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Introduction

For fixed n> 0 let C" denote n-dimensional complex space and

Rzn the underlying 2n-dimensional real Space. Let A be a lattice in

Rzn - that is, a free abelian group on 2n generators which spans RZn;
thus with the induced topology A is discrete and T = Rznm is compact,
T has a natural structure as a complex manifold, which we recognize by

writing it as T = Cnm, and with this structure it is called a complex

torus. The most interesting case is when there are sufficiently many

meromorphic functions on T, in a sense that will be made precise in

Chapter II; in this case T is called an abelian manifold, and is usually

denoted by A. Thus from one point of view the study of abelian mani-
folds is essentially the study of meromorphic functions of n complex
variables having 2n independent periods. Thus it forms a natural
generalization of the theory of elliptic functions - that is, of doubly
periodic functions of one complex variable, Historically, the other parent
of the subject was the study of compact Riemann surfaces: indeed the
term 'abelian manifolds' comes from the connection with Abel's theorem.
A compact Riemann surface is Just another way of describing a
non-singular algebraic curve; and this already gives a connection between
algebraic geometry and abelian manifolds. This connection was much
strengthened by Lefschetz and the great Italian geometers, who showed
that abelian manifolds are an important tool in the problem of classifying
non-singular varieties. Conversely any abelian manifold can be embedded
in projective space as a variety in the sense of algebraic geometry; when
we wish to emphasize this point of view, we speak of an abelian variety
instead of an abelian manifold, The study of abelian varieties by purely
geometric methods, valid over fields of arbitrary characteristic, was
initiated by Weil; see [14], [15] and Lang [5]. (Numbers in square brackets
refer to the list of references at the end of this volume.) An up-to-date
account may be found in Mumford [8]. More recently Shimura and others
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necessary results from the theory of algebras are stated without proof
at the beginning of §10,

The book starts with two sections closely connected with the main
theme though not essential to it. In §1 there is a survey of the theory of
compact Riemann surfaces - without proofs of the key theorems because
to include proofs would take so much space that it would unbalance the
book. Proofs may be found for example in Gunning [4]. In §2 there is a
brief account, with proofs, of the theory of elliptic functions., This is
the special case n =1 of the theory, but it is untypical for two reasons.
Because one can give a simple description of divisors when n = 1, there
aré many explicit formulae in that case which cannot be generalized; also
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embedding of abelian manifolds. Chapter III contains the standard theory
of abelian manifolds themselves, in particular the study of the ring of
endomorphisms of an abelian manifold and the matrix representations of
these endomorphisms, and the duality theory which essentially describes
the group of divisors on an abelian manifold., Many of the results in this
Chapter can be stated in purely algebro-geometric terms, even though

the proofs which have been given for them are analytic. I have therefore
riven in an Appendix a brief account without proofs of the geometric theory
of abelian varieties over a field of arbitrary characteristic, to show how
far the analytic theory remains valid.

The most elegant account of the analytic theory is that given in
Chapter VI of Weil [17]; but that account was written to show how Hodge
theory can be applied to a particularly simple kind of complex manifold
and it therefore assumes a great deal of background knowledge. The
same is true of the account in Mumford [8], Chapter 1. Two books which
assume no more knowledge than this one are Conforto [2] and Lang [6].
Conforto's treatment is very old-fashioned; in particular a substantial
part of his book is taken up by Poincare's original proof of the key
existence theorem, that to every positive divisor on T corresponds a
theta-function on Cn, whereas the proof given here, based on Weil [16],
only takes a few pages. Lang's book is very similar in spirit to this one,
though perhaps more modern; but I believe there is enough difference in
the material covered to justify publishing this also. Much of the theory
can also be found in Siegel [11].

Nothing in this book is original, except perhaps the errors. ¢
have therefore only ascribed a result to someone if it is generally known

by his name.
I would like to express my gratitude to André Weil, Serge Lang and

S. J. Patterson for the help which they have given me at various levels;

without them this book would never have been written.

NOTATION

As is usual, C, Q, R and Z denote respectively the complex
numbers, the rationals, the reals and the rational integers; but Q is

sometimes also used to denote a quadratic form. From the beginning of

vii
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the reader is warned that Weil [17] adopts the opposite convention.

