Complex Exponentials and Trig Identities

Recall that

$\displaystyle r_1(\cos(\theta_1) + i \sin(\theta_1))
r_2(\cos(\theta_2) + i \si...
...eta_2))
= (r_1 r_2) (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).
$

The angles add. You've seen something similar before:

$\displaystyle e^a e^b = a^{a+b}.
$

This connection between exponentiation and (4.4) gives us an idea!

If $ z=x+iy$ is a complex number, define

$\displaystyle e^z = e^x(\cos(y) + i\sin(y)).
$

We have just written polar coordinates in another form. It's a shorthand for the polar form of a complex number:

$\displaystyle r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}.
$

Theorem 4.4.1   If $ z_1$, $ z_2$ are two complex numbers, then

$\displaystyle e^{z_1} e^{z_2} = e^{z_1+z_2}
$

Proof.

$\displaystyle e^{z_1} e^{z_2}$ $\displaystyle = e^{a_1}(\cos(b_1) + i\sin(b_1)) \cdot e^{a_2}(\cos(b_2) + i\sin(b_2))$    
  $\displaystyle = e^{a_1+a_2}(\cos(b_1+b_2) + i\sin(b_1 + b_2))$    
  $\displaystyle = e^{z_1+z_2}.$    

Here we have just used (4.4). $ \qedsymbol$

The following theorem is amazing, since it involves calculus.

Theorem 4.4.2   If $ w$ is a complex number, then

$\displaystyle \frac{d}{dx} e^{w x} = w e^{wx},
$

for $ x$ real. In fact, this is even true for $ x$ a complex variable (but we haven't defined differentiation for complex variables yet).

Proof. Write $ w=a+bi$.

$\displaystyle \frac{d}{dx} e^{w x}$ $\displaystyle = \frac{d}{dx} e^{ax +bix}$    
  $\displaystyle = \frac{d}{dx} (e^{ax} (\cos(bx) + i \sin(bx)))$    
  $\displaystyle = \frac{d}{dx} (e^{ax} \cos(bx) + i e^{ax}\sin(bx))$    
  $\displaystyle = \frac{d}{dx} (e^{ax} \cos(bx)) + i \frac{d}{dx} (e^{ax}\sin(bx))$    

Now we use the product rule to get

$\displaystyle \frac{d}{dx} (e^{ax} \cos(bx))$ $\displaystyle + i \frac{d}{dx} (e^{ax}\sin(bx))$    
  $\displaystyle = ae^{ax} \cos(bx) - be^{ax}\sin(bx) + i (a e^{ax}\sin(bx) + b e^{ax}\cos(bx))$    
  $\displaystyle = e^{ax}(a \cos(bx) - b\sin(bx) + i (a \sin(bx) + b \cos(bx))$    

On the other hand,

$\displaystyle w e^{wx}$ $\displaystyle = (a+bi) e^{ax + bxi}$    
  $\displaystyle =(a+bi) e^{ax} (\cos(bx) + i \sin(bx))$    
  $\displaystyle =e^{ax}(a+bi)(\cos(bx) + i \sin(bx))$    
  $\displaystyle = e^{ax}((a\cos(bx) - b\sin(bx)) + i ( a\sin(bx)) + b\cos(bx))$    

Wow!! We did it! $ \qedsymbol$

That Theorem 4.4.2 is true is pretty amazing. It's what really gets complex analysis going.

Example 4.4.3   Here's another fun fact: $ e^{i\pi} + 1=0.$
Solution. By definition, have $ e^{i\pi} = \cos(\pi) + i \sin(\pi)
= -1 + i 0 = -1$.



Subsections
William Stein 2006-03-15