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ON THE CONJECTURSS OF BIRCH AND SWINNERTON-DYER
AND A GEOFITRIC ANALOGUE

by John TATLE

{ 1. The conjectures

They grew out of the attempt to apply to elliptic curves the methods used by
siegel in his work on the arithmetic of quadratic forms, these methods having been
reworked and fruitfully applied to linear algebraic groups in recent years by
Tamagawa, Kneser, Weil, et al., (22], [11]. 1Iuch has been written about the
motivation for, and the historical development of, these conjectures [ ¢], [2 1,
(71, [3], [4], (18], mostly in terms of the special case of elliptic curves
over Q. We content ourselves here with the bare statements, but give these in
the most general case.

Let A be an abelian variety over a number field K. Let S be a finite
set of primes of K containing the archimedean ones and large enough so that A
‘has non-degenerate reduction outside S, that is, such that A comes from an

abelian.scpeme A

q over the ring KS of elements of K which are integral

~outside S. For each prime v¢3, let Ev_ denote the abelian variety over the
residue field k(v) obtained by reducing 'AS mod v. Let Nv = Card k(v),
‘and let d = dim A = dimfi?. According to well known results of Weil, there is

& polynomial of the form

2
(1.1) PY(T) = nd(1 - o, v'r) = (Hv)dede(m)
i=1 :

of degree 2d, with coefficients in 2, and with complex "reciprocal roots"
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@ of absolute value (1v)¥, these roots, and hence P (T), being chare

~ ized by the fact that for all n >.1

a & limber of points of K with coordinates in the 1
[1:2) n-a, )= > AL
3 1.%

extension of degree m of the finite field k(v). |

The Luler product

" 1 1
(1-5) w(s) = II E " —sj = IT 1

converges for Rs >‘§- because 1t 1s dominated by the product for (QK(B-Q))zd.
It is generally conjectured that Lﬂ has an analytic continuation througnout
the s-plane. This general conjecture, which in principle underlies those of
Birch and Swinnerton-Dyer, has been verified in some special cases, notably for
A of C.M.-type (Weil, Deuring, Shimura), in which case L, can be identified
as a product of llecke Il-series, and for some elliptic curves related to modular
function fields, when LS cen be related to moduler forms (iichler, Shimura).
lLet r be the rank of the group A(X) of K-rational points on A, which

is finitely generated by the liordell-{leil Theorem. Birch and Swinnerton-Dyer's

first conjecture was

() The function L.(s) has a zero of order r at s =1.

As explained in [19], this conjecture fits beautifully with conjectures I have
made concerning the rank of the liéron-Severi group of a variety V defined over

any field K of finite type over the prime field. But in this report I wish to

concentrate on a refinement of (A), concerning the value of the constant C

R
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- m r chosen set of primes S, the value of C is not. Helped by prod i

':I

Cassels, Birch and Swinnerton-Dyer overcame this difflculty by follml:lm ‘Ehlr 1 |
“""*9;
Tanagawa method, which we now briefly recall.

For each prime v of K, the completion Kv of K at v is a locally
compact field. We choose for each v a ilaar measure W, on Kv' such that
for almost all v the ring of integers Ov gets neasure 1. (In other words,
we choose a llaar measure on the adele ring of K.) Xor each v let ‘Ilv
denote the normed absolute value on Kv’ the norming being such that

—_ C A ow : i
b (xU) | x| v“'v(U) for xK and UCK. The group A(K ) of points of A
with coordinates in Kv is a compact analytic group over Kv. Choose a non-zero
invariant exterior differential from w of degree d on A defined over K,

Then w and uv determine a Haar-measure ‘“”‘v p.i on A(Kv) in a well-known

way, [22] ¢

Let us call v good for w and p if v 1s non-archimedean and satisfies

the two conditions

(1) w (0 ) =1

(ii) o is v-regular with non-zero reduction w_ for léron's minimal wodel

Av for A over Ov’ (14 ].

