
CSUMS: Undergraduate Computational Research in

Arithmetic Geometry

1 Major Highlights

• A group of 6 undergraduate students each year will do research with a computational
flavor in number theory and arithmetic geometry. Each project will be directly relevant
to research on the Birch and Swinnerton-Dyer conjecture and on modular functions.

• Students will become well versed in how to use computation to do research in mathe-
matics, and these skills will carry over to future graduate or professional work.

• Students will write proposals, give presentations, and speak at national workshops.

• This project will strengthen the University of Washington mathematics department’s
senior thesis program and course offerings.

• Research projects will involve Sage, which is free open source mathematical software.

2 Introduction

“The history of mathematics, and of number theory in particular, is studded with
examples of general conjectures made after the examination of special cases actually
calculated, and the generalization finally proved.”

— Oliver Atkin, 1968.

The proposed project is for a group of 6 undergraduate students each year to do research
with a strong computational emphasis in number theory and arithmetic geometry, where each
project will be relevant to research on the Birch and Swinnerton-Dyer conjecture (BSD con-
jecture) or modular functions. Participants will become well versed in the practical use of
computation in advanced mathematical research, gain knowledge about mathematical soft-
ware, make long-term connections with a vibrant research and development community, and
contribute tools that will be used by expert researchers and students. Number theory is a
venerable research area that draws strongly from many areas of mathematics, and the BSD
conjecture is one of the deepest problems in number theory, so student research will make
connections with a wide range of mathematics. Modular curves, and the functions which uni-
formize them, have a complexity that belies their classical origins. They are the sine qua non
of modern number theory, and the key to such recent advances as Richard Borcherds’ Fields
Medal work on the Monstrous Moonshine Conjecture. Our program is structured so that stu-
dents will learn teaching and writing skills, which will prepare them to apply computational
mathematics techniques in graduate school and industry.

The PI carried out a project with 6 students on computational verification of the Birch
and Swinnerton-Dyer conjecture during Summer 2004 at Harvard University (see ? and ?).
The co-PI directed the research of 5 students from Columbia University during that same
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summer. The current proposal seeks to extend these to a more ambitious project at Uni-
versity of Washington (UW) involving a cohort of 6 students each year for three years, with
stronger computational and educational components. The PI’s experience collaborating with
undergraduates in research projects has convinced him that undergraduates can do work that
is esteemed by the mathematical research and education communities.

UW has many active researchers working on number theory, arithmetic geometry, and
related areas, including William Stein (PI on this grant), Ralph Greenberg, Neal Koblitz,
Trevor Arnold (postdoc on this grant), and Chuck Doran (co-PI on this grant).

2.1 Prior Support and Related Proposals

This is a new project, and as such has received no direct prior support. However, the PI
has received substantial support over the last 6 years for a range of joint research projects
with undergraduates. The PI received support from the Harvard College Research Program
for 8 student research projects. The PI was awarded NSF grant DMS-0555776 (and DMS-
0400386) in the amount of $177,917 for the period 2004–2007, and funds from this grant were
used to run a workshop at UCSD (Sage Days 1) that had one featured undergraduate speaker
(Steven Sivek, MIT) and that several undergraduates participated in (David Roe, MIT; Alex
Clemesha, UCSD; and Naqi Jaffery, UCSD). That grant was also used to partially fund Sage
Days 2 (October 2006 at UW), in which 6 undergraduates actively partcipated and 1 gave
a featured talk. The PI received support for similar workshops in January 2007 at IPAM
(UCLA) and from VIGRE/PIMS for Sage Days 4 (June 2007 at UW). He has also received
full funding for two upcoming Sage Days workshops on number theory using Sage—one is at
the Clay Math Institute in October 2007, and another is at the Heilbronn Institute in Bristol,
UK in November 2007. The PI has also received funding from the department VIGRE grant
for 6 undergraduate students to work on research during the 2006–2007 academic year.

The PI received NSF grant DMS-0653968 from the ANTC program to support his personal
research for 2007–2010 on the Birch and Swinnerton-Dyer conjecture. The PI also received
NSF grant DMS-0703583 to support one postdoc for three years, who will work on developing
linear algebra algorithms and implementations for Sage; his work will be important for some
of the student projects, and he will also serve as a mentor. The PI is also currently applying
for an NSF FRG grant jointly with Andrew Booker, Noam Elkies, Brian Conrey, Michael
Rubinstein, and Peter Sarnak to provide more postdoctoral and graduate-student oriented
supported for a related project that involves invariants of modular forms and L-functions.

The co-PI will submit in November 2007 a proposal to NSF on “Geometry, Periods, and
Moduli of Calabi-Yau Manifolds” which includes funding for his research with collaborator
Adrian Clingher and graduate students Ursula Whitcher and Jacob Lewis on the differential
equations satisfied by modular parametrizations.