Since the distinction between Theorems and Lemmas is purely
subjective, they share a common system of numbering; however this

principle has not been extended to Corollaries.
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|-Background

1. Compact Riemann surfaces and algebraic curves

A Riemann surface is a topological space which in a neighbourhood

of any point looks like the complex plane. (Some writers also require a
Riemann surface to be connected.) More precisely, a Riemann surface

is a Hausdorff space S which is endowed with a complex one-dimensional
structure in the following way. For each point P of S we are given an
open neighbourhood N of P and a homeomorphism ¢ from N to a disc
fz - qb(P)[ < ¢ in the complex z-plane for some c¢ > 0. These homeo-
morphisms satisfy the following consistency condition. Let Pl, I‘-’2 be
any two points of S such that their corresponding neighbourhoods Nl,
N:2 overlap; then (,bl o 9‘9;1 is holomorphic on *;!JE(Nl N NE). If f(z) is
a function which is holomorphic and has non-zero derivative at z = ¢(P),
then we can replace ¢ by f o ¢ (with corresponding changes in N and

¢) without changing the complex structure of S. We call ¢ a local

variable at P; clearly it is then a local variable at each point of N.

We can now transfer all the standard terminology of the theory of
functions of a complex variable from the complex plane to Riemann sur-
faces. For example, a function ¥ defined in a neighbourhood of P is
holomorphic at P if W o ¢ * is holomorphic at z = ¢(P), where ¢ is
a local variable at P; the consistency condition is just what is needed
to ensure that y is then holomorphic in a neighbourhood of P, Again,
Y has azeroof order n at P if Y o f,b_l has a zero of order n at
z = ¢(P), and similarly for poles. A differential w defined in a neigh-
bourhood of P can be written in the form d¢; it is said to be holomor-
phic or meromorphic at P, or to have a zero or pole of order n at P,
if Y has the corresponding property. It is easy to see that none of these
properties depends on the choice of the local variable ¢. It must be
remembered that a residue is associated with a differential rather than
with a function. If w = yd¢ has at worst an isolated singularity at P, |
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on S: differentials of any given kind form a C-vector space. A differ-

ential is called exact if it is of the form dy where ¥ is meromorphic

on S; clearly an exact differential is of the second kind, but not every

differential of the second kind is exact,
We can now translate Cauchy's theorem into the language of

Riemann surfaces:

Theorem 1. Let I' be a contour on S, not necessarily closed,

and let w be a meromorphic differential on S. Suppose that I varies

continuously, with its endpoints if any remaining fixed. Then Il..w

remains constant as long as I" does not move across a singularity of w,

and it changes by 27i times the residue at a singularity whenever T
moves across that singularity,

In particular, if T
second kind, the value of

18 a closed curve and w is of the first or

frfﬂ depends only on the homology class of

P. i : .
 this value is called the period of with respect to I'. It is easy
to see that w is

exact if and only if al] its periods are equal to zero.
Henceforth we shall also agsy

: me that S ig 11
that it is connected, | VRIMpAch; ANCLUSRELY

A compact Riemann surface is the disjoint union

qﬁ'l from the canonical orientation of the complex plane. These orienta-
tions are compatible, so S itself is oriented. Since it is compact it
can be triangulated and the triangulation is finite; topologically S is
just a sphere with g handles, for some g = 0, and its first homology

group Hl(s, Z) is a free abelian group on 2g generators.

Theorem 2. (i) If w isa meromorphic differential on a com-

pact Riemann surface S then w has only finitely many poles on S and

e e —— A——

the sum of the residues of w at these poles is 0,

(ii) If ¥ is a non-constant meromorphic function on a com-

pact Riemann surface S then Y takes every value the same number of

times (allowing for multiplicities). In particular ¢ has as many poles

as Zeros.

Proof. If w had infinitely many poles these would have a point
of accumulation on S, by compactness, and w would not be meromor-
phic at that point, Now triangulate S, integrate w round each triangle
and sum the results; (i) follows at once since in the sum w has been
integrated twice along each side of each triangle, once in each direction.
Applying these results to the special case w = dy /Y we find that ¢ has
as many poles as zeros, and writing ¢ - ¢ for Y we find that { takes
the value ¢ as many times as it has poles. This completes the proof
of the Theorem., The number of times Y takes each value is called the

valence of . Constant functions are deemed to have valence 0.

Lemma 3. Let 6, ¢ be non-constant meromorphic functions on

a compact Riemann surface S, of valences m, n respectively. Then
there is a polynomial F(X, Y) of degrees at most n in X and m in

Y such that F(#, ¢) = 0. If moreover S is connected then F can be

chosen to be irreducible.

Proof. Choose a complex number c¢ which is not a value taken
by ¢ at any of the zeros or poles of 6, and let Pl, A Pn be the
points of S at which ¢ = c¢. For any r = 0 the differential

, : r _
W = ﬂrdyb/(xp - ¢) has a simple pole with residue 0 (Pu) at each Pp,

its other poles are at the poles of 6 and ¥, and at each of these the
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minimal equation.
Choose a point P on S and let N

for some polynomials F1 and FE.

be the canonical neighbourhood of P associated with some local variable

at P; then
F. (6, r,v}FE{H, W) =0 in N,

and so (by the analogous result for the complex plane) either
Fl(ﬂ, ¢)=10 in N or FE(G, W) =0 in N. Assume the former; then

by analytic continuation Fl(ﬂ, Y) = 0 everywhere on S, which contra-

dicts the minimality of F., This completes the proof of the Lemma.

