,

the monic M
geom
H constructed by reduction from characteristic 0 controls the separability

of h(g2) in characteristic 2 when deg g is large.
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Let us now specialize to the case of a finite field k = κ of characteristic 2. We fix
nonconstant h ∈ κ[u, T ] such that h(T 2) is squarefree. Choose a unitary lift H of h. Pick
g ∈ κ[u] of large degree, and choose a lift G ∈ W [u] of g with the same degree (i.e., with unit
leading coefficient). Hence, H(G2) is a lift of h(g2) with the same degree, and discW (H(G2))
is a unit precisely when h(g2) is separable. Recall also (as we explained above Theorem 4.9)
that if discW (H(G2)) ∈ W× then it lies in κ× × (1 + 4W ); that is, its 1-unit part lies in
1 + 4W , not merely in 1 + 2W , when it is a unit in W .

By Theorem 4.9 and Remark 4.10,

(8.20) µ(h(g2)) = (−1)deg(leadT h)χ̃(discW (H(G2))),

where χ̃ is defined to vanish on 2W and is defined on (κ× × (1 + 4W ))/(W×)2 by

(8.21) χ̃(c · (1 + 4w)) = (−1)Trκ/F2
(w mod 2).

We can now prove an analogue of (7.2) in characteristic 2:

Theorem 8.11. Let κ be finite of characteristic 2, and h ∈ κ[u, T ] be such that h 6∈ κ and
h(T 2) is squarefree in κ[u, T ]. Fix a unitary lift H of h.

For g of sufficiently large degree n,

(8.22) µ(h(g2)) = (−1)deg leadT (h)+[κ:F2]b(1+n degT h)/2c+Trκ/F2
(s2(ωh,g)) · χ̃(LH(ρ̃n,H(G))),

where G ∈ W [u] is any lift of g with degree n. Here, s2(ωh,g) is defined by (8.3) and ρ̃n,H is
defined by (8.18). The “sufficient largeness” for deg g may be chosen uniformly with respect
to finite extensions of κ.

In particular, if g1, g2 ∈ κ[u] have sufficiently large degrees, deg g1 ≡ deg g2 mod 4, and
g1 ≡ g2 mod M

geom
H , then

(8.23) (−1)Trκ/F2
(s2(ωh,g1

))µ(h(g2
1)) = (−1)Trκ/F2

(s2(ωh,g2
))µ(h(g2

2)).

The “sufficient largeness” for deg g1 and deg g2 may be chosen uniformly with respect to
finite extensions of κ.

If degT h is even, the congruence on deg gj’s need only be taken modulo 2, and if 4|degT h
or if [κ : F2] is even then no congruence is necessary on the deg gj’s.

Proof. The preceding calculations ensure that LH(ρ̃n,H(G)) ∈ W lies in κ× × (1 + 4W )
when it is a unit (because the same is true for both discW (H(G2)) and squares in W×).
Thus, the asserted formula (8.22) for µ(h(g2)) makes sense and is immediate from (8.20),
(8.21), and (8.19). Since any two elements g1, g2 ∈ κ[u] that are congruent modulo the
reduction M

geom
H of the monic (Mgeom

H )≤1 may be respectively lifted to G1, G2 ∈ W [u] with
unit leading coefficients such that G1 ≡ G2 mod (Mgeom

H )≤1 (so ρ̃n1,H(G1) = ρ̃n2,H(G2) with
nj = deg Gj = deg gj), we conclude via (8.22) that the indicated congruence conditions on
gj ’s and deg gj ’s are enough to imply (8.23). �

An easy argument with the Chinese remainder theorem shows that Theorem 8.11 remains
true with M

geom
H replaced by the gcd of all M

geom
H ’s as H runs over all unitary lifts of h

to W [u, T ]. This gcd is a multiple of Mgeom
h (by Lemma 8.10) and is obviously a factor of

Rκ[u](h, ∂uh), but it probably can fail to be squarefree (see Example 8.15 below). We do
not know if this gcd is the “minimal modulus” for g 7→ (−1)Trκ/F2

(s2(ωh,g))µ(h(g2)) when
specializing in κ[u] (but see Question 9.2).
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Corollary 8.12. Let κ be finite of characteristic 2, and h ∈ κ[u, T ] be such that h 6∈ κ and
h(T 2) is squarefree in κ[u, T ]. Fix a unitary lift H of h.

For g of sufficiently large degree n,

(8.24) µ(h(g4)) = (−1)deg leadT h+[κ:F2](degT h)·n · χ̃(LH(ρ̃n,H(G))),

where G ∈ W [u] is any lift of g with degree n.
In particular, for g1, g2 ∈ κ[u] of sufficiently large degrees,

(8.25) g1 ≡ g2 mod M
geom
H , deg g1 ≡ deg g2 mod 2 ⇒ µ(h(g4

1)) = µ(h(g4
2)).

The “sufficient largeness” for deg gj’s may be chosen uniformly with respect to finite ex-
tensions of κ. There is no dependence on deg g mod 2 if [κ : F2] is even or if degT h is
even.

We now give some Möbius calculations in characteristic 2, using Corollary 8.12 (and
omitting further tables of data). Our second and third example will justify what we said
after Remark 1.14 in the Introduction about some characteristic 2 examples.

Example 8.13. Let f(T ) = T 4+u. Take H(T ) = T +u ∈ W [u][T ] as a lift of h(T ) = T +u

from κ[u][T ]. Clearly M
geom
H = 1 in κ[u], so µ(f(g)) = (−1)[κ:F2] deg g for deg g sufficiently

large. It is left to the reader to check that deg g ≥ 1 is “large enough”. It follows that the
conjecture in (3.8) fails in even degrees when [κ : F2] is odd, and in all degrees when [κ : F2]
is even.

Example 8.14. Let f(T ) = T 8+(u3+u)T 4+u in κ[u][T ]. Take H(T ) = T 2+(u3+u)T +u.
A calculation shows Mgeom

H = 6u5 + 2u3 + 1, so M
geom
H = 1 and degT H is even. Thus,

µ(f(g)) = 1 for deg g � 0. A closer analysis, carried out in [8], shows that µ(f(g)) = 1 for
deg g ≥ 3 and µ(f(cu2)) = −1 for some c ∈ κ×, so the lower bound on deg g is sharp.

Example 8.15. In κ[u][T ], let f(T ) = T 16 + (u9 + u4 + u2 + u)T 8 + u5 + u3. Using the
proof of Theorem 8.11 to make sufficient largeness explicit, for g1 and g2 with degree at
least 2 we have

(8.26) g1 ≡ g2 mod u9(u + 1)4 =⇒ µ(f(g1)) = µ(f(g2)).

Numerical evidence suggests that we can use u3(u+1) instead of u9(u+1)4 when κ = F2,
and it seems likely that the minimal modulus is not squarefree for any κ. Unfortunately,
we do not have proofs for these two assertions.

9. Conjectures over κ[u]

We return to the Hardy–Littlewood conjecture over κ[u] for a finite field κ. Numerical
testing supports the belief that (3.8) is correct when f is separable (in any characteristic).
We have seen that (3.8) is not always true for inseparable f . To define a correction factor
in the inseparable cases away from polynomials in T 2 that are not polynomials in T 4 in
characteristic 2, we begin with a definition that is sensitive to the constant field κ.