The purpose of the present proposal is to complement the above two NSF-funded research
projects, and the co-PI’s proposed research project, with an extensive undergraduate presence.
This will have a significant positive impact on the training of a cohort of undergraduates in
the use of serious computational techniques in mathematical research.
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3 Nature of Student Activities

The Birch and Swinnerton-Dyer conjecture (BSD conjecture) is one of the central problems in
number theory. For example, it is one of the seven Clay Math Institute million dollar millenium
prize problems ?. Students will do computational research into the BSD conjecture, and in so
doing they will develop substantial skills in mathematical research.

Modular curves form a key entry-point into modern number theory. In addition to their
defining property – that of describing moduli of families of elliptic curves with conditions –
they are themselves gems of arithmetic geometry. By focusing on the case of modular curves of
genus zero, the study of uniformization of these curves by modular functions reduces to working
with explicit q-series. This reduction is already sufficient for cutting-edge applications such as
Moonshine, and yet is extremely accessible both computationally and mathematically.

In Section 3.1 we describe the BSD conjecture, then in Section 3.2 we detail some aspects
of the moonshine modular functions. In Section 3.3 we introduce the mathematical software
Sage. Finally, Section 3.4 describes several research projects that the students would attack.

3.1 The Birch and Swinnerton-Dyer Conjecture

Research into the Birch and Swinnerton-Dyer conjecture reflects the rewarding interplay of
theory with explicit computation in number theory, as illustrated by Bryan Birch ?:

“I want to describe some computations undertaken by myself and Swinnerton-Dyer
on EDSAC by which we have calculated the zeta-functions of certain elliptic curves.
As a result of these computations we have found an analogue for an elliptic curve
of the Tamagawa number of an algebraic group; and conjectures (due to ourselves,
due to Tate, and due to others) have proliferated.”

In this section we describe this famous conjecture.
An elliptic curve E is a nonsingular projective cubic curve over the rational numbers that

is defined by an equation
y2 + ay + b = x3 + cx2 + dx + e,

with a, b, c, d, e ∈ Q. For example, the equation y2 + y = x3 − x defines an elliptic curve.
The set E(Q) of rational points on E forms a natural finitely generated abelian group, so

E(Q) ≈ Zr ⊕ T,

where r ≥ 0 is an integer called the rank of E and T is a finite abelian group. For example, for
y2 + y = x3−x, we have E(Q) ≈ Z, with generator the point (0, 0). The sum of two elements
P,Q ∈ E(Q) is obtained by drawing the line through P and Q, finding the third point R of
intersection with E, then considering the line L through R and the unique projective point at
infinity on E; the other point of intersection of L with E is the sum P + Q. For example, on
y2 + y = x3 − x, we have

(6, 14)⊕ (2,−3) =
(

161
16

,−2065
64

)
.
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Note that the sum is a non-obvious new solution to y2 + y = x3−x; amazingly, one can easily
generate arbitrarily complicated solution this way.

By counting the number of points on E modulo each prime p, we also obtain a sequence

ap = p + 1−#E(Fp),

one for each prime number. For example, for y2 + y = x3 − x the numbers ap with p < 50 are

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
ap −2 −3 −2 −1 −5 −2 0 0 2 6 −4 −1 −9 2 −9

We put these counts together in a generating function

L(E, s) =
∏
p

1
1− app−s + p1−2s

,

called the L-series of E (in fact, one must slightly modify finitely many “bad factors”, but this
is a technicality that we ignore here). The deep modularity theorem of Wiles et al., which was
the key step in Wiles’s proof of Fermat’s Last Theorem, implies that L(E, s) extends uniquely
to a complex analytic function on the whole complex plane. It thus makes sense to consider
the behavior of the analytic function L(E, s) in a neighborhood of s = 1.

We now introduce the BSD conjecture, which is the union of the following two conjectures:

Conjecture 3.1 (Birch and Swinnerton-Dyer). Let E be an elliptic curve over Q. Then the
rank r of E(Q) is equal the order of vanishing ords=1 L(E, s) of L(E, s) at s = 1.

Conjecture 3.1 exactly as stated is the million dollar Clay Math problem. There is also a
more refined conjecture, which involves several quantities that we will not define:

Conjecture 3.2 (Birch and Swinnerton-Dyer). Let E and r be as above. Then

L(r)(E, 1)
r!

=
#X(E) · ΩE · RegE

#E(Q)2tor
·
∏
p|N

cp.

The goal of this proposal is for a group of undergraduates to carry out a wide range
of computational and theoretical investigations into elliptic curves motivated by the above
conjectures, and produce useful results, conjectures, data, and software.

