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6.4 Tests for Convergence

Final exam: Wednesday, March 22, 7-10pm in PCYNH 109.
Quiz 4: Next Friday
Today: 11.6: Ratio and Root tests
Next: 11.8 Power Series
11.9 Functions defined by power series

6.4.1 The Comparison Test

Theorem 6.4.1 (The Comparison Test). Suppose
∑

an and
∑

bn are series with
all an and bn positive and an ≤ bn for each n.

1. If
∑

bn converges, then so does
∑

an.

2. If
∑

an diverges, then so does
∑

bn.

Proof Sketch. The condition of the theorem implies that for any k,

k
∑

n=1

an ≤
k
∑

n=1

bn,

from which each claim follows.

Example 6.4.2. Consider the series
∑∞

n=1
7

3n2+2n . For each n we have

7

3n2 + 2n
≤ 7

3
· 1

n2
.

Since
∑∞

n=1
1

n2 converges, Theorem 6.4.1 implies that
∑∞

n=1
7

3n2+2n also converges.

Example 6.4.3. Consider the series
∑∞

n=1
ln(n)

n . It diverges since for each n ≥ 3 we
have

ln(n)

n
≥ 1

n
,

and
∑∞

n=3
1
n diverges.

6.4.2 Absolute and Conditional Convergence

Definition 6.4.4 (Converges Absolutely). We say that
∑∞

n=1 an converges abso-
lutely if

∑∞
n=1 |an| converges.

For example,
∞
∑

n=1

(−1)n 1

n

converges, but does not converge absolutely (it converges “conditionally”, though we
will not explain why in this book).
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6.4.3 The Ratio Test

Recall that
∑∞

n=1 an is a geometric series if and only if an = arn−1 for some fixed a
and r. Here we call r the common ratio. Notice that the ratio of any two successive
terms is r:

an+1

an
=

arn

arn−1
= r.

Moreover, we have
∑∞

n=1 arn−1 converges (to a
1−r ) if and only if |r| < 1 (and, of course

it diverges if |r| ≥ 1).

Example 6.4.5. For example,
∑∞

n=1 3
(

2
3

)n−1
converges to 3

1− 2
3

= 9. However,
∑∞

n=1 3
(

3
2

)n−1

diverges.

Theorem 6.4.6 (Ratio Test). Consider a sum
∑∞

n=1 an. Then

1. If limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L < 1 then

∑∞
n=1 an is absolutely convergent.

2. If limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L > 1 then

∑∞
n=1 an diverges.

3. If limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L = 1 then we may conclude nothing from this!

Proof. We will only prove 1. Assume that we have limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L < 1. Let

r = L+1
2 , and notice that L < r < 1 (since 0 ≤ L < 1, so 1 ≤ L + 1 < 2, so 1/2 ≤ r < 1,

and also r − L = (L + 1)/2 − L = (1 − L)/2 > 0).

Since limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L, there is an N such that for all n > N we have

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< r, so |an+1| < |an| · r.

Then we have
∞
∑

n=N+1

|an| < |aN+1| ·
∞
∑

n=0

rn.

Here the common ratio for the second one is r < 1, hence thus the right-hand series
converges, so the left-hand series converges.

Example 6.4.7. Consider

∞
∑

n=1

(−10)n

n!
. The ratio of successive terms is

∣

∣

∣

∣

∣

∣

∣

∣

(−10)n+1

(n + 1)!

(−10)n

n!

∣

∣

∣

∣

∣

∣

∣

∣

=
10n+1

(n + 1)n!
· n!

10n
=

10

n + 1
→ 0 < 1.

Thus this series converges absolutely. Note, the minus sign is missing above since in the
ratio test we take the limit of the absolute values.

Example 6.4.8. Consider

∞
∑

n=1

nn

31+3n
. We have

∣

∣

∣

∣

∣

∣

∣

∣

(n + 1)n+1

3 · (27)n+1

nn

31+3n

∣

∣

∣

∣

∣

∣

∣

∣

=
(n + 1)(n + 1)n

27 · 27n
· 27n

nn
=

n + 1

27
·
(

n + 1

n

)n

→ +∞
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Thus our series diverges. (Note here that we use that
(

n+1
n

)n → e.)

Example 6.4.9. Let’s apply the ratio test to
∑∞

n=1
1
n . We have

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

1

n + 1
1

n

∣

∣

∣

∣

∣

∣

∣

=
1

n + 1
· n

1
=

n

n + 1
→ 1.

This tells us nothing. If this happens... do something else! E.g., in this case, use the
integral test.

6.4.4 The Root Test

Since e and ln are inverses, we have x = eln(x). This implies the very useful fact that

xa = eln(xa) = ea ln(x).

As a sample application, notice that for any nonzero c,

lim
n→∞

c
1
n = lim

n→∞
e

1
n

log(c) = e0 = 1.

Similarly,

lim
n→∞

n
1
n = lim

n→∞
e

1
n

log(n) = e0 = 1,

where we’ve used that limn→∞
log(n)

n = 0, which we could prove using L’Hopital’s rule.

Theorem 6.4.10 (Root Test). Consider the sum
∑∞

n=1 an.

1. If limn→∞ |an|
1
n = L < 1, then

∑∞
n=1 an convergest absolutely.

2. If limn→∞ |an|
1
n = L > 1, then

∑∞
n=1 an diverges.

3. If L = 1, then we may conclude nothing from this!

Proof. We apply the comparison test (Theorem 6.4.1). First suppose limn→∞ |an|
1
n =

L < 1. Then there is a N such that for n ≥ N we have |an|
1
n < k < 1. Thus for such

n we have |an| < kn < 1. The geometric series
∑∞

i=N ki converges, so
∑∞

i=N |an| also

does, by Theorem 6.4.1. If |an|
1
n > 1 for n ≥ N , then we see that

∑∞
i=N |an| diverges

by comparing with
∑∞

i=N 1.

Example 6.4.11. Let’s apply the root test to

∞
∑

n=1

arn−1 =
a

r

∞
∑

n=1

rn.

We have

lim
n→∞

|rn| 1
n = |r|.

Thus the root test tells us exactly what we already know about convergence of the
geometry series (except when |r| = 1).
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Example 6.4.12. The sum
∑∞

n=1

(

n2+1
2n2+1

)n

is a candidate for the root test. We have

lim
n→∞

∣

∣

∣

∣

(

n2 + 1

2n2 + 1

)n∣
∣

∣

∣

1
n

= lim
n→∞

n2 + 1

2n2 + 1
= lim

n→∞

1 + 1
n2

2 + 1
n2

=
1

2
.

Thus the series converges.

Example 6.4.13. The sum
∑∞

n=1

(

2n2+1
n2+1

)n

is a candidate for the root test. We have

lim
n→∞

∣

∣

∣

∣

(

2n2 + 1

n2 + 1

)n∣
∣

∣

∣

1
n

= lim
n→∞

2n2 + 1

n2 + 1
= lim

n→∞

2 + 1
n2

1 + 1
n2

= 2,

hence the series diverges!

Example 6.4.14. Consider
∑∞

n=1
1
n . We have

lim
n→∞

∣

∣

∣

∣

1

n

∣

∣

∣

∣

1
n

= 1,

so we conclude nothing!

Example 6.4.15. Consider
∑∞

n=1
nn

3·(27n) . To apply the root test, we compute

lim
n→∞

∣

∣

∣

∣

nn

3 · (27n)

∣

∣

∣

∣

1
n

= lim
n→∞

(

1

3

)
1
n

· n

27
= +∞.

Again, the limit diverges, as in Example 6.4.8.


