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6.4 Tests for Convergence

Final exam: Wednesday, March 22, 7-10pm in PCYNH 109.
Quiz 4: Next Friday

Today: 11.6: Ratio and Root tests
Next: 11.8 Power Series

11.9 Functions defined by power series

6.4.1 The Comparison Test

Theorem 6.4.1 (The Comparison Test). Suppose > a, and Y b, are series with
all a, and b, positive and a,, < b, for each n.

1. If 3" b, converges, then so does Y ay,.
2. If 3" ay, diverges, then so does > by,.

Proof Sketch. The condition of the theorem implies that for any k,

k k
doan <D b,
n=1 n=1
from which each claim follows. O

Example 6.4.2. Consider the series For each n we have

© 7T
n=1 3n2+4+2n"

7

1
3n2 4+ 2n '

<7 1
— 3 n?

. o0 1 . . fo'e) rd
Since )", -5 converges, Theorem 6.4.1 implies that >~ , a7, also converges.

Example 6.4.3. Consider the series > -, 1117(1n). It diverges since for each n > 3 we
have
In(n)

n

>

Y

S|

and >0 o L diverges.

6.4.2 Absolute and Conditional Convergence

Definition 6.4.4 (Converges Absolutely). We say that > -, a, converges abso-
lutely if 7 | |an| converges.

For example,

n=1

converges, but does not converge absolutely (it converges “conditionally”, though we
will not explain why in this book).
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6.4.3 The Ratio Test

Recall that > °7 | a, is a geometric series if and only if a, = ar"~! for some fixed a
and r. Here we call r the common ratio. Notice that the ratio of any two successive

terms is 7:

Gn+1 ar™

— = T =T
A, ar™—

o n—1
Moreover, we have >~ | ar

it diverges if |r| > 1).

converges (to $2-) if and only if || < 1 (and, of course

3? = 9. However, 2211 3 (%)nil

Example 6.4.5. For example, >~ | 3 (%)nfl converges to ;=
3

diverges.

Theorem 6.4.6 (Ratio Test). Consider a sum Y., a,. Then

1. Iflim, o |[*25| = L < 1 then > 7, ay, is absolutely convergent.
2. Iflim,_ a;—:l =L >1 then Y >~ a, diverges.
3. If lim, aZ—Il = L =1 then we may conclude nothing from this!

An41

e = L < 1. Let

r:%,andnoticethatL<r<1(since0§L<1,501§L—|—1<2,sol/2§r<1,
and alsor— L=(L+1)/2—L=(1-1L)/2>0).

Proof. We will only prove 1. Assume that we have lim,_

Since lim,,_, o ’%' = L, there is an N such that for all n > N we have
fn1 T, S0 |apg1| <lan| -7
an
Then we have - -
Z lan| < lan41] - Zr".
n=N+1 n=0
Here the common ratio for the second one is r < 1, hence thus the right-hand series
converges, so the left-hand series converges. O
s (=10 : . :
Example 6.4.7. Consider Z - The ratio of successive terms is
n!
n=1
(710)n+1
! 107 +! ! 1
(nt1) = 0 -n—zio —-0<1
(—10)" (n+Dn! 10 n+1

n!
Thus this series converges absolutely. Note, the minus sign is missing above since in the
ratio test we take the limit of the absolute values.

oo n

Example 6.4.8. Consider Z 3171—371 We have
n=1
(n+1)n*t
3-27) | (n+1D)(n+1D)" 27" n4+1 (n+1\"
| T o727 nn 27 n ) T

31+3n



74 CHAPTER 6. SEQUENCES AND SERIES

Thus our series diverges. (Note here that we use that ("T'H)n —e.)
Example 6.4.9. Let’s apply the ratio test to >, % We have

1

lim n+1 _L.
n+1

+
n— 00 1
n

This tells us nothing. If this happens... do something else! E.g., in this case, use the
integral test.

6.4.4 The Root Test
Since e and In are inverses, we have z = ™(*), This implies the very useful fact that

a
7% = eln(r ) — ealn(m).

As a sample application, notice that for any nonzero c,

. 1 . 1

lim cn = lim en©8(¢) = &0 — 1,
n—oo n—oo

Similarly,

. 1 . 1

lim n#» = lim en 8 =0 =1,
n—o0 n— 00

log(n)

where we’ve used that lim, = 0, which we could prove using L’Hopital’s rule.

n

Theorem 6.4.10 (Root Test). Consider the sum Y | ay.

1. Iflim, o |an w=1L<1, then >0 | an convergest absolutely.

2. If limy, o0 an|™ = L > 1, then Yoo | ay, diverges.
3. If L =1, then we may conclude nothing from this!

Proof. We apply the comparison test (Theorem 6.4.1). First suppose lim, |an|% =
L < 1. Then there is a N such that for n > N we have |a,|* < k < 1. Thus for such
n we have |a,| < k™ < 1. The geometric series Y .- \ k' converges, so Y .- \ |a,| also
does, by Theorem 6.4.1. If |a,|+ > 1 for n > N, then we see that °° \ |a,| diverges
by comparing with 2 1. O

Example 6.4.11. Let’s apply the root test to

o0 a o]

g ar" "t == E r".
r

n=1

n=1

We have

7),‘

lim |r"|" = |r|.

n—00

Thus the root test tells us exactly what we already know about convergence of the
geometry series (except when |r| = 1).
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n
Example 6.4.12. The sum > -, (2’;;;;11) is a candidate for the root test. We have

lim
n—oo |\ 2n2 + 1

Thus the series converges.

1

N U o |
= lim 5 = lim =3

n—oo 2n? + 1 n—»ooQ{»m 2

n
Example 6.4.13. The sum ) ., (%:ifll) is a candidate for the root test. We have

) 2n? +1\"
lim
n— oo n2 + 1

hence the series diverges!

1
" o2n? +1 . 2+p
= = lim =2

Example 6.4.14. Consider > >~ , % We have

so we conclude nothing!
" To apply the root test, we compute

Example 6.4.15. Consider ) ", 357

1

B . 1 n n
=lim (-] = =+oc.

Again, the limit diverges, as in Example 6.4.8.

3=

n’ﬂ

li v