The PI expects that students in the project will continue to contribute after their first
year. Stein is a co-PI on Jim Morrow’s summer mathematics REU at UW, and some students
from this project will likely participate in the REU. For example, Stein worked with Emily
Kirkman and Tom Boothby during the academic year on research, and they both participated
in the REU during Summer 2007. The topic of Morrow’s REU has traditionally been Inverse
Problems in Electrical Networks, but the REU has grown to include number theory.
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3.2 Moonshine modular functions

“It has been approximately twenty-five years since John McKay remarked that
196 884 = 196 883 + 1. That time has seen the discovery of important structures,
the establishment of another deep connection between number theory and algebra,
and a reinforcement of a new era of cooperation between pure mathematics and
mathematical physics. It is a beautiful and accessible example of how mathematics
can be driven by strictly conceptual concerns, and of how the particular and the
general can feed off each other. ” — Terry Gannon, 2004.

The remark of McKay referred to in the quote ? is the observation that the left hand side,
which is the coefficient of q = e2πıτ in the q-series expansion for the elliptic modular function
j(τ) about τ = ı∞

j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + 864299970q3 + . . . ,

is 1 more than the smallest dimension of nontrivial irreducible representations of the monster
sporadic simple group. In fact, the coefficient of q2 in this expansion minus the coefficient of q
equals another such dimension, and there are recursions relating the rest of the coefficients to
dimensions of the irreducible representations of the monster. Generalizations of this observa-
tion, due to Conway and Norton and which apply to normalized q-series for many genus zero
modular functions, go under the heading of the Monstrous Moonshine Conjecture ?.

Calculations by computer have played an important role in the exploration of Moonshine
from very early on. This includes computations by Atkin, Fong, and Smith which first estab-
lished the existence of the moonshine module ?. On a much more basic level, the accessibility of
the basic mathematical ingredients has led to highly successful non-Moonshine computational
projects involving undergraduates. In particular, Imin Chen (then a Queens University under-
graduate, now on the faculty at Simon Fraser University) and Noriko Yui (Queens University)
used computational methods to explore generalizations of the theory of principal moduli for
Moonshine modular functions ?. More recently, Bong Lian (Brandeis University) supervised
the Schiff Fellowship research of Joshua Wiczer, resulting in a complete list of uniformizing
differential equations for the moonshine modular functions. They have posted their joint paper
“Genus Zero Modular Functions” to the arXiv as math.NT/0611291.

For the purposes of our undergraduates working in this area, the primary mathematical
objects of study will be the modular functions which arise in the Moonshine conjectures.
These generalize the elliptic modular function j(τ) above. Like j(τ) they are invariant under
certain replacements τ 7→ (aτ + b)/(cτ + d). For j(τ), these transformations are those in the
elliptic modular group PSL(2,Z) ⊂ PSL(2,R). The function j(τ) itself can be thought of as
uniformizing the genus zero modular curve with one cusp (at ı∞) and two elliptic points, one
each of order 2 and 3. This is nothing but the j-line, the (coarse) moduli space for elliptic
curves over C, realized now as the (genus zero) quotient of the upper half plane by the action of
PSL(2,R). For the more general moonshine modular functions there are analogous subgroups
of PSL(2,R) and corresponding genus zero quotients of the upper half plane by these groups.
This raises the question: How can one describe these generalizations of j(τ) and of PSL(2,Z)?
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The most classical approach involves first the subgroup Γ0(n) ⊂ PSL(2,Z), consisting
of a, b, c, d ∈ Z such that c is congruent to 0 modulo n, and then its extension Γ0(n)+n ⊂
PSL(2,R) by the Fricke involution τ 7→ −1/(nτ). The quotient of the upper half plane by this
first is the modular curve X0(n). The quotient of the upper half plane by the latter is denoted
X0(n)+n, and it has genus zero when X0(n) does. For certain n, however, X0(n)+n may have
genus zero when X0(n) does not (e.g., for n = 11). The generalization of j(τ) for Γ0(n)+n is
then a parameter on the genus zero curve X0(n)+n, expanded about a cusp (placed at ı∞).

The curve X0(n)+n sits naturally in the surface obtained by taking the product of two
copies of the upper half plane and quotienting out by PSL(2,R)× PSL(2,R) o Z/2Z, where
the factors of PSL(2,R) act separately on the two copies of the upper half plane and the
factor of Z/2Z exchanges the copies. The curve X0(n)+n so presented is actually cut out by a
modular equation, the implicit equation given by an algebraic relation between the functions
j(τ) and j(nτ). One problem with modular equations is their complexity. Already, for n = 2,
the modular equation for X0(2)+2 takes the form

F2(x, y) = (x2 − y)(y2 − x)− 393768 (x2 + y2)− 42987520 x y

−40491318744 (x + y) + 12098170833256 .

By contrast, there are simple parametrizations of modular equations, and a simple geo-
metric explanation for many of these. Investigating the properties of such parametrizations
using tools from algebra, geometry, and complex analysis, and differential equations will be
the focus of the undergraduates working on this project.

