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Elliptic Curves

John Stillwell

In recent years, elliptic curves have played a leading role in number theory, most
famously in Wiles’ program to prove Fermat’s last theorem. However, since these
developments are highly technical, it may be useful to look back to earlier times,
when elliptic curves led "a simpler life. For about 1500 years, from the time of
Diophantus to Newton, elliptic curves were known only as curves defined by
certain cubic equations. This put them just a step beyond the conic sections, and
some of their geometric and arithmetic properties can in fact be viewed as
generalisations of properties of conics. In particular, it is possible to find rational
solutions of both quadratic and cubic equations by simple geometric constructions.

It was only with the development of calculus, in the 17th century, that sharp
differences between conics and elliptic curves began to emerge. Conic sections can
be parametrised by rational functions. For example, the circle x% +y? =1 is
parametrised by

but the elliptic curves cannot. Their simplest parametrising functions are elliptic
functions, which arise in calculus as the inverses of elliptic integrals, so-called
because a typical example is the integral for the arc length of the ellipse. It is for
this fairly accidental reason that they are called elliptic curves—an unfortunate
accident since the ellipse itself is not an elliptic curve.

The difference between conics and elliptic curves was “felt” in the 17th century
in the apparent intractability of elliptic integrals, though the parametrisation of
cubic curves was not known at that time. The idea of inverting elliptic integrals to
create elliptic functions had to wait until the early 19th century. The nonrationality
of elliptic curves was not fully understood until the mid-19th century, when the
introduction of complex coordinates revealed a fopological difference between
them and conics. This brings us within sight of the modern view of elliptic
curves—a remarkable synthesis of number theory, geometry, algebra, analysis and
topology. In what follows I shall attempt to describe what led up to this state of
affairs.

Diophantus. Very little is known about Diophantus except that he lived sometime
between 150 AD and 350 AD and was a wizard at finding rational solutions to
polynomial equations in two or more variables. His Arithmetica (available in the
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English edition of Heath [4]), contains the solutions of hundreds of equations,
among them the following instructive examples.

1. A rational solution of x?> + y? = 16, other than an obvious one such asx = 0,
y = 4, is found by solving the simultaneous equations

x* +y? =16,
y=2x—4,

which yield the solution x = 16.5, y = 12/5 (Heath [4], p. 145).
2. A rational solution of x> — 3x%? + 3x + 1 = y?2, other than the obvious one
x =0,y = 1, is found by solving the simultaneous equations

x3—3xr+3x+1=y2
y=3x+1,

which yield the solution x = 21/4,y = 71/8 (Heath [3], p. 242).

How did Diophantus choose the linear equations in these two examples? The
simplest explanation is geometric, although he makes no mention of geometry.

In the first example the linear equation represents a line through the “obvious”
rational point (0, 4). Its slope is not important, since any line through (0, 4) with
rational slope ¢ will meet the circle at a second rational point (8t/(1 — t?),
(42 — 4)/(1 + t?). Conversely, all rational points on the circle are obtainable in
this way, so Diophantus has essentially parametrised the rational points on the
circle by rational functions of a rational parameter ¢.

The linear equation in the second example has an even stronger geometric
smell. It is the tangent to x> — 3x% + 3x + 1 = y? at the “obvious” rational point
(0, 1). Here there is no option about the slope because a line has to meet a cubic
curve in two rational points for its third intersection to be rational. When only one
rational point is known, this forces us to use the tangent, which is the line through
two “coincident” points.

It is possible, of course, that Diophantus discovered these facts purely alge-
braically, and did not notice their geometric interpretation. However, that would
be a truly amazing departure from the Greek mathematical culture of his time.
Even in the more algebraic culture of the 17th century, Fermat and Newton
immediately recognised Diophantus’ work as geometry, with Newton [6] explicitly
interpreting Diophantus’ solutions as chord and tangent constructions. Later
discoveries added more weight to the geometric interpretation, as we shall see
below.

Fermat and Newton. Fermat was the first mathematician to make significant
progress in number theory beyond Diophantus. Among his many discoveries were
methods for proving nonexistence of integer or rational solutions for certain
equatibns. For example, he proved that there are no positive rationals a, b, ¢ such
that

a4j:b4=C2

This implies in particular that no positive integer fourth powers sum to a fourth
power (the n = 4 case of Fermat’s last theorem), but it is also a statement about an
elliptic curve. It says that there are no nontrivial rational points on the curve

yr=1-x%
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since a rational point (p/r, q/r) with p,q # 0 and
p’ q*
A

gives nonzero integers a = r,b = g, ¢ = pr with a* — b* = c?.

Now I know I said that elliptic curves are cubics, but they are cubic in a suitable
coordinate system. Any quartic curve of the form

yr=(x—a)(x = &)(x - v)(x—3)

can be rewritten

2 -a vy—a d—a
() - (- -
X — « xX—a xX— a xX—a

and hence it is cubic in the coordinates

X=——y=—"2 5.
x— a X—«a
In particular, y> =1 —x* is a cubic Y2 = 4X> — 6X? + 4X — 1 in the coordi-
nates X = 1/(1 —x),Y =y/(1 — x)* Notice that this is an appropriate coordi-
nate change from the point of view of number theory, because it makes the
rational points (x, y) on one curve correspond to the rational points (X,Y) on the
other. Such a coordinate change is called birational.
Newton made the surprising discovery that all cubic equations in x and y can
be reduced to the form

Y2=X*+aX+b

by a birational coordinate transformation. In fact, the transformations he used
were simply projections. He called this “genesis of curves by shadows”. His result
can be viewed as an analogue of the well known theorem that second degree
curves are conic sections and hence, in nondegenerate cases, projections of the
circle. The degenerate cubic curves are those for which the right hand side
X? + aX + b has a repeated factor. The corresponding repeated root X = « is
either a double point (Fig. 1) or cusp (Fig. 2) of the curve, and by drawing a line of
slope ¢ through this point we obtain the coordinates of the general point on the
curve as rational functions of ¢.