Definition 9.1. Let κ be a finite field. Pick f(T ) in κ[u][T p] with p 6= 2 (resp. in κ[u][T 4]
with p = 2) such that f 6∈ κ and f is squarefree in κ[u][T ]. Define Mmin

f,κ to be the unique
monic polynomial M in κ[u] of minimal degree that satisfies the property of Mgeom

f in (5.14)
(resp. the property of M

geom
H in (8.25), with f(T ) = h(T 4)).
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By the Chinese remainder theorem, all nonzero M ∈ κ[u] satisfying (5.14) (resp. (8.25))
are divisible by Mmin

f,κ . If κ′/κ is a finite extension, it seems to be a rather subtle problem
to relate Mmin

f,κ and Mmin
f,κ′ . In odd characteristic, we always have Mmin

f,κ |M
geom
f , so Mmin

f,κ

is squarefree. For characteristic 2, we have Mmin
f,κ |Rκ[u](h, ∂uh) with Rk[u](h, ∂uh) 6= 0 (by

Lemma 5.4(2)), so again the polynomials Mmin
f,κ′ have only finitely many possibilities as κ′

varies over finite extensions of κ. However, the polynomial Rκ[u](h, ∂uh) generally has factors
with rather high multiplicities, so it would be desirable to find better upper bounds on the
multiplicities in Mmin

f,κ and to find an a priori construction of the least common multiple
of all Mmin

f,κ′ ’s (or at least its radical) for characteristic 2 as the extension κ′/κ varies. The
following suggests a nice “upper bound” on the radical of Mmin

f,κ in characteristic 2, akin to
the upper bound provided by Mgeom

f in odd characteristic.

Question 9.2. In characteristic 2, is Mgeom
h the radical of the least common multiple of

the M
geom
H ’s over all unitary lifts H of h? By Lemma 8.10 we know that Mgeom

h divides this
radical, and that this divisibility is an equality in the “generic” case when leadT h ∈ κ[u] is
separable.

We are almost ready to define our correction factor for the Hardy–Littlewood conjecture
over κ[u], but we first need a lemma.

Lemma 9.3. Let κ be a finite field of characteristic p and let f ∈ κ[u][T p] be squarefree
in κ[u, T ], and assume that f has no local obstructions (so in particular, f has no irre-
ducible factors in κ[u]). For any nonzero M ∈ κ[u], there exist elements g ∈ κ[u] with any
sufficiently large degree (depending on M and f) such that f(g) is squarefree in κ[u] and
gcd(f(g),M) = 1.

Proof. The case f ∈ κ× is trivial, so we may assume f 6∈ κ. We must find g in large degree
n with f(g) relatively prime to M ·f(g)′ = M ·(∂uf)(g). Obviously ∂uf 6= 0 since f 6∈ κ. By
Lemma 5.4(1), f and ∂uf have no common irreducible factor in κ[u][T ]. For any irreducible
monic π ∈ κ[u], define

cπ = #{t ∈ κ[u]/(π) : f(t) ≡ M · (∂uf)(t) ≡ 0 mod π}.

The absence of local obstructions ensures 1− cπ/Nπ > 0 for each π.
Poonen [20] proved that the statistics for squarefree specializations of a squarefree polyno-

mial over κ[u] do agree with local-probability heuristics. More specifically, since 1−cπ/Nπ >
0 for each π, [20, Thm. 3.1] yields

lim
n→∞

#{g ∈ κ[u] | deg g ≤ n, f(g) squarefree, gcd(f(g),M) = 1}
(q − 1)qn

=
∏
π

(
1− cπ

Nπ

)
,

where the product is absolutely convergent (and in particular, nonzero). Letting P > 0
denote the value of the infinite product, we obtain

lim
n→∞

#{g ∈ κ[u] | deg g = n, f(g) squarefree, gcd(f(g),M) = 1}
(q − 1)qn

=
(

1− 1
q

)
P > 0.

�

With an eye toward future considerations with several polynomials, we now make a
definition that is more general than we presently require.
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Definition 9.4. Let κ be a finite field. Let f1, . . . , fr be squarefree and pairwise relatively
prime elements in κ[u][T ]. Suppose that each fj is a polynomial in T p when p 6= 2 (resp.
in T 4 for p = 2), and that fj 6∈ κ for all j. Assume that

∏
fj has no local obstructions (so

in fact each fj has no irreducible factors in κ[u]). Let Mκ be the least common multiple of
the polynomials Mmin

fj ,κ.
For n � 0, define

(9.1) Λκ(f1, . . . , fr;n) :=

∑
deg g=n,(fj(g),Mκ)=1

∏
j(|µ(fj(g))| − µ(fj(g)))∑

deg g=n,(fj(g),Mκ)=1

∏
j |µ(fj(g))|

∈ [0, 2r] ∩Q,

where the condition gcd(fj(g),Mκ) = 1 (a congruence condition on g modulo rad(Mκ)) is
imposed for all j; we take n large enough as in Lemma 9.3 so that the denominator in (9.1)
is nonzero. When κ is understood from context, we write Λ rather than Λκ.

Example 9.5. The case of one polynomial is the one of most interest to us, and it illumi-
nates the meaning of the ratio in (9.1):

Λκ(f ;n) :=

∑
deg g=n,(f(g),Mmin

f,κ )=1(|µ(f(g))| − µ(f(g)))∑
deg g=n,(f(g),Mmin

f,κ )=1 |µ(f(g))|

= 1−

∑
deg g=n,(f(g),Mmin

f,κ )=1 µ(f(g))∑
deg g=n,(f(g),Mmin

f,κ )=1 |µ(f(g))|
.

Clearly Λκ(f ;n) lies in the interval [0, 2] (when its denominator is nonzero) and it differs
from 1 by a restricted average on the nonzero Möbius value of f(g) in degree n. Loosely, the
closer Λκ(f ;n) is to 1 (resp. to 0, to 2), the more equally distributed (resp. skewed towards
−1, skewed towards 1) the nonzero Möbius values of f(g) are for g in degree n.

We should address a uniformity for the nonvanishing of the denominator in (9.1) for large
n as we vary the constant field. There exists nonzero M ∈ κ[u] such that Mmin

fj ,κ′ |M in κ′[u]
for all finite extensions κ′ of κ and all j: take M =

∏
Mgeom

fj
in odd characteristic and

M =
∏

M
geom
Hj

in characteristic 2 (where Hj is a unitary lift of hj , with fj = hj(T 4)). Since
f =

∏
fj has no local obstructions, by applying Lemma 9.3 to f and M we see that for

large n there do exist (many) g ∈ κ[u] of degree n such that
∏

fj(g) ∈ κ[u] is squarefree
and relatively prime to M . Since the inclusion κ[u] ↪→ κ′[u] for any finite extension κ′/κ
preserves separability and relative primality, it follows that the denominator in the definition
of Λκ′(f1, . . . , fr;n) is nonzero for large n uniform with respect to κ′/κ.