For such good v we huve

d
(1.4) J‘ ‘w|vp.v= "’d,
A(K )

' 14 ‘ A héron's
is the number of k(v)-rational points on the fiber A Of

where n_
but still non-archimedean, the value

wininal model ; and if v is not SO good,,

given in (1.4) has only to be corrected by multiplication by the factor
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W W, is some v-regular form with (E’o)v # 0. For archimedean V, the

y i

~ value of the integral (1.4) can presumably be expressed in terms of a Riemann
matrix for A .
We now suppose that S contains all primes which are not good for our chosen

w and W , in addition to the primes where A has degenerate reduction, and we

put
- ld
(1 -5) LE(S) -

m( | e, ui) m e (&)
VED A(K) V{S

where ||.1.| denotes the measure of the compact quotient of the adele ring of K

by the discrete subfield K, relative to the measure p =II o o For example

v
-
ld}(l% ‘ b, = Lebesgue measure for archimedean V
lu| = 21:'2 , 1T 4
pv(ov) = 1 for non-archimedean v,

-

where d'K is the absolute dl.scriminant of K, and T, is the number of complex
primes of K. For our "sufficiently large" S, the function Lg is independent
of the choice of p and w, by homogeneity and the product formula (Tamagawa

principle !). By (1.1), (1.2), and (1.4) we have

[ el pf_ = Pv(Nv-1) , for v¢S,
A(K )

and consequently, the asymptotic behavior of Lg(s) as s =1, is independent

. of S. Since it is this bebavior which interests us, we shall from now on write

e

 1*(s) for any such function, or more generally for any Euler product IL*,

l_ -
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e
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there is a best such L¥,

# gl . I :_ . ‘J |:-.‘ ]
; "::I o 'y .~ = =
g 4 i = N

satisfying an eéspecially simple functional oquaﬁm g *‘*-.:
relating 1*(s) and L*(2-s), but we do not enter into this question here, T

The second conjecture of Birch and Swinnerton-Dyer, which refines the first
t}

is
[lu] |de't <al'y,a >

B~ T e et

tors

where the quantities on the right amnow to be explained.

We write [X] for the cardinal number of a set X , and K’c s for the
0

torsion subgroup of an abelian group L. The dual abelian variety to A is
denoted by A'. The groups A'(K) and A(K) have the same rank r , because
TR W . : _
A' 1s 1isogenous to A over K, and (5.1),I <igr’ resy. (ai)1 <i<r’ is
a base for A(K), resp. A'(K), mod torsion.
The symbol < a',a > has to do with canonical heights on abelian varieties.

5 X = (xn, . ..,xm) is a point of projective mn-space with coordinates in K ,

its "logarithmic height" is defined by

(1.6) h(x) = log Tl nax {|x,] ) -
allv 0Ligm

let f be a K-morphism of A into a projective space, and let D be the

inverse image under f of a hyperplanedefined over K. e call f symmetric

- _ _ ,
if D is linearly equivalent to D . Let cpf(a) denote the point on A

representing the divisor D - D. Then < a',a > is the unique biadditive real-

valued function on A'(X) x A(K) such that for every symetric f the e

< g¢Ja),a >+ n(£(a)) is bounded for acA(K).
_
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to ﬂém [15]. I have given a simpler construction, based solely on the
S . prﬁparties ﬁf.heights and of divisors on abelian varieties due to Weil
| (af [12], and [13]), but the approach of Néron through the local symbols (X,8),
ia*unﬂcubtadly-essantial both for the finer theory, and also for computational
purposes.
It remains to discuss the Safarevié group, |||. This can be defined by the

exactness of the sequence

(1.7) 0 - u[-e~H1(K,A)-er 1L H1(K#,A),
all v

where the cohomology ig the Galois cohomology of commutative algebralc groups,
cf. [16]. It is known that Ul is a torsion group whose p-primary component
] (p) is of finite corank for each prime p. Another deep conjecture underlying
(B) is that UJ is finite. As far as I know, this has not been proved for &
single A # 0, although the finiteness of EL(2) or Ml(ﬁ) has been shown for
- hundreds of elliptic curves over Q. Cassels [ 5,IV] for d =1 and I in
general [20] have constructed a canonical pairing Ul X Ul'-ﬁ'Q/Z,which is none
degenerate if Ul 1s finite and is alternating in case Ul' can be identified
with Ul- by means of an isomorphism A = A' coming from a polarization of
degree 1. gﬁﬁFe in ??is“lgtter case,_and_in.particular if A 1is a Jacobian,

am

[ll] is a square. In general (assuming finiteness) we have [{U] - [”L'], S0

i i e

the right hand side of (B) is invariant when A and A' are interchanged.



