The Comparison Test

Theorem 6.4.1 (The Comparison Test)   Suppose $ \sum a_n$ and $ \sum b_n$ are series with all $ a_n$ and $ b_n$ positive and $ a_n\leq b_n$ for each $ n$.
  1. If $ \sum b_n$ converges, then so does $ \sum a_n$.
  2. If $ \sum a_n$ diverges, then so does $ \sum b_n$.

Proof. [Proof Sketch] The condition of the theorem implies that for any $ k$,

$\displaystyle \sum_{n=1}^{k} a_n \leq \sum_{n=1}^k b_n,
$

from which each claim follows. $ \qedsymbol$

Example 6.4.2   Consider the series $ \sum_{n=1}^{\infty} \frac{7}{3n^2 + 2n}$. For each $ n$ we have

$\displaystyle \frac{7}{3n^2 + 2n} \leq \frac{7}{3} \cdot \frac{1}{n^2}.
$

Since $ \sum_{n=1}^{\oo } \frac{1}{n^2}$ converges, Theorem 6.4.1 implies that $ \sum_{n=1}^{\infty} \frac{7}{3n^2 + 2n}$ also converges.

Example 6.4.3   Consider the series $ \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$. It diverges since for each $ n\geq 3$ we have

$\displaystyle \frac{\ln(n)}{n} \geq \frac{1}{n},
$

and $ \sum_{n=3}^{\infty} \frac{1}{n}$ diverges.



William Stein 2006-03-15