3.3 Sage: Open Source Mathematical Software

“Students at UW did not have any easy way to get started doing mathematics
research (no washing petri dishes, etc.). This is something that I have experienced
personally and know that many of my math major friends are frustrated about.
Sage is opening the door to advanced mathematics research to many students that
wouldn’t have this chance otherwise.” — Yi Qiang, UW undergraduate.

The PI is the main author and director of the Sage ? open source mathematical software
project, which he started in January 2005, which nows has well over 1000 users. Both the Sage
development model and the technology itself is distinguished by a strong emphasis on openness,
community, cooperation, and collaboration: Sage is about building the car, not reinventing the
wheel. Sage is over two hundred thousand lines of new code that uses standard open source
libraries and programs (such as GAP ?, Maxima ?, Singular ?, PARI ?, and Python) to create
unified and powerful open source mathematical software.

Sage is in some ways similar to the popular commercial systems such as Maple or Math-
ematica, but is designed to focus much more on cutting edge mathematical research. For
example, in addition to traditional symbolic computation like in Maple or Mathematica, one
can also define a huge range of mathematical structures such as groups, rings, fields, monoids,
modules, vector spaces, elliptic curves, number fields, L-functions, ζ-functions, modular forms,
and other more exotic objects in Sage. In this sense, Sage is similar to Magma ?, which is
the most successful commercial system aimed at advanced research in algebra, group theory,
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and arithmetic geometry. However, Sage has much more functionality for computing with
L-functions of elliptic curves than any other system (including Magma) due to work of the
PI, C. Wuthrich, M. Rubinstein, T. Dokchitser, M. Watkins, and others, which makes Sage
appropriate for this project.

Some differences between Sage and the commercial systems mentioned above are that Sage
is free, the source code to all of Sage is available for anyone to view, and development work
on Sage is done in the open by nearly 100 developers.

Undergraduate work on Sage has been a key reason for the rapid growth and fresh ideas
in Sage. NSF support is critical to the involvement of undergraduates in Sage development
and this project. For example, instead of designing web pages for another department, the
mathematics major Tom Boothby has been working for the PI on Sage development and
number theory research.

3.4 Specific Projects

This section describes some specific projects that the students would work on during the 3
years that this program would run. Before each year the projects will be re-evaluated by the
PI, co-PI, and postdoc in light of previous experiences and student progress.

The projects listed here all involve sophisticated mathematics, but the PI is confident
proposing them, because he has worked with over two dozen undergraduates at Harvard,
UCSD and UW, and has found repeatedly that given sufficient encouragement, time, support,
and a genuine belief in their potential, these students are successful. In fact, many of the
projects listed below grew out of undergraduate research that the PI carried out with students
during the last 6 years. Also, keep in mind that each student will be involved in this project
for a full academic year, so students have more time to master and absorb deep mathematics.
Moreover, the PI has written extensively on all the topics discussed below, in connection with
courses he has taught, so ample reading materials are available.

3.4.1 Computational Investigation of Conjecture 3.1

Conjecture 3.1 of Section 3.1 has been verified for millions of particular elliptic curves of rank
0, 1, and 2 by work of Cremona, Watkins, and others ??, and for many curves of rank 3 using
?. The paper ? discusses data about many elliptic curves that (appear to have) rank 4, which
we have enumerated. For interesting and deep reasons, Conjecture 3.1 has not been verified
for even a single elliptic curve of rank 4, e.g., the curve E given by

y2 + xy = x3 − x2 − 79x + 289,

of rank 4, with generators (−9, 19), (−8, 23), (−7, 25), (4,−7). It is known that ords=1 L(E, s) =
2 or 4, but there is no known way to decide which. Students will compute L′′(E, 1) to sev-
eral hundred (or even thousand) decimal digits of precision for many specific elliptic curves
of rank 4. This—of course—can never prove that L′′(E, 1) = 0, without further information,
but it could disprove it. Either way, this computation will improve algorithmic and practical
tools for computing with L-series, e.g., drawing on ?.
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Students will also analyze distributional statistics (related to the Sato-Tate distribution;
see ?) for the integers ap = p+1−#E(Fp) for hundreds of elliptic curves of rank 4 and compare
this to statistics for elliptic curves of rank 2. This will extend a project the PI directed last
year with Barry Mazur (Harvard) and undergraduates Chris Swierczewski and Bobby Moretti
of UW.