§ 2. The evidence 5

The numerical evidence for the conjectures is vVery lmpressive. ' Fost of it
is contained in [4 ], where Birch and Swinnerton-Dyer discuss the case K=Q,
and A an elliptic curve of the fomm y2 = xj- Dx. In that case, as Weil [22]
has shown, the function L*(s) = LE(E) is, essentially, a Hecke IL-series
associated with the Gaussian field Q(i) of complex multiplications of A, and
Birch and Swinnerton-Dyer were able to find a finite expression for L*(1). This
expression is a sum of 32 terms, where A 1is the product of the odd primes
dividing D , each term involving & quartic residue symbol and a division value
of a Weierstrass §-function associated with A . Their electronic computer
could compute L]*3(1) for all D's corresponding to a given & (D is fourth-

power free) in about ﬁe/ 20 seconds. It computed the quantity

vy = [A(k), _ J°wx(1)

for 1348 values of D (all those for |a| < 108 and a few more). For each of
these D's it also tried to compute the rank r , together with the order of

[l (2), succeeding in all but about 200 cases. Now, according to conjecture (B),
one should have y =0 if r>0, and y=[|]|]] if r=0. In each of the
more than 1000 cases where r was determined, the machine found +vy = 0 whenever
r >0, and found y to be a non-zero square whose 2-component was equal 1o
[]l]_(2)] whenever r = 0. loreover even in the cases where r and m(z) were

not determined by the given program, there were various consistencies ; in

particular, vy was always a square. The non-zero values of vy which turned up,

-

i.e. the various conjectural orders of _m_ for r=0, werel, 4, 9, 16, 25,

36, 49' and 81,




fnm 1:3 y3 = D, but including some computations of the values of the highnr

derivatives of L*(s) at s = 1, getting numerical evidence for (B) in
hundreds of cases with r =0 and 1 for that type of curve, and also in
four cases with r =2 and in one case with r = 3 !

In addition to all this numerical evidence, there are strons theoretical
indications that (B) is right. In [4 ] it is proved in general, i.e. for all
D, that LE(‘I) 1s a rational number, whose denominator is explicitly bounded
(111 the sense of divisibility) in terms of D.

It should be an easy job to check that (B) is consistent with Weil's
"restriction of the ground field" functor BK,”KD for a subfield K, of K,
that is, that (B) holds for A over K if and only if it holds for AQ=RK/K°A
over K, . Indeed if this is not so, then I have presumably made a mistake in the
normalization of the measures, or of the height pairing < a',a >.

For a given field K, the conjecture (B) is trivially compatible with
products ; indeed each individual quantity entering in (B) is easily seen to be
rmultiplicative.

Iluch more interesting in the question of compatibility with isogenies. It

is true, but not at all trivial, that

TIEOREI 2.1.- The truth of conjecture (B) depends only on the K-isogeny class
-y

For elliptic curves this was proved by Cassels [5,VIII]. In trying to




derivatives of IL*(s) at s = 1, getting numerical evidence for (B) in

hundreds of cases with r =0 and 1 forthattypeofcurve,andalaoin

four cases with r =2 and in one case with r =31
In addition to all this numerical evidence, there are strong theoretical
indications that (B) is right. In [4 ] it is proved in general, i.e. for all

D, +that ].%(1) 18 a rational number, whose denominator is explicitly bounded

-

(in the sense of divisibility) in terms of D.

It should be an easy job to check that (B) is consistent with Weil's
"restriction of the ground field" functor RK;" for a subfield K, of K,
that is, that (B) holds for A over K if and only if it holds for A":Rh:/K.,‘
over K, . Indeed if this is not so, then I have presumably made a mistake in the
normalization of the measures, or of the height pairing < a',a >.

For a given field K, the conjecture (B) is trivially compatible with

products ; indeed each individual gquantity entering in (B) is easily seen to be

multiplicative.
Much more interesting in the question of compatibility with isogenies. It
is true, but not at all trivial, that
- S
THEORE 2.1.- The truth of conjecture (B) Mw K-isogeny class

oL k.
For elliptic curves this was proved by Cassels [ 5 l,VIII]..f In trying to




Poincaré characteristics of finite Galois modules over number fields :

THEOREM 2.2.- let S be a finite set of primes of K and let M be a finite

module for the Galois up of the maximal unramified-outside-S extension of K,

whose order, [HM], is invertible in the ring K, of S-integers in K. Let

M = chn(H,Gm) be the Cartier dual of . Then

o ) J[E° (K, o [6°(x,,)] [8°(x,,4')]
[H KS,M)] v arch H: ]| v arch [HO(K Il')]
where .T';“'I'-cj is the reduced O-dimensional cohomology group (which was denoted by

H° in the too-fancy notation of [20]).