Clearly (9.1) is unaffected by replacing Mκ with its radical. In Corollary 9.11 we will
see that Definition 9.4 is unaffected by replacing Mκ with any common (nonzero) multiple
of the radicals of the Mmin

fj ,κ’s. This makes computation of Λκ easier both in theory and
in practice, since in odd characteristic we can replace Mκ with the radical of the product
of the Mgeom

fj
’s, and in characteristic 2 we can likewise replace Mκ with the radical of the

product of the Rκ[u](hj , ∂uhj)’s (or even with the radical of the product of the Mgeom
hj

’s in
characteristic 2 when Question 9.2 has an affirmative answer for each hj).

We only care about Λκ(f1, . . . , fr;n) for large n. Note that Λκ(f1, . . . , fr;n) = 0 if and
only if, for all g of degree n, some fj(g) has a nontrivial factor in common with Mmin

f,κ or
µ(fj(g)) ∈ {0, 1} for some j. Therefore the vanishing of Λκ(f1, . . . , fr;n) implies that for
all g of degree n in κ[u], one of the the polynomials f1(g), . . . , fr(g) is reducible in κ[u].
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Example 9.6. Let f(T ) be the polynomial from Example 3.6, viewed in F5[u][T ]. We will
compute Λ(f ;n). By (5.15), Mmin

f,F5
= u(u+1) and µ(f(g)) is determined by g mod u(u+1)

when deg g is even.
As g runs over all quadratics in F5[u], 28 times µ(f(g)) = 1 and 52 times µ(f(g)) = −1. In

all of these cases, (f(g),Mmin
f,F5

) = 1. (The Möbius formula and a derivative calculation show
that µ(f(g)) = 0 if and only if (f(g),Mmin

f,F5
) 6= 1.) Thus Λ(f ; 2) = 1− (28−52)/(28+52) =

13/10. Similarly, we find Λ(f ; 3) = 1. From the proof of Theorem 9.10 below, Λ(f ;n) has
period 2 when n ≥ 2, and we have just computed the two terms in the period. Compare
the alternating sequence {1, 13/10, 1, 13/10, . . . } with the data in Table 3.6.

Example 9.7. Let f(T ) be as in Example 5.2. Working over κ[u] with κ of size q = 3m, it is
easy to check that Λκ(f ;n) = (q +1)/q for m odd and n ≥ 2, and Λκ(f ;n) = (q−1)/(q−2)
for m even and n ≥ 2.

There is no Hardy–Littlewood conjecture for even m because T 4 + (u + 1)T 2 + u4 is
reducible over F9(u) (one root is

√
u2 + 2u + 2 + i(u + 2), with i ∈ F9 satisfying i2 = −1).

This serves to remind us that the polynomial has to be irreducible in order that a Hardy–
Littlewood conjecture be meaningful.

Example 9.8. Let κ be finite with odd characteristic p, and f(T ) = T p + u ∈ κ[u][T ].
Generalizing the Möbius calculation in Example 4.5, we find

(9.2) Λκ(f ;n) =


1, if n is odd,

0, if n ≡ 0 mod 4,

1− χ(−1), if n ≡ 2 mod 4,

for n ≥ 1, where χ is the quadratic character on κ×. In particular, ΛF3(T
3 + u;n) is

1, 2, 1, 0, 1, 2, 1, 0, . . . and ΛF9(T
3 + u;n) is 1, 0, 1, 0, 1, 0, 1, 0, . . . over F9[u]. The F3[u]-

calculation is consistent with Table 1.2. The F9[u]-calculation tells us g3 + u will not be
irreducible for g with (positive) even degree and suggests g3 + u will satisfy (3.8) as g runs
through polynomials with odd degree. This is supported by Table 1.3.

Example 9.9. Let f(T ) = T 9 + (2u2 + u)T 6 + (2u + 2)T 3 + u2 + 2u + 1 in κ[u][T ],
where κ has characteristic 3. This example will illustrate the importance of the condition
(f(g),Mmin

f,κ ) = 1 in the definition of Λκ(f ;n).
The case κ = F3 was considered numerically in Example 3.4. There we observed in

Table 3.4 that f(g) seems to be reducible when n = deg g satisfies n ≡ 1 mod 4, and f(g) has
approximately twice as many irreducible values as the naive Hardy–Littlewood conjecture
(3.8) predicts when n ≡ 3 mod 4. We now compute Λκ(f ;n) for any κ of characteristic 3,
and we will find consistency with the data from Table 3.4 for κ = F3.

We recall (5.13) from Example 5.3: when g = cun + · · · ∈ κ[u] with n = deg g ≥ 1,

(9.3) µ(f(g)) = (−1)n(χ(−1))n(n−1)/2χ(c)n+1χ(g(1)2 + g(1) + 2)χ(g(2)).

From this formula, Mmin
f,κ = (u− 1)(u− 2). Call this M for simplicity.

To compute Λκ(f ;n), we only count g of degree n such that (f(g),M) = 1, a condition
we want to make explicit in terms of g. Clearly (f(g),M) = 1 if and only if f(g)|u=1 6= 0
and f(g)|u=2 6= 0. Since

(9.4) f(g)|u=1 = (g(1)− 1)3(g(1)2 + g(1)− 1)3, f(g)|u=2 = (g(2))6(g(2) + 1)3,

the condition (f(g),M) = 1 is equivalent to the combined conditions that g(1) is not 1 or
1±

√
−1 (the term 1±

√
−1 appears only if [κ : F3] is even) and g(2) is not 0 or −1.
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If κ has size q = 3m, then by separately treating the cases when m is even or odd and
when n is even or odd, elementary arguments resting on the preceding formulas (9.3) and
(9.4) show that we have Λκ(f ;n) = 1 for even n > 0 and

Λκ(f ;n) =

{
1 + 2 · (−1)(n+1)/2/((q − 1)(q − 2)), m odd,
1 + 2/((q − 2)(q − 3)), m even,

for odd n. In contrast, if we do not include the condition (f(g),M) = 1 in the definition
of Λκ(f ;n) then we would instead get the constant sequence of values {1, 1, . . . } for n =
1, 2, . . . . In other words, the nonzero values of µ(f(g)) for g of a fixed degree n ≥ 1 are
equally often 1 and −1, but these global values are constrained by the local condition
(f(g),M) = 1.

As a special case, for n ≥ 1 the periodic sequence of values ΛF3(f ;n) is

0, 1, 2, 1, 0, 1, 2, 1, · · · ,

which is an excellent fit with the discrepancies between Table 3.4 and the naive Hardy–
Littlewood conjecture for f(T ) on F3[u]. Here, if n ≡ 1 mod 4, then µ(f(g)) = −1 only
when (f(g),M) 6= 1. If n ≡ 3 mod 4, then µ(f(g)) = 1 only when (f(g),M) 6= 1.

Our work in §4–§8 leads to the following important periodicity:

Theorem 9.10. Let κ be finite, and f1(T ), . . . , fr(T ) be as in Definition 9.4. For any finite
extension κ′/κ, the sequence Λκ′(f1, . . . , fr;n) is periodic with period dividing 4 for n � 0,
and the largeness is uniform with respect to κ′.

