next up previous
Next: About this document ... Up: Freshman Seminar 21n: Elliptic Previous: Reading Assignment

Problems

  1. (Jenna) Prove that the set of rational numbers $ x$ with height $ H(x)$ less than $ \kappa$ contains at most $ 2\kappa^2 + \kappa$ elements.

  2. (Jeff) Let $ \alpha: \Gamma\to {\mathbb{Q}}^*/{{\mathbb{Q}}^*}^2$ be the map defined in Section 5 of Chapter III of [Silverman-Tate] by the rule

    $\displaystyle \alpha(\mathcal{O})$ $\displaystyle = 1 \pmod{{{\mathbb{Q}}^*}^2},$    
    $\displaystyle \alpha(T)$ $\displaystyle = b \pmod{{{\mathbb{Q}}^*}^2}$    
    $\displaystyle \alpha(x,y)$ $\displaystyle =x \pmod{{{\mathbb{Q}}^*}^2}$   if $ x\neq 0$.    

    Prove that if $ P_1 + P_2 + T = \mathcal{O}$, then

    $\displaystyle \alpha(P_1)\alpha(P_2)\alpha(T)\equiv 1\pmod{{{\mathbb{Q}}^*}^2}.
$

  3. (Jeff/Mauro) Let $ A$ and $ B$ be abelian groups and let $ \phi:A \to B$ and $ \psi:B\to A$ be homomorphisms. Suppose there is an integer $ m\geq 2$ such that

    $\displaystyle \psi\circ \phi(a)$ $\displaystyle = ma$   for all $\displaystyle a \in A,$    
    $\displaystyle \phi\circ \psi(b)$ $\displaystyle = mb$   for all $\displaystyle b \in B$    

    Suppose further that $ \phi(A)$ has finite index in $ B$, and $ \psi(B)$ has finite index in $ A$.
    1. (Jeff) Prove that $ mA$ has finite index in $ A$, and that the index satisfies the inequality

      $\displaystyle [A:mA] \leq [A:\psi(B)]\cdot [B:\phi(A)].
$

    2. (Mauro) Give an example to show that it is possible for the inequality in (a) to be a strict inequality.

  4. (Jennifer) Let $ P\in E({\mathbb{Q}})$ be a point on an elliptic curve. The canonical height of $ P$ is

    $\displaystyle \hat{h}(P) = \lim_{n\to \infty} \frac{\log_e(H(2^nP))}{4^n},
$

    where $ H$ is as in Chapter III of [Silverman-Tate]. Define a function $ d : {\mathbb{Q}}\to {\mathbb{Z}}$ by letting $ d(a/b)$ be the maximum of the number of digits of $ a$ and $ b$ (where we assume $ \gcd(a,b)=1$), and extend $ d$ to points $ P=(x,y)$ by letting $ d((x,y)) = d(x)$. Prove that

    $\displaystyle \hat{h}(P) = \log_e(10)\cdot \lim_{n\to \infty} \frac{d(2^nP)}{4^n}.
$


next up previous
Next: About this document ... Up: Freshman Seminar 21n: Elliptic Previous: Reading Assignment
William A Stein 2003-03-04