Indeed using Theorems 2.1, 2.3, 2.5, and 3.1 of [20], one proves that,

assumning ”_|_ finite, the compatibility of (B) with a K-isogeny f is equivalent

to Theorem 2.1 for M' = Ker f and Ii = Ker f'. Cassels lemms 6.1 of (5 , VIII ]

seems to be a variant of theorem 2.2 for the case 1 is of prime order. The

equality of the middle and right terms in (2.1) is a triviality, but both

expressions are useful. Defining X(%,M) = left/middle, one checks the

multiplicativity of ¥ by means of Theorem 3.1(C) of [20]. But I was at a loss

in trying to prove x =1 until Serre suggested I use his methods of [16, p.II-

34 to II-37], which work beautifully. One is reduced to proving (2.1) holds (in

the form extreme right = extreme left) incase M=wn , M' = Z/pZ,

D for a prime

P, but where [X] now denotes not the order of X, but the class of X in the

Grothendieck group of finite modules over the group algebra (Z/pZ) [G], where

G is a group of automorphisms of X of order prime to p, such that S is

stable under G. This can be done by considering the cohomology sequence of the

L b % . |
AR | .
1T s o e



It was Mike Artin who first remarked that the finiteness

of ||| was equi-
valent to the finiteness of s Brauer group in certain cases, and the rest of

this talk is a report on Joint work with him,

In this section V will denote either (1) an open subset of the spectrum
of the ring of integers in a number field, or (ii) an irreducible curve-scheme
smooth over a perfect field k. We let K denote the field of rational functions
on V, and V° the set of closed pointe on V. For weV° we let Kv denote
the completion of K with respect to the valuation associated to v. If A
18 an abelian variety defined over X, we let LU_(V,A) denote the kewmel of the
map

1
H1(K,A) - U H (K ,A).
YV
ve Ve

liotice that in the arithmetic case the Il of § 1 (ef.(1.7)) is a subgroup of

U_]_(V,A) and is not in general equal to it unless X is totally imaginary and

V the spectrum of the ring of integers of K.

1
THEOREM 3.1.- Let f : X >V be a proper gorphism vith fibers of dimension

and X regular of dimension 2. Suppose that the geometric fibers of I &re
connected, and the generic fiber smooth. If f admits & section, then there ig

an exact sequence

s aeir) s (D) AN




= B
o R .
5.1, 5

e 4 otes | zeneric fiber of f, and where Br denotes
ox -.i#ﬁ_h". 0. Moreover if V is a complete curve, then Br(V) = O.
Concerning the definition and basic properties of Br we refer to Grothen-

IIIIII

dieck's talks in the last two Bourbaki seminars [87]. Notice that since the
dimensions are <2 and X is regular, both Brauer groups in question are iso-
morphic to the cohomological Brauer groups. We do not prove Theorem 3.1 here,
because of space limitations, and because of Grothendieck plans to give a third
exposé [9] on the Brauer group, which will contain a proof of a somewhat more
general statement. Suffice it to say that the proof is based on the Leray
spectral sequence of étale cohomology for the map f and the sheaf G of

—m,X
multiplicative groups on X, the starting point being

THEOREM 3.2 (Mike Artin).- If £ : X2V is a proper morphism with fibers of

dimension 1 and X regular of dimension 2, then R',E . =0 for q >2.
3

It might be interesting to try to find a direct connection between _UL(V,A)

and Azumaya algebras over X.

S 4. The geometric analog

Let k Dbe a finite field with q elements and V an irreducible algebraic
curve proper and smooth over k with function field K. If A is an abelian
variety defined over X, then the conjecture (B) of § 1 makes good sense for A
over X, by the usual analogies between number fields and function fields in one
variable over finite fields. Moreover, the !Jl occurring in (B) 18 identical

with the |||(V,A) of § 3, because V is complete. The proof of compatibility

~ With isogenies given in § 2 carries over to this geometric case, so long as the




lity with p-i ies - - .
ty sogenies looks like an interesting problem. LR s T

i
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Let us now abandon our curve V temporarily and consider an a3 S > T =5

B I.. a " .- - -
H-f'_ i - s B ‘I
R

surface X projective and smooth over k such that X = X xk k is connected. r

By the étale lefschetz fixed point theorem and Poincaré duality [1 ], [10], the

zeta function of X is of the fomm.

P, (X,0”°)P, (X,q'~°)

(4-1) Q(X,E) = - o HT_—é_
- (1072, (%,8™®) (142

where Pi(K,T) = det (1-cpi T) is the characteristic polynomial of the

£

H

endomorphi sm P, ‘ of the étale H (E,QL) induced by the Frobenius endomorphism
’

@ of X. From Weil's work on abelian varieties and the relation between the

etale H‘l and the Picard variety of X, it is known that P1 has integral

coefficients and is independent of £, and it follows that the same 1is true for

P It is also known (Weil) that the complex "reciprocal roots" of P, have

5
absolute value q% + it is conjectured, but not known, that those of P2 have

’

absolute value q.