Proof. In this proof, we will work with κ′ = κ, and we leave it to the reader to check that all
references to “sufficiently large” can be made uniformly with respect to finite extensions κ′

of κ (keep in mind that, in odd characteristic, the monic polynomial Mmin
fj ,κ′ may be different

from Mmin
fj ,κ, but for all j it must be a factor of a fixed nonzero “geometric” polynomial

Mgeom
fj

constructed from fj over κ, so deg Mmin
fj ,κ′ is bounded as κ′ varies; similar remarks

apply in characteristic 2 using Mgeom
hj

with fj = hj(T 4)).
We first give the proof in odd characteristic. Fix a mod 4. By (7.2), there exist integers

m0,j and m1,j , signs sa,j ∈ {±1}, and an algebraic function Lj on the κ-scheme of remainders
modulo Mgeom

fj
such that

(9.5) µ(fj(g)) = sa,jχ(lead g)m0,j+m1,jaχ(Lj(g))

for g ∈ κ[u] with deg g � 0 and deg g ≡ a mod 4. In particular,

|µ(fj(g))| =

{
1, if Lj(g) 6= 0,

0, if Lj(g) = 0.

We claim that Mmin
fj ,κ is the least-degree monic divisor D of Mgeom

fj
such that the set-

theoretic function
χj = χ ◦ Lj : κ[u]/(Mgeom

fj
) → {0, 1,−1}

factors through projection to κ[u]/(D); we emphasize that κ[u]/(Mgeom
fj

) appears here as
a finite-dimensional κ-vector space, not as an affine space over Spec κ. Our problem is
purely set-theoretic in nature: to show that Mmin

fj ,κ is also the “modulus of definition” for
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the set-theoretic function χj on κ[u]. By (7.2), if a nonzero monic D ∈ κ[u] is a modulus of
definition for χj then D is a modulus of definition for g 7→ µ(fj(g)) in the sense that

g1 ≡ g2 mod D, χ(lead g1) = χ(lead g2), deg g1 ≡ deg g2 mod 4 ⇒ µ(fj(g1)) = µ(fj(g2)).

The converse also holds because any congruence class in κ[u]/(D) for any nonzero D may
be represented by elements of arbitrary large degree with any desired leading coefficient.
We conclude that Mmin

fj ,κ is intrinsic to the set-theoretic function χj .
Let M be the least common multiple of the Mmin

fj ,κ’s. By definition,

(9.6) Λ(f1, . . . , fr;n) =

∑
deg g=n,(fj(g),M)=1

∏
j(|µ(fj(g))| − µ(fj(g)))∑

deg g=n,(fj(g),M)=1

∏
j |µ(fj(g))|

.

To show that the ratio is periodic, we will first analyze the numerator and denominator
separately with n � 0.

All χj ’s may be viewed as functions on κ[u]/(M). When n ≥ deg M , the polynomials
g with degree n are g = MQ + R where Q has degree n − deg M and either R = 0 or
deg R < deg M . Since M is monic, lead g = leadQ. Therefore, for n � 0 with n ≡ a mod 4
the numerator in (9.6) is∑

deg Q=n−deg M

∑
(fj(R),M)=1

all χj(R) 6=0

r∏
j=1

(1− sa,jχ(leadQ)m0,j+m1,jaχj(R)).

Expanding the product, this is

∑
Q

∑
(fj(R),M)=1

all χj(R) 6=0

 ∑
0≤k≤r

(−1)k
∑

1≤j1<···<jk≤r

sa,jχ(leadQ)m0,j+m1,jaχj1(R) · · ·χjk
(R))

 ,

where j is the vector (j1, . . . , jk), sa,j is the product of the sa,ji and m0,j and m1,j are the
respective sums of the m0,ji and m1,ji .

Bringing the sum over Q to the inside, the numerator of (9.6) is

∑
0≤k≤r

(−1)k
∑

1≤j1<···<jk≤r

sa,j

∑
Q

χ(leadQ)m0,j+m1,ja


 ∑

(fj(R),M)=1

all χj(R) 6=0

χj1(R) · · ·χjk
(R)

 .

(In the rightmost sum, the constraint χj(R) 6= 0 runs over j = 1, . . . , r, not just j =
j1, . . . , jk. Therefore we cannot eliminate this constraint unless k = r.)

The sum over Q is 0 if m0,j + m1,ja is odd and is (q− 1)qn−deg M if m0,j + m1,ja is even,
where q is the size of κ. Thus, the numerator of (9.6) is

(q − 1)qn−deg M
∑

0≤k≤r

(−1)k
∑

1≤j1<···<jk≤r
m0,j+m1,ja even

sa,j

∑
(fj(R),M)=1

all χj(R) 6=0

χj1(R) · · ·χjk
(R).

Aside from qn−deg M , the rest of the expression only depends on n through a = n mod 4, so
as a function of n it has period dividing 4.
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Now we turn to the denominator of (9.6). By Lemma 9.3, this denominator is nonzero
for large n. Explicitly, this denominator is

(q − 1)qn−deg M#{R mod M : all (fj(R),Mj) = 1, all χj(R) 6= 0}.
Since (9.5) holds for g of sufficiently large degree, (9.6) with n � 0 and n ≡ a mod 4 is

(9.7)

∑
0≤k≤r(−1)k

∑
1≤j1<···<jk≤r

m0,j+m1,ja even
sa,j

∑
(fj(R),M)=1

all χj(R) 6=0

χj1(R) · · ·χjk
(R)

#{R mod M : all (fj(R),M) = 1, all χj(R) 6= 0},
where the innermost sum runs over R mod M . This fraction is constant for fixed a, so the
desired periodicity is proved for odd characteristic.

The same argument works in the case of characteristic 2, as we now explain. We have
fj = hj(T 4) where hj(T 2) is squarefree and hj 6∈ κ for all j; fix unitary lifts H1, . . . ,Hr of
h1, . . . , hr respectively, and fix a mod 2. We will use the formula (8.24) as the replacement
of (9.5). For our purposes, a more convenient way to write (8.24) is

(9.8) µ(fj(g)) = sa,j · χ̃(Lj(G))

for deg g � 0 with g ∈ κ[u] satisfying deg g ≡ a mod 2, where

sa,j = (−1)deg leadT (hj)+[κ:F2](degT hj)·a

is a sign, G ∈ W [u] is a lift of g with unit leading coefficient, and Lj is an algebraic
function on the W -scheme W [u]/(Mgeom

Hj
)≤1 of remainders modulo the monic (Mgeom

Hj
)≤1;

Lj is denoted LHj in §8.
By (8.19), if Lj has unit value on some congruence class from W [u] then this unit value

lies in κ× × (1 + 4W ). Thus, the composite map of sets

χ̃ ◦ Lj : W [u]/(Mgeom
Hj

)≤1 → {0, 1,−1}

makes sense as a set-theoretic function, where the source is viewed as a finite free W -module
(not a W -scheme) and

χ̃ : κ× × (1 + 4W ) � {±1}
is the unique quadratic character killing (W×)2 (with χ̃ defined to be zero on 2W ).