Figure 1. Cubic with double point.
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Figure 2. Cubic with cusp.

Figure 3. Nonsingular cubic.

The curves for which X? +aX + b has no repeated factor cannot be
parametrised by rational functions, and are what we now call elliptic curves
(Fig. 3).

Elliptic integrals. Early in the development of integral calculus, mathematicians
encountered the problem of “rationalising” square roots of polynomials. For
example, to find the area or arc length of a circle one finds an integral involving
1 —x*. This can be rationalised by the “Diophantine” substitution x =
(1 =¢*)/1 +¢% and fact Jakob Bernoulli [1}, in a similar situation, actually
attributed the substitution to Diophantus. He used it to obtain the expression
s 1 dt

4 o 1+1t%’
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whence he obtained the famous series

T 1 1 1
R
by expanding 1/(1 + ¢?) in a geometric series and integrating term by term.

Integrals involving square roots of cubic or quartic polynomials proved more
intractable. They were called elliptic integrals because one of them expresses the
arc length of the ellipse. Cubics and quartics were lumped together because of
birational equivalences between them, as noted above for y> =1 — x* and Y2 =
4X3 - 6X%+ 4X — 1. Such integrals arise from a great number of natural
geometric and mechanical problems, so a lot of effort was expended on them, but
without success.

Perhaps the first to see why rationalisation might be impossible was Jakob
Bernoulli [2], who noted that a rationalisation of V1 — x*, at least by a rational
function x = f(¢) with rational coefficients, would violate Fermat’s theorem on the
nonexistence of positive integer solutions of a* + b* = ¢2. In fact, it can be shown
that V1 — x* cannot be rationalised by any rational function x = f(t), by repeat-
ing Fermat’s argument with polynomials in place of integers, so Jakob Bernoulli
was on the right track. However, this type of argument was not used until the 19th
century, so the nature of elliptic integrals remained unclear until then (when ideas
not only from number theory, but also from analysis and topology, were directed at
the problem).

Elliptic functions. In the 1820s, Abel and Jacobi finally saw what to do with
elliptic integrals—Invert them. Instead of studying the integral

_1( ) fx dt
u=g (x)=| ——mm,

o Vt*+at+b
say, study its inverse function x = g(u). The gain in simplicity is comparable to
studying the function x = sin u instead of the integral sin~! x = [#(dt/ V1 — ¢2).
In particular, instead of a multi-valued integral g~'(x), one has a periodic function
x =g(u).

The difference between sin u and g(u) is that the periodicity of g(u) cannot be
properly seen until complex values of the variables are admitted, at which stage it
emerges that g(u) has two periods. That is, there are nonzero w,, w, € C, with
w,/w, € R, such that

g(u) =g(u+ o) =g(u + w,).

The two periods can be brought to light in various ways. One method, originating
with Eisentein [1847] and commonly used today, is to write down a function that
obviously has periods », and w,, namely

1

8(u) ,,,,,,Zez (u +mo, + nw2)2 ’
and derive its properties by manipulation of infinite series. Eventually one finds
that g~'(x) is an integral of the type we started with.

A more insightful approach though harder to make rigorous, is to study the
behaviour of the integrand 1/ Vt® + at + b as t varies over the complex plane.
Following Riemann [7], and viewing the 2-valued “function” 1/ Vt* + at + b as a
2-sheeted surface over C, one finds that there are two independent closed paths of
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integration, over which the integrals are w, and w,. This accounts for the periods
w, and o, of the inverse function g(u).
Since g(u) = x, it follows by basic calculus that

dx 1 1
4 = —— = = = v 3 + +b =y,
g'x) du  du/dx  1/Yx*+ax+b e Y

so x = g(u), y = g’(u) gives a parametrisation of the curve y? = x* + ax + b. With
a little more work it can be shown that u — (g(u), g'(w)) is in fact a continuous
one-to-one correspondence between C/{w;, w,) and the curve. C/{w;, w,) is
the quotient of C by the subgroup generated by w, and w, and is topologically a
torus, hence so is the curve y> = x>+ ax + b. This is the deeper reason why
elliptic curves are not rationally parametrisable—a curve parametrised by rational
functions x = p(u), y = q(u) is the topological image of the completed plane
C U {x} of u values, and C U {=} is topologically a sphere.

Another consequence of the parametrisation x = g(u), y = g'(u) is that the
curve y> = x> + ax + b is an abelian group. The “sum” of points with parameter
values u;,u, is simply the point with parameter value u, + u,. Under this
definition of sum, the curve is isomorphic to the group C/{w,, w,). Amazingly,
there is an equivalent definition of the sum that Diophantus would have under-
stood (and which helps to explain why elliptic functions are useful in number
theory): the sum of the points P, and P, is simply the reflection, in the x-axis, of
the third point on the curve collinear with P, and P, (Fig. 4). For an explanation

Figure 4. Addition of points on an elliptic curve (from Koblitz [5]).
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of this face we must refer the reader to a recent book on elliptic curves, such as
Koblitz [5]. In the same book you will find many beautiful modern results on
elliptic curves, motivated by ancient problems in number theory and geometry.
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Without the concepts, methods and results found and developed by
previous generations right down to Greek antiquity one cannot
understand either the aims or the achievements of mathematics in
the last fifty years.

—H. Weyl (in 1950)
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