Inspired by the work of Birch and Swimmerton-Dyer, in the way explained

below, lMike Artin and I conjecture :

(C) The Brauer group Br(X) is finite, and

[Br(X)]|det(D;.D )| 1-8,p(X)
-8y (1 ) , 88 87 1,
Pa(X:q ) (X)) rys(x) ]2 B

q tors

W tities o e t are def oed as follows :




506-13

a(X) = x(x,_g_x) - 1 + dim (Pic Var(X)) = pg(x) - §8(X) ,

m §(X) = dim i (I,gx) ~ dim (Pic Var(X)) is the "defect of smoothness" of
the Picard scheme of X. It is known that of(X) 2 0.
NS(X) denotes the Néron-Severi group of X, which we define to be the image
of Pic(X) in NS(X), where Pic(X) = i (J{,gi) and NS(X) is the group of

algebraic equivalence classes of divisors on X.

p(x) denotes the rank of NS(X), and (Di)‘l is a base for

1P

~

NS(X) mod torsion. The symbol (Di.DJ.) denotes the total intersection

miltiplicity of D; and D, .

We also conjecture

(d) Suppose that f : X 3V is a k=morphism of the surface X onto the curve

V, with connected geometric fibers and smooth generic fiber. Let A be the

Jacobian of the generic fiber. Then (B) holds for A over K if and only if

(C) holds for X.

This conjecture gets only a small letter (d) as label, because it is of a

much more elementary nature than (B) and (C). We have checked that (d) is true

in case ' ] 5 it ] '
' is smooth and has a section, and we are 99 % sure it is true in case

{e have not yet made a serious attempt to prove (d) in the general case, and

Will here just briefly indicate the explicit and plausible equality to which it

reduces., — :
For each wveV® 1let Xv =f (v) be the fiber over v , and let m



P (W)= g(X ,8) (1) (101 ~8) ¥

(Concerning the general formalism of zeta functions of Schemes,see Serre [17] )

For the good v , where f is smooth and A has non-degenerate reduction
|

Pv(T) 1s the polynomial associated to A at v as in (1.1). We have

(4.3) (X s) = II g(;{ ,8) = 8)C(V, 5=1 - (1-%?1_5)1-{!1?

Ve Vo L{s veVo r

=S\ =1 . :
where L(s) — HVEVO Pv(Nv ). Substituting the expression (4,1) for

((X,s) and the analogous formula for ((V,s) in (4.3) one finds (ultimately)

that (d) is equivalent to the equality

< B 5B > M e
(4.4) LUL(V,4)] /[NS(X)tors][B(k)] o es _lrl_gg)l a (deg v) v =
(0] | [A), ]/ laet (2,.0.) | ves ()R 0w ")

(sauf erreur), where :
B = Coker (Pic Var(V) < Pic Var(X)) = (K/k)-trace of A .
S is a finite set of points of V outside of which £ is smooth.

- - o l
n_ is the number of k(v)-rational points on the fiber A of Nérons's

minimum model for A.
= deg w + (g-1)(a=1) - x(X,94)

where

w is the line-bundle on V whose fiber at v is the space of exterior

differential forms of degree d on A, . "o
e abelian variety B enters becawse B (GD/H (VD) =R(M: &€




for all v, and the use of a rational section w of the bundle w as in (1.4)

and the remarks following to get 1*(s) in terms of L(s). The n also arise
from (1.4).

In deriving (4.4) one also uses p =1 + 2 + Z(mv-1), which results from
an unscrewing of NS(X) of the type
NS(X)

. .
(4.5) fi Ng gﬂ LIBOE o ALK + Z(NS)_ , wup to torsion,

5
where (Nb‘)v denotes the quotient of the free group generated by the irreducible
- s

conponents of f (v) by the subgroup generated by the cycle £ 1(?). This

unscrewing will lead to a factorization of det(Di.Dj) into factors det, and

detv's, and in (4.4) the detv's should be moved over into the product of local
m -1

terus (note that (deg v) v divides det v)’ and the detﬂ should essentially
cancel with det {Zai,aj >, Indeed, if D and £ are divisors on X which

intersect every irreducible component of every fiber with multiplicity O, and
if a and b are the points in A(K) representing the intersection cycles of

D and £ on the general fiber, then we have < a,b > = (D.£) log d. 3 €L [15].

The factor log q appears here because log (Ix[v) - —(azﬂvx)(deg v)(log q) 3

. : 1=8
the source of log q in (4.4) is simply 1 = g

~ (log q)(s=1) as s =1.
If f has a section, then m_= Br by Theorem 3.1, and also ¢ = 0, for

in that case, as Grothendieck explained to me, R1 f*(gx) is a locally free

sheaf on V of rank d, the d-th exterior power of whose dual is w , and on

1 ;
the other hand, ‘x(X,P_K) = x(V:_Qv) - x(V,R f*(gx)) ; now use Riemann-Roch on V.




