Computational Conformal Geometry: Theories and Applications

> Xianfeng Gu, Shing-Tung Yau UFL, Harvard University

An important goal of classical geometry is to give a description of geometric figures that we see in nature. High power computer computation and three dimension camera allows us to apply classical and modern geometric technology to real features of objects that we see in day to day life.

For a given surface in three space, it is important to realize that there are several geometric structures that are inherit in their description. The most important one is the conformal structure. The construction of conformal structure by computer computation immediately allows us to apply modern and well developed technique of complex analysis and algebric geometry to be brought into graphic realization.

The basic technique involves solving nonlinear and linear differential equations. the differential equations are related to questions of isometric embedding of surfaces, which is a difficult subject. The equations can be elliptic, hyperbolic or mixed type. There are equations related to movement of surfaces where motions driven by curvature are important. In order to be efficient in data compression and signal processing for geometric figures. Algebraic geometry is an important tool.

Outline

- Introduction
- Motivation
- Solution
- Applications
 - Geometric database indexing
 - Expression animation, skin deformation
- Summary

Definition: Conformal Mapping

- Scaling first fundamental from
- Angle preserving
- Similarities in the small

$$\phi ~:~ M_{_1}
ightarrow ~ M_{_2} \,,\, g_{_{ij}} ~=~ \lambda \phi ~^* \widetilde{g}_{_{ij}}$$

Introduction

 Surface Parametrization is a process to map a surface to a region of the plane.

Motivation

Motivation

- Texture Mapping
- Geometry Remeshing
- Geometry Matching
- Medical Imaging
- Geometry Compression

Texture Mapping – Nondistortion

Geometry Remeshing

- Change irregular connectivity to regular one
- With accurate reconstructed normal

Construct conformal geometry image

- Proposed in SIGGRAPH 2002 (with Steven Gortler and Hugues Hoppe)
- Use regular grids to sample each chart
- Unify image and geometry

Geometric matching

- Parameterize surfaces to a canonical domain
- Match features by parameter
- Depends on geometry continuously

Brain Conformal Mapping

- Alzheimer's Disease (AD) was as the 8th leading cause of death in U.S. for 1999; it costs U.S. society \$100 billion per year¹.
- Schizophrenia affects 0.2-2% of the worldwid population; it costs \$32.5 billion per year in U.S.²
- Brain conformal mapping can be used to the diagnosis of AD and Schizophrenia, brain development study, and surgery mapping.
- Our conformal mapping was demonstrated to be a stable solution and superior than other methods and is expected to become a standard in this file in the future.

¹Alzheimer's Disease Statistics. ²Statistic from Brain Facts.

Growth patterns in the developing human brain*

*Thompson et.al Growth patterns in the developing brain detected by using continuum mechanical tensor maps, Nature, 2000.

Geometry Matching-brain mapping

Conformal brain mapping

Geometric Matching-brain mapping

- Minimize L2 norm under Mobius transformation
- Least square problem

Geometry Compression

- Spherical harmonic functions
- Spectrum compression

Outline

- Theoretic background
- Genus zero closed surfaces
- Nonzero genus closed surfaces
- Surfaces with boundaries
- Summary

Theoretic background – Riemann surface

- For genus zero closed surfaces, a mapping is conformal if and only if it is harmonic.
- Hodge theory: Each cohomology class has a unique harmonic one-form representative.
- Abel-Jacobi theory: The dimension of holomorphic differential group is 2 times genus.

Theoretic background: Structures on mesh

- Topological structure
 - Simplicial complex
 - Homology group
- Geometric structure

- Embedded in the Euclidean Space, induced metric
- Curvature, geodesics
- Conformal Structure (Novel view to surfaces)
 - Riemann surfaces
 - Holomorphic differentials

Novel view

- Treat surfaces as Riemannian surfaces
- Conformal mappings
- Conformal invariants
- Conformal automorphism
 group

Genus zero surfaces

Genus 0 surfaces

- All conformally equivalent
- Harmonic is equivalent to conformal
- Mobius group