3.4.2 Computational Investigation of Conjecture 3.2

Conjecture 3.2 of Section 3.1 has been nearly verified for all but 18 of the 2463 (optimal)
elliptic curves in Cremona’s landmark book ?, due to work of the PI, C. Wuthrich (see ?), and
many students. Students will finish this verification (except for the 18 rank 2 curves); this is
still a nontrivial task since the remaining curves are perhaps the most difficult and may require
interesting theoretical advances. They will next ensure that it is possible for other researchers
to automatically replicate the verification in a reasonable amount of time, which will improve
ad hoc algorithms and implementations, and speeding up and documenting code. Also, the
verification in some cases relies on computing ranks of 3-Selmer groups, an algorithm that is
only implemented in Magma (which is closed source). This 3-descent algorithm will have to
be studied and implemented in Sage from scratch, which will likely result in improvements to
the existing algorithm, and provide an important tool.

Another project is to verify as much as possible about Conjecture 3.2 for Cremona’s much
larger online dataset of curves. This will be a new calculation that will provide ample op-
portunities for collaboration and result in a motivating paper about what current theory and
computation do not allow us to deduce in a reasonable amount of time about BSD.

Conjecture 3.2 has never been completely verified for even a single elliptic curve of rank
≥ 2. For example, consider the curve E defined by the equation y2 + y = x3 + x2 − 2x. This
curve has rank 2, with group generators (−1, 1), (0, 0). The quantity X(E) in Conjecture 3.2
is an abelian group, which is not known to be finite for the curve E, though Conjecture 3.2
predicts that #X(E) = 1. Students will attempt to prove using p-adic and other methods
that X(E)[p] = 0 for all primes p < 104, and carry out similar calculations for several hundred
other rank 2 elliptic curves. Such verification is reasonably straitforward for most—but not
all—primes, by explicit computation of p-adic L-series and Iwasawa theory, as explained in ?.
For some primes, i.e., those where ap = 0, the computation is more involved. A major part of
this project will be to search for algorithms to make this verification much faster, and to try
to find a way to verify triviality for infinitely many primes at once.

3.4.3 Computational Investigation of p-adic Analogues of Conjecture 3.1

In ? Mazur, Tate and Teitelbaum constructed p-adic analogues of Conjectures 3.1 and 3.2 of
Section 3.1 for almost all primes p. For several hundred thousand elliptic curves and primes p,
students will compute the p-adic analogues of the quantities in Conjecture 3.2 to high precision.
In many cases this will be enough to mostly verify the conjecture (see ?). This will involve
developing algorithms for computing these objects to high precision.

Students would also implement Rob Pollack and Glenn Steven’s algorithm for computing
p-adic L-series to high precision. This algorithm has so far only been partly implemented in
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an ad hoc way, and never been generally available or easy to use.
Students would use the result of the work above to create tables of p-adic L-series and

related p-adic invariants of elliptic curves, and based on these they would formulate conjectures.
Ralph Greenberg, a professor at UW, is one of the world’s leading experts in this area, and

would be a valuable resource to this project.

3.4.4 Computing Heegner Points

Perhaps the fundamental question behind the Birch and Swinnerton-Dyer conjecture is the
following: Given an elliptic curve E how can we systematically construct the points on E?

As mentioned above, the elliptic curve E defined by y2 + y = x3 − x has rank 1 with
group generated by (0, 0). There is an explicit analytic construction of the point (0, 0), which
goes under the moniker of Heegner points, that involves quadratic forms and a map from
the complex upper half plane to the group of complex solution to the elliptic curve equation.
Amazingly, for any elliptic curve of rank 1 there is such a construction, and it is perhaps the
most potent tool for work on the Birch and Swinnerton-Dyer conjecture. To date, nothing
similar is known or even conjectured for curves of rank 2 or larger.

There is no general purpose software for computing Heegner points for the purposes of
theoretical research. Magma computes Heegner points internally for certain calculations, and
there are packages for PARI that can do some Heegner point calculations. Students will create
an optimized general purpose package for computing Heegner points, which will be specifically
designed for investigating theoretical questions about them (and their corresponding Euler
systems), e.g., the questions raised in Kolyvagin’s tantilizing paper ?. The algorithms will also
draw on recent work of Watkins, Delaunay, and Jetchev-Lauter-Stein ?.

Once this package is in place, students will investigate the Kolyvagin subgroup of E(Q)
that is defined at the end of ? for any elliptic curve, even those of rank ≥ 2. They will attempt
to compute something about this group in concrete examples, and possible work to gather data
that might lead to a completely new conjectural analogue of the Gross-Zagier theorem ?.

3.4.5 Fricke’s Groups and Computation of Normal Forms for Families of Elliptic
Curves and K3 Surfaces

Parametrizations of the genus zero curves X0(n)+n by functions quadratically related to ratio-
nal functions were obtained by Cohn, who adapted the computational methods of Fricke. Still
better parametrizations can be derived from the functional invariants of n-isogenous families
of elliptic curves, though there are few cases where such families are explicitly known.