§ 5. The main theorem

We consider now a surface X of the type described in the second parﬂgraph' I

of § 4, without reference to a fibration X = V. After proving a self-duality
theorem for Br(X) analogous to Cassels' self—duality for the |l of elliptic
curves, we prove our main theorem 5.2. If we grant (d), this theorem shows that,
for a Jacobian A over a function field K of a curve over k, +the finiteness
of ||l(£) for one prime £ # p = char(k) is equivalent to conjecture (i) of
Birch and Swinnerton-Dyer for A over ¥, and implies the finiteness of the part
of UJ_ prime to p and the truth of their conjecture (B) up to a factor + pv.
Our proof uses the étale cohomology theory over XX X k , and therefore does

not offer much hope of adaptation to the number field case at the moment.

==

Let G denote the Galois group of k over k, and consider the following

exact commutative diagram of finite groups :

0 0
!
0 »  Ppic(X)/mPic(X) = (S(X)/mis(X) )
! ! !
(5.1) e cop - g (i,pm)g - Hz(x,u.m) e
(Pic:(i)m)g Br(X)m 5
{ i




Prime to the characteristic p. We use the Symbol Hm to denote the kernel of
multiplication by m in a commutative group W. The columns in (5.1) come from |
the étale cohomology sequence associated with the exact sequence of sheaves

0 ~3 p,m - gm - _G_m - 0O

(cf. [(8,II, § 3])y over X and over X=X X, k . The O in the northwest
corner comes from the fact that HO(E, gm ) = K*  is divisible, and the replacement
of Pic by NS in the northeast corner is allowed by the divisibility of

Pic Var(X)(k). The group G = Gal(k/k) =~ 2 has a canonical topological
generator o = Frobenius automorphism, and for any topological Gw-module M we
denote by M (resp. IHIG) the kernel (resp. cokernel) of the homomorphism

: G
(0=1) ¢ M > M. Thus HG(G,I&) =M, and if M is a torsion module, then

il

, and H(G,M) =0 for i>2 . If F is a finite sheaf killed

1 |
H (G,1) = b,

by m on Két , and F its restriction to Eét , then the spectral sequence of

Hochschild-Serre [1,VIII 8.4 ] breaks up into exact sequences :

(5.2) 0 = L—.i_1(;7{,f‘)G 3 Hi(.;{,F) N ]_{i(;T:j)G 5> 0.

The middle row of (5.1) is this exact sequence for I = o and i = 2. The top

and bottom rows have arrows omitted simply in order that we may say the diagram

is exact.

The Poincaré duality theorem over X (cf.[1]) shows that the cup product

(5.3) E(Xp) xE T (Xw) - BESY) & 2/

is a perfect duality of finite G-modules for all i, with G operating’




trivially on Z/mZ. From (5.2) and (5

duality theorem over £, which asserts that the Cup product pairing

(5.4) E @) X P ) > PG~ g/

is a perfect duality of finite groups, for all 1i.

i J
—+pm2-+|.|.m-+0. From the
functorality of arithmetic Poincaré duality one finds that the +wo groups
j . i
D
Coker (- (X 5) > (), et Ker(P(w) > Pla >))
m

Now consider the exact sequence 0 - H
m

m

are dual. On the other hand these-two groups are lsomorphic via the connecting
homomorphism §: H2(X,p.m) - HB(}{,pm), and the first of them, i.e. the Coker, is
isomorphic to Br(X)m/m(Br(X) 2) = Br(}{)m/(Br(K)m N mBr(}{)), as one sees by

In

applying the serpent lemma to a diagram involving the middle column of (5.1) and

2. It follows that Br(X) m/m(BI‘(X) 2)

m
is self-dual, its self-duality being induced by the pairing (x,y) > x.8y of

the same colum with m replaced by m

H2(X,p,m) with itself into HB(X,p.m) & 2Z/mZ., This latter pairing is skew-
symmetric because x.(8y) + (6x).y = 6(xy), and 6(xy) = 0O because
H5(K,pm) - HS(X,p.mz) is injective. The skew-symmetric fomm on Br(X)m
which we have constructed is compatible with the inclusions