Algorithm details

- Harmonic energy $f: M \to S^2$ $E(f) = \int_M \|\nabla f\|^2 d\sigma_M$ • Discrete harmonic energy
- $E(f) = \sum_{[u,v]\in M} k_{uv} \|f(u) f(v)\|^2 \qquad k_{uv} = \cot\alpha + \cot\beta$

Discrete Laplacian

$$\Delta f(u) = \sum_{[u,v] \in M} k_{uv}(f(u) - f(v))$$

Global conformal parameterization algorithm for genus zero surface

- Use Gauss map as the initial degree one map
- Compute the gradient vector of harmonic engery on each vertex
- Project the gradient vector to the tangent space
- Update the image of each vertex along the tangential gradient vector
- Normalize the mapping by shifting the center of the mass to the sphere center

Genus zero bunny example

Highly non-uniform

Mobius Transformation

- Linear rational group on complex plane
- 6 dimensional group

Mobius Transformation

Genus zero Gargoyle example

Spherical barycentric embedding
Spherical conformal embedding

Nonzero genus surfaces

Example:Sculpture

Intuition

- Study the gradient fields of conformal maps
- All such gradient fields form a linear space
- The basis of such linear space is closely related to the topology of the surface

Topology: Homology group

- Curve space
- Homology Basis : A special set of curves which can be deformed to any close dcurve by merging, splitting, and duplicating operation

Conformal gradient field basis

Dual to each handle

<u>demo</u>

Holomorphic one-form space

- Linear functional (dual) space of homology
- Dual basis
- Conjugate 1-form

Holomorphic one-form

- A gradient field of a conformal map
- A pair of tangential vector fields (ω_x, ω_y)
- Curl is zero $curl(\omega_x) = 0, curl(\omega_y) = 0$
- Both x and y gradient fields are harmonic

 $\Delta \omega_{x} = 0, \Delta \omega_{y} = 0$

- x,y vector fields are orthogonal at every point $\omega_y = n \times \omega_x$
- Dual to homology basis

$$\oint_{e} \omega_{j} = \delta_{i}$$

Linear system for holomorphic 1-form

- $\{e_1, e_2, \cdots e_{2g}\}$ Homology basis
- Harmonic one-form basis $\{\omega_1, \omega_2, \cdots, \omega_{2\rho}\}$
- Holomorphic one-form basis

 $\begin{cases} \nabla \times \omega_{i} = 0 & \{\omega_{1} + i^{*} \omega_{1}, \omega_{2} + i^{*} \omega_{2}, \cdots , \omega_{2g} + i^{*} \omega_{2g}\} \\ \Delta \omega_{i} = 0 & \\ \oint \omega_{i} = \delta_{i}^{j} & \\ e & \end{cases}$ $\omega_i = n \times \omega_i$

Integrate on a fundamental Domain

- Fix a base point, map it to the origin
- For any vertex, find an arbitrary path to the base point, integrate 1-form along the path
- The integration is path independent

Holomorphic one-form basis

Holomorphic 1-forms

Holomorphic one-form space

- 2g real dimension
- Dual to homology

Linear combination

- Linearly combine holomorphic 1-form bases
- Different holomorphic one-form, different properties (conformal factor, zero points)

Conformal Atlas Structure

Global Conformal Parametrization

- Genus g surfaces
 - Global conformal, no boundaries
 - 2g 2 zero points
 - each handle mapped to the plane periodically

Zero points

• Zero points of the tangential vector fields

Zero points

Different holomorphic one-form, different zero points

Zero Points

Locally it behaves like $\omega = z^2$

<u>demo</u>

<u>demo</u>

Global conformal atlas

<u>demo</u>

Handle Separation

- Locate zero points
- In parameter domain, find connecting curves
- Lift the planar curve to the original surface

Properties: Homology Basis Independent

Properties: Homology Basis Independent

Homology basis independent

<u>demo</u>

Properties: Triangulation & Resolution Independent

Conformal mapping properties

- Intrinsic to geometry
- Depends on metric continuously

Progressive Mesh

Properties: Triangulation & Resolution Independent

Results: Knot

Example:knot

Example:Rocker

Example:Teri Surface

Surfaces with boundaries

Surfaces with boundaries

- Copy the surface, invert the orientation
- Glue two copies together along the boundaries
- Treat the double covering as a closed surface
- Keep symmetry