Pick ξ ∈ W [u]/(Mgeom
Hj

)≤1. For representatives G ∈ W [u] of ξ with unit leading coeffi-
cient, (9.8) says (χ̃ ◦ Lj)(ξ) = sdeg g,j · µ(fj(g)), where g = G mod 2 ∈ κ[u] has the same
degree as G. In particular, (χ̃◦Lj)(ξ) only depends on g, not G. Since (Mgeom

Hj
)≤1 ∈ W [u] is

a monic polynomial, as G ∈ W [u] varies over all large-degree representatives of ξ with unit
leading coefficient we see that its reduction g ∈ κ[u] varies over all large-degree representa-
tives of the mod-2 residue class ξ ∈ κ[u]/M

geom
Hj

. Hence, we conclude that the set-theoretic
function χ̃ ◦ Lj factors through reduction mod 2 as a set-theoretic function

χj : κ[u]/M
geom
H → {0, 1,−1}.

In particular, for g ∈ κ[u] of large degree we have a formula µ(fj(g)) = sa,jχj(g) where
a = deg g mod 2.

Using these properties of χj , it is straightforward to adapt the argument from the odd-
characteristic case to show that Mmin

fj ,κ is the unique minimal “modulus of definition” for the
set-theoretic function χj , and then the rest of the odd-characteristic argument carries over
almost verbatim in the case of characteristic 2. For example, the absence of a lead-coefficient
contribution in the formula µ(fj(g)) = sa,jχj(g) in characteristic 2 corresponds to setting
m0 = m1 = 0 in the odd-characteristic calculations. �



IRREDUCIBLE SPECIALIZATION IN GENUS 0 57

Corollary 9.11. Assume f1, . . . , fr are as in Theorem 9.10. For κ′/κ any finite extension
and large n � 0 (depending on the Mfj ,κ’s) that may be chosen uniformly with respect to κ′,
Λκ′(f1, . . . , fr;n) may be defined by using any nonzero multiple M̂ of the Mmin

fj ,κ′’s in place
of the least common multiple Mκ′ as in Definition 9.4.

Proof. Once again, we present the argument for κ′ = κ and leave it to the reader to make the
routine check that all “sufficiently large” statements may be made uniformly with respect
to finite extensions of κ. We shall treat the case of odd characteristic, and we leave it to
the reader to check that the techniques used in the proof of Theorem 9.10 for characteristic
2 allow us to adapt the argument to work nearly verbatim in the case of characteristic 2.

Let Mj = Mmin
fj ,κ, and fix a nonzero common multiple M̂ of the Mj ’s. Let M be the

least common multiple. The results of Poonen cited in the proof of Lemma 9.3 ensure that
the ratio Λ̂κ(f1, . . . , fr;n) defined using M̂ has nonvanishing denominator for n � 0. The
proof of Theorem 9.10 carries over for Λ̂κ(f1, . . . , fr;n) except that (9.7) for Λ̂κ(f1, . . . , fr;n)
has both the inner sum in the numerator and the count in the denominator running over
R mod M̂ with the condition (fj(R),M) = 1 replaced by (fj(R), M̂) = 1. Therefore, it
suffices to show that the fraction (9.7) using M̂ is equal to (9.7) in its original form using
M .

Write M̂ = DM where D = D1D2, with D1 having all of its prime factors dividing
M and gcd(D2,M) = 1. Since the χj ’s admit the least common multiple M of the Mj ’s
as a common modulus of definition, the Chinese remainder theorem yields the following
comparison of inner sums in the numerator in (9.7) for Λ and Λ̂:

(9.9)
∑

(fj(R),M̂)=1

all χj(R) 6=0

χj1(R) · · ·χjk
(R) = c ·

∑
(fj(R),M)=1

all χj(R) 6=0

χj1(R) · · ·χjk
(R),

where c = #{R mod D2 | (fj(R), D2) = 1}qdeg D1 and the sum on the left side of (9.9) runs
over R mod M̂ while the sum on the right side of (9.9) runs over R mod M .

Similarly,

#{R mod M̂ : (fj(R), M̂) = 1, χj(R) 6= 0} = c ·#{R mod M : (fj(R),M) = 1, χj(R) 6= 0}

(the conditions imposed simultaneously over all 1 ≤ j ≤ r). The nonvanishing for denomi-
nators ensures c 6= 0, so upon taking ratios we see that c cancels and hence

Λ̂κ(f1, . . . , fr;n) = Λκ(f1, . . . , fr;n),

at least for n large. �

Conjecture 9.12. Let κ be a finite field and let f ∈ κ[u, T p] be irreducible in κ[u][T ] with
no local obstructions. If p = 2, assume f ∈ κ[u, T 4]. As n →∞,

#{g ∈ κ[u] : deg g = n, fj(g) prime} ?∼ Λκ(f ;n)Cκ[u](f)×
∑′

deg g=n

1
log(N(f(g)))

,

where Λκ(f ;n) is defined in Example 9.5 and is provably periodic in large n by Theorem
9.10.

Remark 9.13. In characteristic 2 our conjecture is incomplete because it does not make a
prediction for f = h(T 2) with h ∈ κ[u][T ] when h is not a polynomial in T 2. Due to (8.23),
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our lack of understanding of the properties of the (generally nonzero) function g 7→ s2(ωh,g)
is the obstruction to formulating a conjecture that covers such cases at the present time.

When 0 occurs in the period for Λκ(f ;n), we interpret the asymptotic in Conjecture 9.12
to mean the easily proved consequence (for such large n) that there is no g ∈ κ[u] in those
degrees such that f(g) is irreducible.

We collect sample periodic parts of Λ(f ;n) in Table 9.1 for κ = Fp. When the period is
not 1, we write the period so that the first term occurs when n � 0 and n ≡ 1 mod 4.

f(T ) Λ(f ;n)
T 3 + u (Examples 3.2, 4.5) 1, 2, 1, 0
T 5 + u (Examples 3.2, 4.5) 1, 0
T 12 + · · · (Examples 1.1, 5.2) 4/3
T 9 + · · · (Examples 3.4, 5.1, 5.3, 9.9) 0, 1, 2, 1
T 12 + · · · (Examples 3.5, 5.10) 2/3
(2u2 + u + 3)T 15 + · · · (Examples 3.6, 5.11) 1, 13/10
T 3 + u2 (Example 4.14) 1

Table 9.1. Examples of Λ(f ;n) for n � 0

Each of the polynomials in Table 9.1, aside from the last one, appeared in §3 as a plausible
counterexample to (3.8). (When Λ(f ;n) has 0 in its period, the counterexample is certain.)
The reader can easily check that the values of Λ(f ;n) in each example are in excellent
numerical agreement with the ratio column in the tables in Examples 3.2, 1.1, 3.4, 3.5, and
3.6.

Remark 9.14. For f as in Conjecture 9.12, the definition of Λκ(f ;n) involves the constraint
(f(g),Mmin

f,κ ) = 1. We do not have a conceptually satisfying explanation for this relative
primality condition, so let us explain how it was found.