Br(X)m - Br(x)mm' if we view its values in Q/Z. Passage to the limit gives

THEOREM 5.1.- There is a canonical skew=- etric form on Br(X) (non p) wshose

cular, i Br(X (nan P)
kernel consists exactlv of the divisible elements. In M___-—l——-i lf e ( )
=24 CONS1SLS exactly OI 1ne alvislblo & s gl
uare . "
ite, then it is self-dual and its order is & =/

In the situation of Theorem 5.1, when Br(X) G m—’ e |
we thgrefﬁﬂ m

lli r - L
LT e
=5 h',_g i §
B R
a ol |

o R
. B Pl LT T
A I :
Yol ..-!EI__ o
R et

correspond to the one of Cassels discussed after (1 B




- _.‘,I = _--
et B
4 MY .

that the form in theorem 5.1 is not only skew-symmetric, but alternating, and
that the order of Br(X) is a square, if finite. The proof of alternatingness,
or equivalently of x.6x =0 for :EHg(K,pm) in the notation of the preceding
paragraph, looks like an interesting cohomological problem. Comparison with the
nethods of Cassels suggests that another description of the pairing, involving
divisors, might be useful. It would also be interesting 1o give a description
of it in terms of Azumaya algebras on X. On the other hand, the methods used
here suggest that there should exist a "truly arithuetic” Poincare duality
theorem for schemes of finite type over number fields, which in the case of
dimension 2 should yield a new construction of Cassels' pairing.

In the proof of the main theorem below we use a counting process involving
homomorphisms f : A > B of Z,-modules. We will call f a guasi-isomorphism

g,

if Xer f and Coker f are finite, in which case we put

=;£length(Ker f) - length(Coker f)

(5.5) () ===

e 1list without proof the elementary properties of z(f) which we will need.

LEA z.1.- Suppose A and B are finitely generated Zg—modules of the same

rank and that (ai), resp.(bi) is a base for A , resp.B, mod torsion. Let

f : A-> B, with f(ai) =ﬁzzijbj mod torsion. Then f is a quasi-isomorphism

if and only if det(zij) £ 0, in which case

z(f) = |det(zij)[B

VMol -

tors

LEMMA z.2.~ Suppose f + A=-B and g : B=>C, If any two of the three maps



if and only if f* : B¥ -»A* is, in which case z(f)z(f*) = 1.

LEMA z.4.- Suppose © is an endomorphism of a finitely generated Z module A,

Let O®1 denote the corres nding endomorphism of A @z Q Let
——to VS W10 _COITeSpo , LeT

f : Ker O - Coker © be the map induced by the ldentity A -2 A. Then f is a
quasi-isomorphism if and only if det(T - 8®1) = T’R(T), with p = rk, (Ker 8)
J /

and R(0) #0, in which case =(f) = |R(0)|, .

To prove this last, let ©6, denote the restriction of 6 to Im © , and

’
note that Ker £ = Ker 6 N Im © = Ker 91 , and Coker f = A/(Ker 8 + Im 6) = Coker 91.

Now apply lemma z.1 to 91 ¢+ Im 6 = Im O.

Let £ be a prime number different from the characteristic p. Passing to

the inductive limit with nm = f,n in (5.1) we obtain an exact commutative diagram

of Z. torsion modules of finite corank :

)

0 0
|

ns(x) ® (Q,/2,) (Ns(x) @ (Q;/Z;,))G
! NS '

— G. &

(5.6) 0 - H(Eu(e)) > Ee®) 2 B (X,u(2)) 0
2 |

0
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} | _
Pic(X) ® Z, > (ns(X) ® zL)G_-: NS(X) ® %, T
} { h
(5.7) 0~ E(E1,M), » M) - #(X,7,(w))° > 0
2 ‘
(7,(Pic(X))),  T,(Br(X))
0

where T,E(U) = 1im(U ) = Hom(Qﬂ/Zz,U) for an abelian group U. The isomorphism
N
in the northeast corner follows from the definition of NS(X) as the image of

pic(X) in NS(X) = pic(X)/(Pic Var(X)(k)), the fact that z2, 1is Z-flat, and
. 1 TN\G . (=\G =G
the surjectivity of the maps Pic(X) = Pic(X) and Pic(X)” = NS(X)™, these
- 1 _ -
surjectivities resulting from H1(G,1-:*) — 0 and H (G,Pic Var(X)(k)) = O (Lang's

theorem). This last vanishing also shows that (Pic(X)(£))y = (N8(X), _4oe)g 7

and consequently

(5.8) (ic(X)(8),] = I8y _gored = ISy _gore] -

because [AE] = [AG] for finite A.
We are now ready to prove




THEOREM 5.2.- The following statements are equivalent

(1) Br(X)(2) is finite.