First, starting from the parametrizations of Fricke-Cohn, the students will derive explicit
equations for n-isogenous families of elliptic curves whose functional invariants parametrize the
modular curves X0(n). This step is necessarily restricted to the values of n ≥ 2 for which X0(n)
has genus zero, i.e., n equal to 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, and 25. In these cases, there
is an alternative construction of the parametrizations using Gauss hypergeometric functions
due to Maier (math.NT/0611041: “On Rationally Parametrized Modular Equations”), which
they can use for comparison. This step requires that they develop both an understanding of
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elliptic curves over C in various normal forms (e.g., Weierstrass cubics, Legendre hyperelliptic
presentation, Hasse normal form) and also skill with techniques for optimization.

Next, the students will extend their constructions to those coming from parametrizations of
X0(n)+n, still of genus zero for n equal to 11, 14, 15, 17, 19, 20 , 21, 23, 24, 26, 27, 29, 31, 32, 35,
36, 39, 41, 47, 49, 50, 59, and 71. What is more natural to consider here, rather than families of
pairs of elliptic curves, is families of K3 surfaces of a very special type (so-called Mn-polarized
K3 surfaces). The explicit correspondence between these two classes of geometric objects was
established by Clingher-Doran in ? using a normal form as singular quartic hypersurfaces
which applies equally well for any n. The students will explore alternative normal forms for
K3 surfaces, themselves each presented as families of elliptic curves over a rational base.

3.4.6 Computation of Modular Parametrizations for Moonshine Modular Equa-
tions

The modular equations for the elliptic modular function j(τ) correspond to the curves X0(n)+n;
these are genus zero for the values of n listed in §3.4.5. Analogously, there are generalized
modular equations due to Cummins and Gannon ? for the moonshine modular functions; for
each moonshine modular function some of these are still genus zero.

The final project is for the students to adapt to the setting of general moonshine modular
functions the methods used by Fricke and Cohn ? to obtain parametrizations of the curves
X0(n)+n. This computation involves using known expressions for the monstrous modular func-
tions in terms of modular forms, special theta functions, and cruder approximation methods
with power series. We restrict our attention to the cases where the generalized modular equa-
tion for the moonshine modular function is itself of genus zero. It is known that the moonshine
modular functions can be characterized as q-series by the property that they satisfy certain
infinite families of generalized modular equations. Computational evidence ? suggests in fact
that they can be characterized as satisfying modular equations just for n equal 2 and 3. The
students will investigate alternative means of characterizing the moonshine modular functions
through properties of the parametrizations of their generalized modular equations.

4 Overview

4.1 Target Student Participants

The student participants in this project will be majors in the mathematical sciences with an
interest in research and in using computation to improve mathematics research and education.

Since many of the problems are at the forefront of research, students will become involved
with advanced mathematics. For example, after Tom Boothby (undergraduate, UW) began
working on Sage, he carried out a project to enumerate and draw all possible isogeny diagrams
of elliptic curves, in collaboration with the world leader in elliptic curve enumeration (John
Cremona). Another student, Jennifer Balakrishnan (Harvard) implemented much of a program
for computing p-adic heights on elliptic curves, and gave three talks on the underlying theory
and implementation; this work eventually led to a published paper written by David Harvey
(grad student, Harvard).
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The PI intends that students involved with this project will become future leaders in
tranforming how computational methods are used in mathematical research.

4.2 Organizational Structure and Timetable

The students will be paid by the hour for up to 15 hours of work per week. Of this time, 4
hours each week will be spent in a structured “working sprint”, which will take place in the
Sage lab each Thursday 2pm–6pm, and will involve the PI, all the students participating in
the project, and interested graduate students. The sprint will start with 15–30 minutes spent
organizing the project groups, followed by 3 hours of intense research and computer work. The
last 30 minutes will be a wrapup session in which the students describe their progress during
the sprint.

Graduate students will be encouraged to play an informal mentoring roll and to be involved
in the working sprints and talks. There are currently numerous graduate students involved in
Sage work at UW, including the following three: Robert Bradshaw, Josh Kantor, and Robert
Miller. Each of these three have mentored several undergraduate projects. The co-PI is
Ph.D. advisor of four UW graduate students. Of these, Ursula Whitcher and Jacob Lewis are
particularly well-suited to help mentor undergraduate projects involving modular functions.

In addition to the sprint mentioned above, students will also be expected to attend a 1-hour
meeting each Tuesday. The 1-hour meeting will be a lecture by the PI or student about each
of the student projects (giving relevant background), or about how to use relevant software.

The PI will also spend at least 4 additional hours in the Sage lab each week to direct
student projects. This will allow him to meet with each student individually every week.

The timetable for the year will be as follows. This is based mainly on the PI’s extensive
experience mentoring 8 senior undergraduate theses at Harvard University (during 2003–2005),
and working with 6 undergraduates on research for a year at UW.