Initial deviations from (1.2) were discovered with Examples 1.3, 1.4, and 3.2, and seemed
to require correction factors 0 or 2. Factorizations of f(g) in these cases revealed extreme
parity behavior: the number of irreducible factors of f(g) had the same parity for all
g (when deg g ≥ 1) and (trivially) f(g) was always squarefree. This suggested a link
to Möbius fluctuations, and our first guess at a correction factor was an expression, say
Λ̃κ(f ;n), defined like Λκ(f ;n) but lacking the condition gcd(f(g),Mmin

f,κ ) = 1 in the sums.
Periodicity of Λ̃κ(f ;n) follows by the same arguments as for Λκ(f ;n) in Theorem 9.10; in
fact, that proof was first developed for Λ̃κ(f ;n).

When we found numerically, for the polynomial in Example 3.4, that Λ̃κ(f ;n) was not
always the correct correction factor in (1.2), the reason that it failed (as seen in Example 9.9)
led to the consideration of the gcd constraint. Table 9.2 gives several examples over F3[u]
where Λ̃F3(f ;n) 6= ΛF3(f ;n). The first two are polynomials we have already met and
the remaining two are new nonmonic polynomials in T . The last example is particularly
interesting, since Λ̃F3(f ;n) and ΛF3(f ;n) lie on opposite sides of 1.

Numerically, in each example where Λ̃κ(f ;n) 6= Λκ(f ;n) for n � 0, data for Con-
jecture 9.12 has been an excellent fit with Λκ(f ;n). Moreover, in the examples where
Λ̃κ(f ;n) = Λκ(f ;n) for n � 0, we have found a common explanation for this equality:
µ(f(g)) = 0 when (f(g),Mmin

f,κ ) 6= 1 since, for every irreducible π dividing Mmin
f,κ , any root
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f(T ) Λ̃F3(f ;n) ΛF3(f ;n)
Example 3.4 1 (n ≥ 2) 0, 1, 2, 1, . . . (n ≥ 1)
Example 3.5 20/21 (n ≥ 3) 2/3 (n ≥ 3)
(u2 + 2u + 1)T 6 + (u2 + 2u)T 3 + 2u2 1 (n ≥ 2) 0, 2, 0, 2, . . . (n ≥ 1)
(u + 2)T 12 + u2T 6 + u3 + 2 6/7 (n ≥ 3) 6/5 (n ≥ 4)

Table 9.2. Examples where Λ̃F3(f ;n) 6= ΛF3(f ;n) for n � 0

of f(T ) in κ[u]/π is a multiple root (that is, it is also a root of ∂u(f(T )) = (∂uf)(T )). This
includes the vacuous case of those π dividing Mmin

f,κ with ωf (π) = 0. It would be interesting
to know if this is always the explanation.

Remark 9.15. The sequence Λκ(f ;n) is sensitive to our choice of sampling regions, taken to
be the locus of all polynomials of degree n for increasing n. (The classical Hardy–Littlewood
conjecture also uses a specific family of sampling regions: Z ∩ [1, x].) If we instead sample
over monic g of each degree, then we need a monic version of Λκ(f ;n). This is an effectively
computable, but possibly new, periodic sequence (with mod 4 periodicity, etc., by the same
arguments). For example, if κ = F5 then µ(g5 + u) has both 1 and −1 as values as g runs
over polynomials with odd degree, but only −1 is a value if we restrict to monic g of odd
degree. Thus, we expect a change in the distribution of irreducibility counts for g5 +u if we
restrict attention to monic g, and numerical data support this (in agreement with a monic
version of Λκ).

Appendix: Convergence of Hardy–Littlewood constants

We want to discuss, in a general context, how products like C(f) in (2.4) and (3.7) can
be computed accurately. Some elementary representation theory will help us write down
rapidly-converging product formulas.

Rather than restrict attention to polynomials in Z[T ] or κ[u][T ], we allow polynomials to
lie in OK,S [T ], where OK,S is a ring of S-integers for a global field K, with S containing the
set S∞ of archimedean places in the number-field case. Let f be the product of r elements
f1, . . . , fr ∈ OK,S [T ] that are irreducible in K[T ], pairwise coprime in K[T ], and have no
local obstructions at places on OK,S . (The last condition means each fj defines a non-zero
function on the residue field of each place). Set

C(f) =
1

Res(OK,S)r

∏
v 6∈S

1− ωf (v)/ Nv

(1− 1/ Nv)r
,

where Res(OK,S) denotes the residue at s = 1 for the zeta-function ζK,S of Spec(OK,S).
Such numbers are called Hardy–Littlewood constants, and agree with (2.4) and (3.7) for
OK,S = Z and OK,S = κ[u].

Our convention is that

(A.1)
∏
v 6∈S

1− ωf (v)/ Nv

(1− 1/ Nv)r
:=
∏
n≥1

∏
Nv=n
v 6∈S

1− ωf (v)/ Nv

(1− 1/ Nv)r
.

The convergence of the right side will usually only be conditional. If we are working over a
number field, we can order the terms either by increasing value of the norm or according to
the rational prime below each place. These both converge (with the same value) if either
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does since the subproduct over places with degree > 1 is absolutely convergent and the
factors at places with degree 1 have the same order of appearance in both such orderings
of the product. More generally, if K/K0 is a finite extension of global fields, then we can
write (A.1) as an infinite product indexed by places of K0 in order of increasing norm.

Definition A.1. Let L be a field and h ∈ L[T ] be nonzero. If L has characteristic p > 0
and h(T ) = H(T pm

) with m ≥ 0 maximal, then H(T ) is the p-free part of h(T ). If L has
characteristic 0, the p-free part of h is defined to be h.

The p-free part of any irreducible in L[T ] is separable and irreducible, but the p-free part
of a reducible polynomial may be inseparable.

Theorem A.2. The infinite product (A.1) converges. Convergence is absolute if and only
if the p-free part of each fj is linear, where p is the characteristic of K.

Proof. Note

(A.2)
∏
v 6∈S

1− ωf (v)/ Nv

(1− 1/ Nv)r
=
∏
v 6∈S

(
1 +

r − ωf (v)
Nv

+ O

(
1

Nv2

))
.

Taking logarithms termwise in the product and stripping away absolutely convergent sub-
sums reduces the proof of convergence to a check that the series

∑
v 6∈S(r − ωf (v))/Nv

converges, where the terms are added in the same sense that terms in (A.1) are multiplied.
Since the fj ’s are pairwise coprime in K[T ],

(A.3) ωf (v) = ωf1(v) + · · ·+ ωfr(v)

for all but finitely many v. (The lack of any error term in (A.3) is due to the fact that we
are considering polynomials in one variable. In the multivariable analogue of Theorem A.2
there are error terms and these can be estimated by using the Lang–Weil estimate.) By
(A.3) we are reduced to checking convergence of

(A.4)
∑
v 6∈S

1− ωfj
(v)

Nv
,

where we remind the reader that fj is irreducible.
Let Fj ∈ OK,S [T ] denote the p-free part of fj , so ωfj

(v) = ωFj (v) for all v 6∈ S. (When K
is a number field, Fj = fj .) Since each Fj is irreducible in K[T ], for all but finitely many v
the number ωFj (v) of solutions to Fj = 0 in the residue field Ov/mv equals the number of
relative places of degree 1 lying over v in the field K[T ]/(Fj(T )). Thus,∑

Nv≤x
v 6∈S

ωfj
(v)

Nv
=
∑

Nw≤x

1
Nw

+ const. + o(1),

where v runs over places of K outside S and w runs over places of K[T ]/(Fj). For w running
over places in any global field E,∑

Nw≤x

1
Nw

= log log x + cE + o(1)

for some constant cE . Applying this to E = K[T ]/(Fj(T )) and to E = K, we subtract and
see that (A.4) converges.