(ii) The map h : NS(X) ® Z, = 1{{2(':-'5,,%(;»))G
(111) p(X) = zi; B(X, ™, (1))C.
)

18 bijective.

(iv) p(X) is the multiplicity of q as

reciprocal root of the polynomial

P,(X,T).

1f these statements are true for one £ , then Br(X)(non p) = L&p Br(X)(2)

is finite, and conjecture (C) is true up to a factor of + p ; in other words,

putting R(T) = PE(K,T)/(’l-qT)p(K), we have

fs o3 : _1) " [Br(X)(non p)] det(Di.Dﬁ)
. R — - &
7 TEs s, TP

tors

for some integer v .

It is easy to see that (TE(Pic(i)))G is isomorphic to the group of
k-rational points on Pic Var(X) end is therefore finite. Since TL(Br(J{))

is torsion-free, we get from (5.7) an exact sequence

h

(5.10) 0 = NS(X)®Z£ - Hz(E,T’B(p))G - Tz(Br(X)) -» 0

which proves the equivalence of (i), (ii), and (iii), because Br(X)(2) is

finite if and only if TE(BI'(X)) = 0,

As explained in [19], we have

-1
(5-11) dﬂ't(1 - UQ,LT) - P2(X!q, T) ’

] o3 which is induced
denotes the automorphism of H2(X,Tb(p)) 7 QL
q as reciprocal

Hence the multiplicity of
1 as eigenvalue otj #,.fa-"aZ, ¢

where 02 P
3

by the Frobenius automorphism O - &
’

tiplicity of
root of P2 is the same as the multip

e
.ll
'3
4 :

[



of O as eigenvalue of o 1. This multiplicity is clearly at least as

2l
great as the Zz-rank of Hz(i,Tz(u))G. Therefore (iv) implies (iii), in view
of the injectivity of h in(5.9:.

Assume now that the equivalent conditions (i), (ii) and (iii) hold and
consider the diagram

e

NS(X) ® Z, Hom(NS(J(),Zﬂ) ~ Hom(NS(X) ® QE/Zz,Qﬁ/ZE)

(5.12) h} o1

% 5 e
?(X%,1,)° > PEL,M), = Hom((Xu(t),e,/2,)

Here h is the isomorphism of (ii). The map e is that induced by the inter-
section pairing 1S(X) X 1S(X) » Z. The non-degeneracy of this pairing over X
follows from that over X. By lemma z.1 we conclude that e 1is a quasi-lisomorphism,

with _
) oA,

! [}{S(K)E—tors] ‘f,

The isomorphism in the top now of (5.12) is trivial, and the one on the
bottom row comes from Poincaré duality on X. The map g% 1is the adjoint of the
map & in diagram (5.6). From the exactness of (5.6) and lemmas z.2 and 2.5

we conclude using (5.8) that g* is a quasi-isomorphism with

l [115(X) f—tors ]_LE

| [EI'(X)(E)]"@

z(g*) =

The map f is that induced by the identity on H?(E,Iﬂ(u)). By (5.11) and
lemma z.4 with © =0 -1, themap f 1is a quasi-isomorphism if and only if (i?) |

holds, in which case



z(f) = 'R(q-1)|£ :

where R 1is as in(5.9), and is directly related to, but not the same as Ithe R
]

in lemma z.4.

The diagram (5.12) 1s commutative, i.e. e = g*fh. To see this Just replace
the X's in the upper row by X and remove the G's in the bottom row, and use

the compatibility of intersection of cycles with cup products, on X .

By lemma z.2 we conclude that f is a quasi-isomorphism, hence (iv) holds,

and
Br( X £ i
(5.13) IR(q™")] = a(£) = z(e)a(er)™ = Pl e
[NS(K)ﬂ—tors:lz L

But (iv) is independent of £ (because P2(X,T) 1s, as explained at the
beginning of § 4), and consequently (5.13) holds for all primes f£#p. Since

NS(X) is finite, it follows that Br(X)(non p) is finite, and (5.9) holds.

tors

This concludes the proof of theorem 5.2.

The problem of proving the analogs of theorems 5.1 and 5.2 for £=p should

furnish a good test for any p-adic cohomology theory, and might well serve &s

a guide for sorting out and unifying the various constructions which have been

suggested and used ; Serre's Witt vectors, Dwork's banach spaces, the raisings

via special affines of Waéhnitzer—blons]qr, and Grothendieck's flat cohomology of

2 we have especial confidence in the "non-p" part of
X a product

b . In view of theorem 5.

P
Conjecture (C) ;

of elliptic curves have furnished fragmentary evidence for the

nevertheless, some computations in the special case
p-part as well.
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