1. A crash course in computation: The first 5 weeks will be a general crash course in
the practical use of computation as an aid to mathematical research. Topics will include
programing in Python with Sage, creating and querying object-oriented and relational
databases, setting up and running distributed computations, and writing optimized com-
piled code. We will also discuss the meaning of “proof” in computational mathematics
and standards of ethics and verifiability in the context of computer-assisted mathemat-
ical research. Students will gain a general understanding of some of the capabilities of
most major mathematical software and libraries. This course will involve lectures, ex-
ercises, and group and individual student projects. The PI will be teaching a course in
Spring 2008 at UW that expands upon the above topics, and which will provide course
materials for the crash course for the first cohort of undergraduates.

2. A crash course in number theory: The second 5 weeks will be a crash course in
number theory. Topics will include prime numbers, integer factorization, the Euclidean
algorithm, continued fractions, and sums of squares. Students will read selected parts of
the PI’s book Elementary Number Theory, which culminates with a discussion of the BSD
conjecture. Students will then read materials based on a book the PI is co-authoring with
Barry Mazur about the Riemann Hypothesis that is aimed at the undergraduate level,
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which the PI used for a 2-week summer workshop for high school students (SIMUW
2007), and Mazur has used for numerous large expository talks. Students will also
learn about number fields, Galois groups, class groups and unit groups of number fields.
Students will read the PI’s book on algebraic number theory, which he wrote based on
two undergraduate courses he taught at Harvard in 2004 and 2005 on this topic, and
other books. Finally, students will learn about elliptic curves, including normal forms,
the group law, L-function, the BSD conjecture, basics of Galois cohomology, elliptic
surfaces. Students will read survey articles, books (Silverman-Tate), and parts of the
PI’s preliminary book on the BSD conjecture, which grew out of an introductory graduate
course that he taught at UW in 2007.

3. Choose a project: During the final week before the Winter holiday break, students
will choose a research project. They will then be given reading materials.

4. Intense research: Right after returning from the Winter holiday, and for the next
8 weeks, students will begin serious work on their research projects. This will include
reading theoretical background material and giving talks about what they learn, doing
small and large-scale computations using software, creating tables. Students will also
learn, improving, and implement new and existing algorithms, and make conjectures
based on data. The students will spend about 15 hours a week working on this research.
Of that, 6 of those hours will be spent in the collaborative Sage lab working sprints.

5. A rough draft: After 8 weeks of open-ended research, students will spend 2 weeks
writing up a rough summary of what they have discovered, accomplished, and learned,
before Spring break. This will include expositions of theoretical background material
and notes from talks, a report describe all data they gathered, a description of any
algorithms they implemented, and what improvements or modifications they made to
existing algorithms that are in the literature, conjectures, and a sketches of any results
they may have proved.

Since all students will be working on projects related to the BSD conjecture, the student work
will be tightly related. The rough drafts will be distributed to all the other students (and to
the PI, co-PI, postdoc, and graduate student mentors) for feedback.

Write it up: After returning from Spring break, students will critically revisit their
rough drafts. They will then spend the following seven weeks writing up their theoretical and
computational results, and documenting any code they implemented.

Students will finish their projects 2 weeks before finals, and the program will officially end
2 weeks before finals, which will give students time to focus on studying for exams.

5 Connection to Regular Academic Studies

5.1 Local Impact

UW has a senior thesis program, and students who are seniors will be encouraged to submit
their project as a senior thesis. At UW, the senior thesis in mathematics is currently not so
popular. After researching this problem, the PI suspects that this lack of popularity may be
partly the result of insufficient structure in the mathematics department for the senior thesis;
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also, many honors students at UW are dual majors and consequently they end up doing a
senior thesis in their other major. Funding this proposal would likely directly address this.

Undergraduate participants in the project will be encouraged to give talks in the UW
undergraduate mathematics seminar, the UW number theory seminar, and the UW compu-
tational number theory and cryptography seminar. In fact, in 2007 the UW undergraduate
Chris Swierczewski did research with the PI and Barry Mazur on refinements to the Sato-Tate
distribution and his talk in the number theory seminar on the topic was the most well attended
talk of the year. There is also an undergraduate research project day at UW in April, in which
students would participate. Also, UW has been successful in the international applied math
modeling contest, and students in this CSUMS project would be encouraged to interact with
students preparing for the applied math modeling contest.

5.2 National Impact

The Birch and Swinnerton-Dyer conjecture is a problem of extreme interest to most number
theorists, so any successful work on it will have a national impact. Moreover, any free software
that students produce is likely to be useful to many other mathematicians and students.
For example, much work related to the BSD conjecture requires improving algorithms for
computing modular forms, which in turn requires improving methods and creating better
tools for exact linear algebra and polynomial arithmetic. Thus work the students do is likely
to have a positive effect nationally in a range of areas.