Now it remains to check that the product (A.2) converges absolutely if and only if each
(irreducible) fj has linear p-free part Fj . Absolute convergence of a product, by definition,
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means absolute convergence of its related series of logarithms, and in the case of (A.2) this
translates into convergence of

(A.5)
∑
v 6∈S

|r − ωf (v)|
Nv

.

When all Fj ’s are linear, by (A.3) we have ωf (v) =
∑

ωFj (v) = r for all but finitely
many v, so all but finitely many terms in (A.5) are 0. Conversely, assume some Fj is
nonlinear. By the Chebotarev density theorem, for a positive proportion of v all Fj ’s split
completely modulo v. (Here we need that the Fj ’s are separable, or equivalently that the
field K[T ]/(Fj) is separable over K.) Since ωFj (v) = deg Fj for all but finitely many of
these v, we see that if some Fj is nonlinear then ωf (v) =

∑r
j=1 deg Fj > r for such v. This

makes the v-th term in (A.5) at least as large as 1/ Nv for a positive proportion of v, so
(A.5) diverges. �

For numerical work, we need absolutely convergent products for Hardy–Littlewood con-
stants. To convert (A.2) into an absolutely convergent product, we will multiply each factor
by an additional term so the v-th factor is 1 + O(1/ Nv2). This has been discussed in the
literature when K = Q [4], [10], [26], [27], [28], [29].

First we set up notation. Let f1, . . . , fr ∈ OK,S [T ] satisfy the hypotheses of (3.6): they
are irreducible and pairwise coprime in K[T ], and their product f does not have a local
obstruction at any v 6∈ S. For any finite place v, let ζK(v, s) = 1/(1 − Nv−s) be the v-th
Euler factor of ζK(s). Set Kj = K[T ]/(fj). Writing ζKj (s) as a product over finite places
of K (rather than of Kj), let ζKj (v, s) be the v-th factor: ζKj (s) =

∏
v ζKj (v, s). Note that

ζKj (v, s) is the reciprocal of a polynomial in Nv−s with degree [Kj : K] for all but finitely
many v. The number ζKj (v, 1) = ζKj (v, s)|s=1 is what matters in the next theorem.

Theorem A.3. With notation as above, the Hardy–Littlewood constant equals

1
Res(OK1,S1) · · ·Res(OKr,Sr)

∏
v 6∈S

(
1−

ωf (v)
Nv

)
ζK1(v, 1) · · · ζKr(v, 1),

where the product is absolutely convergent. Here v runs over the places of K not in S, and
Sj is the set of places of Kj that lie over S.

The original infinite-product definition of these constants is theoretically important; it
shows up, for example, in work on upper bounds related to the classical Hardy–Littlewood
conjecture [3, Lemma 3]. Before proving Theorem A.3, we give examples in Q and in F2(x).

Example A.4. We write the Hardy–Littlewood constant for primes of the form n2 + 1 in
Z as an absolutely convergent product. Here K = Q, S = S∞, r = 1, f1(T ) = T 2 +1, K1 =
Q(i), Res(OK1) = π/4, ωf1(p) = 1 + χ4(p), and ζK1(p, s) = (1− p−s)−1(1− χ4(p)p−s)−1.

Theorem A.3 says, after some algebra,

(A.6)
∏
p

1− ωf (p)/p

1− 1/p
=

4
π

∏
p

(
1− χ4(p)

p− 1

)
1

1− χ4(p)/p
.

Concretely, we have interlaced the Euler product for π/4 =
∏

p(1 − χ4(p)/p)−1 into the
product defining C(T 2 + 1). Using PARI, we collect in Table A.1 approximations to both
sides of (A.6). The improvement on the right side is clear.
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n Left side of (A.6) Right side of (A.6)
102 1.351546 1.372739
103 1.370454 1.372814
104 1.371023 1.372813
105 1.372350 1.372813
106 1.372811 1.372813

Table A.1. Comparison of (A.6) using p ≤ n

Example A.5. Let K = F2(u) and f(T ) = T 2 + (u4 + u2)T + u5 + u3 + u2 + u + 1, viewed
in F2[u][T ] (here S = {∞} and r = 1). The field K1 = K(θ), where f(θ) = 0, ramifies over
the places u and u + 1 of F2(x). For all primes π in F2[u], ωf (π) = 1 + χ(π), where χ is
the nontrivial character on Gal(K1/K). Since Res(F2[u]) = 1/ log 2, Theorem A.3 says

(A.7) log 2
∏
π

1− ωf (π)/ Nπ

1− 1/ Nπ
=

1
Res(OK1,S1)

∏
π

(
1− χ(π)

Nπ − 1

)
1

1− χ(π)/ Nπ
.

To compute Res(OK1,S1), write ζK1(s) = L(z)/(1− z)(1− 2z), where z = 2−s. Since ∞
splits in K1, Res(OK1,S1) = L(1/2)/2 log 2. We write L(1/2) rather than L(1) since we are
viewing L as a function of 2−s. Since K1 has genus 3 by the Hurwitz formula (a little care is
needed since ramification over u and u + 1 is wild), L(z) must have degree 6. A calculation
shows L(z) = 1 + z + 4z5 + 8z6. The factor outside the product on the right side of (A.7)
is thus (8/7) log 2. In Table A.2 we compare the two sides of (A.7).

n Left side of (A.7) Right side of (A.7)
8 1.184185 log 2 1.211391 log 2
9 1.193363 log 2 1.211409 log 2
10 1.201499 log 2 1.211417 log 2
11 1.213269 log 2 1.211423 log 2
12 1.211185 log 2 1.211422 log 2

Table A.2. Comparison of (A.7) using deg π ≤ n

Now we prove Theorem A.3, inspired by the abelian case over Q in [4, p. 124].

Proof. Our goal is to introduce additional factors into (A.2) to kill (r−ωf (v))/ Nv, making
the v-th term 1 + O(1/ Nv2) and thus making convergence absolute.

In the function field case, the zeta function for Kj has the same Euler factors as the zeta
function for the maximal separable subextension over K. Thus we can replace each fj with
its p-free part, so without loss of generality all fj are separable.

Now we recall a convenient formula for ωf (v) − r in terms of representation theory,
following [17, p. 26]. By (A.3), we have

(A.8) ωf (v) = ωf1(v) + · · ·+ ωfr(v)

for all but finitely many v. Since ωfj
(v) counts solutions to fj = 0 in Ov/mv, we can

express ωfj
(v) in terms of group characters at a Frobenius element over v. Specifically, let

K ′
j be a Galois extension of K containing Kj , and set Gj = Gal(K ′

j/K), Hj = Gal(K ′
j/Kj).