Example:Minimal Surface

- Genus one, 3 boundaries
- Genus four

Topology modification

Non-uniformity

- Extruding parts are denser
- Non-uniform

Conformal Factor

Level Sets of conformal factor function

Conformal factor

Denser for high curvature regions

Geometric Matching

- Level set of Gaussian curvature
- Gradient of gaussian curvature

Facial Recognition using Conformal Invariants: Period Matrix Computation

	$\sqrt{-1}\left($	$ \begin{array}{r} 1.43 \\ 0.25 \\ 0.27 \\ 0.47 \end{array} $	36033 58267 74593 72173	0.2583 1.072 0.2510 0.241	267 () 796 () 680 1 556 ()).274593).251679 352364).437323	0.47217 0.24155 0.43732 1.67839	$\begin{pmatrix} 4\\ 56\\ 23\\ 52 \end{pmatrix}$			
$D = \begin{pmatrix} 2 \\ \\ \end{pmatrix}$	4504 0 0. 0 0	0 8916 0 0	$\begin{array}{c} 0 \\ 0 \\ 1.1195 \\ 0 \end{array}$	1.078	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}, V$	$= \begin{pmatrix} -0.50\\ -0.29\\ -0.45\\ -0.66 \end{pmatrix}$	$\begin{array}{rrrr} 092 & -0.336 \\ 060 & 0.826 \\ 099 & -0.423 \\ 046 & 0.185 \end{array}$	53 0 04 -0 37 -0 54 -0	.7491 .0013 .6509 .1230	-0.2578 -0.4892 -0.4305 0.7134	
	$\sqrt{-}$	1	0.89049 0.22989 0.24791 0.42984	99 0. 91 0. 13 0. 46 0.	229891 699143 229518 269388	$\begin{array}{ccc} 0.2479 \\ 0.2293 \\ 0.8760 \\ 0.4467 \end{array}$	$\begin{array}{cccc} 912 & 0.4 \\ 518 & 0.2 \\ 034 & 0.4 \\ 700 & 1.4 \end{array}$	29846 69387 46700 33510			
$D = \left(\begin{array}{c} 2.0\\ \end{array}\right)$	$\begin{array}{ccc} 0471 \\ 0 & 0.5 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\5158\\0\\0\\0\end{array}$	0 0 0.6335 0	(((0.7027	$\begin{pmatrix} 0\\0\\0\\7 \end{pmatrix}, V$	$= \begin{pmatrix} 0.423\\ 0.293\\ 0.430\\ 0.740 \end{pmatrix}$	56 0.376 37 -0.795 00 0.446 01 -0.160	5 -0.8 0.4 0.0 -0.0	.6500 .1298 .7409 .1082	-0.5046 -0.5134 -0.2587 0.6442	

(Lint)
-
7

Topology Modification

Punch small holes at the end of the extruding region

Hand Model

Applications

Geometry classification

Conformal invariants - Periods

- Torus is conformally mapped to a parallelogram
- The shape factors of the parallelogram are conformal invariants

Conformal invariants - periods

- Topologically equivalent
- Not Conformally equivalent

Conformal Invariants - periods

Snap shot	mesh	angle	Length ratio	Vertice s	faces
0	Torus	89.987	2.2916	1089	2048
	Teapot	89.95	3.0264	17024	34048
	knot	85.1	31.150	5808	11616
	rocker	85.432	4.9928	3750	7500

Conformal invariants – period matrix

High genus case – period matrix

Embedding in Hyperbolic Space
Out along a set of canonical homology basis
Get a fundamental domain

Embedding in Hyperbolic SpaceCanonical Homology Basis

Embedding in Hyperbolic Space

Matching Landmarks

Summary

- Compute conformal structures of surfaces
 - for general surfaces with arbitrary topologies
 - Intrinsic to geometry, independent of triangulations, insensitive to resolutions
 - Conformal invariants
 - Holomorphic differential group

Future Research

- Surface classifications based on conformal invariants – geometric database
- Surface isometric deformation expression, skin deformation
- Theoretic problems
 - Genus g surface has 6g-6 conformal equivalent classes
 - How to parameterize these 6g-6 conformal classes

Thank you !