6 Research Environment and Mentoring Activities

The PI is experienced at organizing student seminars and presentations; he ran a Sage seminar
at UW in 2006 with numerous undergraduate talks, he ran an MSRI graduate student summer
school ?, and led two freshman seminars at Harvard (one on elliptic curves and one on Fermat’s
Last Theorem) which consisted of 3 hours of student presentations per week.

Having a common space for the students to come together and work is vital to encouraging
collaboration. Fortunately, the Computer Science department at University of Washington
has donated a Sage lab to the project, which provides ample space for up to 6 students to
work at once. Each student will be given a key to the lab. There will also be a weekly Sage
seminar attended by the PI’s, other interested faculty and students.

The PI has a strong track record of mentoring undergraduates in theoretical and
computational research. During the last five years he has directed over 24 projects with a
nontrivial research component at Harvard, UCSD, and UW, many of which are available at
?. For example, he directed the Harvard senior theses of Jayce Getz, John Gregg, Dimitar
Jetchev, Andre Jorza, Seth Kleinerman, Daniellie Li, Chris Mihelich and David Speyer, and
he ran summer research programs on the Birch and Swinnerton-Dyer conjecture at Harvard
during 2003 and 2004 with five students (Jennifer Balakrishnan, Andrei Jorza, Stefan Patrikas,
Jennifer Sinnott, Tseno Tselkov). When Baur Bektemirov was a freshman at Harvard, he did
a year-long project with the PI in which he computed surprising statistics about elliptic curves
that led to a joint paper in the Bulletins of the AMS (?). The PI also worked for a year with
Kevin Grosvenor, another Harvard freshman, on drawing pictures of L-functions. At UCSD
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the PI worked on Sage development with Naqi Jaffery and Alex Clemesha, and since April
2006 at UW he has worked with UW undergraduates Tom Boothby, Emily Kirkman, Bobby
Moretti, and Yi Qiang and MIT undergraduates Steven Sivek and David Roe on research
related to Sage.

The PI has been at UW since 2006, and has been pleased with the undergraduate students
he has worked with. The mathematics undergraduate program at UW attracts some of the
best UW students: the department at UW has had five Goldwater Scholars in the past three
years, three of the past four College of Arts and Sciences Deans Medalists in Science, seven
teams of Outstanding Winners in the CO-MAP Mathematical Contest in Modeling during
the past six years, and most recently a Rhodes Scholar, an Astronaut Foundation Scholar,
and a Davidson Fellow. Also, the Seattle area has substantial programming talent due to the
proximity of Microsoft and Digipen.

7 Student Recruitment and Selection

The PI finds and builds professional relationships with students by a combination of methods.
He gives talks and gets involved with student activities at UW, e.g., in 2006 and 2007 he led a
2-week SIMUW high school workshop on computational aspects of the Birch and Swinnerton-
Dyer conjecture and the Riemann Hypothesis. For this specific program the PI would find
6 students by talking with students he already knows well from courses and prior research
experience, putting posters around the university, and ask for recommendations from students
he knows and other faculty for students who would be interested in this project.

8 Project Management

The PI is a tenured associate professor at the host institution. He directs the Sage project
and organized 14 workshops and conferences during 2006–2007, so the PI has a demonstrated
management record. He will be responsible for fulfilling the technical requirements of the
project, including submission of annual reports. The PI will also organize the seminar and
give weekly talks. He will choose students in consultation with the co-PI and postdoc.

9 Project Evaluation and Reporting

9.1 Documentation and Dissemination

Slides from talks, student proposals, and research papers the students write, will be made avail-
able online (with student permission). Quality computer code that becomes part of Sage will be
distributed online in the way that Sage is currently distributed (from http://sagemath.org).

9.2 Evaluation

The quarterly evaluation will involve forms filled out by the student participants. These will
be both the standard university course evaluation forms, and custom forms designed by the
PI, in consultation with the advisory board, which specifically address the project.
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The annual evaluation will summarize the quarterly evaluations. Near the end of the
academic year all students involved in the project will give final presentations on their work.
Each student will give a 1-hour presentation about their work that includes a general overview
of the project and survey of relevant mathematics, and research results, including conjectures,
theorems, hard-to-compute data, and algorithms. The PI will then synthesize feedback on the
student projects. The measure of success for a student project will be the extent to which the
project produces well-documented useful high-quality maintainable research, data, and code.

The final evaluation will summarize the previous annual evaluations. It will also assess the
long-term impact of this project on education and research: research papers resulting from
student work, impact of software, and placement of students in jobs and graduate schools.

9.3 Tracking Beyond Project

Alumni will be asked, when possible, to speak to the current group of students, and be en-
couraged to participate in certain workshops that the PI is involved with. These activities
provide many opportunities for feedback about how involvement with this project has affected
student career paths. The PI will also contact all students who were involved in the program
once per year for an update on what they are currently doing, and will record the results.
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