The Gj-action on the distinct roots of fj is isomorphic to the left Gj-action on Gj/Hj .
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Linearize this action to a permutation representation ρj of Gj on C[Gj/Hj ] = IndGj

Hj
(C),

with character χj . Then ωfj
(v) = χj(Frobv), where Frobv is any Frobenius over v in Gj , at

least when v is unramified in K ′
j . Only a finite number of v are excluded by this constraint.

There is a trivial subrepresentation of ρj , and it occurs only once since ρj is a quotient of
the regular representation of Gj . Write ρj = 1Gj ⊕ ρ′j and χj = 1 + χ′j , so ρ′j has no trivial
subrepresentation. Substituting ωfj

(v) = χj(Frobv) into (A.8),

(A.9) ωf (v) = r + χ′1(Frobv) + · · ·+ χ′r(Frobv)

for all but finitely many v. Therefore the 1/ Nv part of the factor at v in (A.2) is killed
when the factor at v is multiplied by

(A.10)
r∏

j=1

1
det(I − ρ′j(Frobv) Nv−1)

=
r∏

j=1

(
1 +

χ′j(Frobv)
Nv

+ O

(
1

Nv2

))
,

at least for all but finitely many v.
We can write (A.10) in terms of Euler factors at s = 1 for the zeta functions of K and

Kj , but this requires some notation as follows. For a Galois extension of global fields E/F
and a finite-dimensional complex representation ρ of Gal(E/F ), the Artin L-function of ρ
is an Euler product over places of F . For any place v of the base F , let L(v, ρ, s) be the
v-Euler factor of L(ρ, s). This is the reciprocal of a polynomial in Nv−s.

Since ρ′j is nearly a permutation representation, the behavior of local factors of Artin
L-functions under induction implies

1
det(I − ρ′j(Frobv) Nv−1)

=
ζKj (v, 1)
ζK(v, 1)

for all but finitely many places v of K. (The notations ζK(v, s) and ζKj (v, s) were defined
just before Theorem A.3.) Therefore (A.9) and (A.10) imply

(A.11)
1− ωf (v)/ Nv

(1− 1/ Nv)r

r∏
j=1

ζKj (v, 1)
ζK(v, 1)

= 1 + O

(
1

Nv2

)
.

Since ζK(v, 1) = 1/(1 − 1/ Nv), the denominators on the left side of (A.11) cancel each
other.

Using (A.11), write

(A.12)
∏
v 6∈S

1− ωf (v)/ Nv

(1− 1/ Nv)r
=
∏
v 6∈S

(
1−

ωf (v)
Nv

)
ζK1(v, 1) · · · ζKr(v, 1) ·

∏
v 6∈S

r∏
j=1

ζK(v, 1)
ζKj (v, 1)

.

On the right, the first product over v is absolutely convergent by (A.11) and the second
product over v converges since the other two products over v converge. The product on the
left side of (A.12), and thus the second product on the right side, is usually only conditionally
convergent.

We now evaluate the second product on the right side using a method that will not
require a priori knowledge of its convergence. The partial products there involve the Euler
factors of the zeta functions of K and the Kj ’s at s = 1. Asymptotics for such products are
governed by the generalization of the Mertens’ asymptotic

∏
p≤x(1− 1/p)−1 ∼ eγ log x: as

w runs over the places of any global field F , and S is a finite set of places (with S containing
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S∞ in the number-field case),

(A.13)
∏

Nw≤x
w 6∈S

1
1− 1/ Nw

∼ Res(OF,S)eγ log x

as x →∞. This goes back to [35, p. 274] when F is a number field and S = S∞. For a proof
over global fields, see [22]. Using (A.13), the second product on the right side of (A.12)
equals Res(OK,S)r/Res(OK1,S1) · · ·Res(OKr,Sr), where Sj is the set of places of Kj lying
over S. (The powers of eγ log x that arise in the numerator and denominator asymptotics
from (A.13) exactly cancel each other.) Now divide both sides of (A.12) by Res(OK,S)r. �

When K = Q, the formula in Theorem A.3 agrees with a formula of Davenport and
Schinzel [10, p. 182], but the structure of our formula is clearer for our purposes.

Using representation theory more fully, Kurokawa [17, Theorem A2] obtained another
rapidly convergent product that we have found to be useful in some calculations.

Remark A.6. It is tempting to evaluate the second product over v on the right side of
(A.12) by using

r∏
j=1

ζK,S(s)
ζKj ,Sj (s)

=
ζK,S(s)r

ζK1,S1(s) · · · ζKr,Sr(s)
→

Res(OK,S)r

Res(OK1,S1) · · ·Res(OKr,Sr)

as s → 1+ and invoking the analogue of Abel’s theorem for Euler products. This argument
gives the correct answer and is the method in [10, p. 183], but it is invalid because there
is no direct analogue of Abel’s theorem for Euler products. Consider [35, pp. 279–280]
the identity ζ(2s− 1)/ζ(s) =

∏
p(1− p−s)/(1− p1−2s) for Re(s) > 1 (with the right side

absolutely convergent in this open half-plane). The left side has an analytic continuation
to C. If we formally let s = 1 then the product on the right is (conditionally) convergent
with value 1 when we multiply terms in order of increasing p, but the analytic continuation
has value 1/2 at s = 1.

To test (1.8) numerically for a specific f , it is necessary to accurately estimate the associ-
ated Hardy–Littlewood constant, but this is rather time-consuming; in fact, this estimation
is usually the most delicate part of numerical testing of (1.8). We therefore conclude this
appendix by giving a consequence of the combination of (1.2) in the separable case and
(1.8) in the inseparable case that involves no Hardy–Littlewood constants and so is much
easier to check in practice.

Suppose p 6= 2 and f(T ) ∈ κ[u][T p] satisfies the Bouniakowsky conditions (we can also
take p = 2 if f(T ) ∈ κ[u][T 4]). We have f(T ) = F (T pm

) for a maximal m ≥ 1, and this p-
free part F (T ) of f(T ) clearly satisfies the Bouniakowsky conditions and F (T ) is separable
in T . We expect that f(T ) satisfies (1.8) and F (T ) satisfies (1.2). The proof of Theorem
A.2 shows C(f) = C(F ), so dividing (1.8) for f by (1.2) for F cancels out the contribution
of the mysterious Hardy–Littlewood constants and leads to the prediction

(A.14)
#{g ∈ κ[u] : deg g = n, f(g) prime}
#{g ∈ κ[u] : deg g = n, F (g) prime}

→ Λκ(f ;n)
pm

as n → ∞; the right side of (A.14) is periodic in n mod 4 for n � 0, so this limit is
understood to be taken for (large) n running through a fixed congruence class modulo 4.
The two sides of (A.14) can be computed independently for increasing n (using (4.12) to
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compute Möbius values in Λκ(f ;n)), and there are no Hardy–Littlewood constants on either
side.
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