Theorem 4. The meromorphic functions on a compact connected

Riemann surface S form a finitely generated field of transcendence
degree 1 over C. Given any two points 13’1 and I?’2 on S, there is a
meromorphic function ¥ on S such that y(P ) # w(PE]. Moreover,

given any point P on S there is a meromorphic function ¢ on S which

is a local variable at P.

The difficult part of the proof is the second sentence, that there

4re : .
enough meromorphic functions on S; in many practical cases this is

Irrelevant, since if one ig presented with an explicit S it is likely to
Come equipped with Plenty of functions.

phic ¥ on S, the proof of the first
¥ has valence pn > 0;

Given a non-constant meromor-
sentence is easy, For suppose that

then by Lemma 3 any meromorphic function on S
t most n over C(¥). Since the characteristic

d results in field theory that the field of

C(y). S 1s algebraic of degree at most n over

Corollary. Any compact connected Riemann surface can be

regarded as an irreducible non-singular algebraic curve over C, and

S —— S —— - S = e —

vice versa,

e

Because the functions on S separate points, S can be recon-
structed from a knowledge of the field of meromorphic functions on it:
and this field is of the sort that corresponds to an irreducible curve. The
curve is non-singular because the field contains a local variable at each
point. For the converse, we need only check that the Riemann surface
corresponding to an irreducible curve is connected; if this were not SO,
the connected components of the Riemann surface would give rise to com-

ponents of the curve,

The additive group of divisors on S is the free abelian group

whose generators are the points of S. Let ¥ bea meromorphic function
on S which is not identically zero on any connected component of §,
and let Pl, v g Pn be the poles and Ql, cee Qn be the zeros of i,
repeated according to their multiplicities; then the divisor of ¢ is de-

fined to be

(W)=Q1+... +Q =B s B

The divisor of a differential w is defined in a similar way and is written
as (w), though of course a differential need not have as many poles as

zeros. Taking divisors is a homomorphism from the multiplicative group
of non-zero meromorphic functions on S to the additive group of divisors.
The kernel of this homomorphism is just the functions with no poles or

zeros; these have valence 0 and are therefore constant on each connected
component of S. In particular, if S is connected the divisor of a function
on S determines the function up to multiplication by a non-zero constant.
The image of the homomorphism, that is the group of divisors of functions,
is called the group of principal divisors; and two divisors are said to be

linearly equivalent if their difference is a principal divisor. The degree

of a divisor Z nqu is defined to be Z n,; thus linearly equivalent divi-
sors have the same degree, but not necessarily vice versa. A divisor
Zn P is said to be positive if every n = 0; this induces on the group

of divisors a partial ordering which is compatible with addition. Since
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compact Riemann surface, and
C-vector space consisting of those meromorphic functions ¢ on S for
_T.F ‘

+a = 0. together with the zero function, and write

which () |
depends only on the linear equivalence class

I(a) = dim L(a); thus /(&)
of . Since deg((y)) =0 for any non-zero function y on S,

L(a)= {0} and ((a)= 0 whenever deg(a) < O.

Theorem 5 (Riemann-Roch), Let S be a compact connected

Riemann surface. Then there is an integer g = 0, depending only on 8§,

such that

l(d)=deg(a)+1-g+I(k-a) (1) )

for any divisor a and any canonical divisor k .

The condition that S should be connected may be dispensed with,
if we suitably modify the definition of L{a) and allow g to be negative,
However this is not a rea] generalization, for the equation (1) for general

S j it
can be obtained by addition of the corresponding equations for the
connected components of S.

Corol
lary 1. Deg(k) = 2¢ - 7 and I(k) =g, if S is connected.

Proof, ‘
of Applying Theorem 5to | - a4 instead of a gives

i(h-ﬂ)zdeg(h} - deg(a) + 1 - g+ L(a)

and Comparing thig with

(1) g
note that ¢ (o) Blves deg(k) = 2g - 2, Now take a = k and

=1
because 1,(0) — C; thus (k) =g

e e 58 0 g

The Riemann-Roch theorem is a duality theorem, relating (a)
and (k- a); it can be written in self-dual form but nothing is gained by
doing so. In the special case when deg(a) > 2g - 2 we have

deg(k -a)< 0 and hence I(k-a)=0; so (1) takes the form
L(A) = deg(a) +1 - g if deg(a) > 2g - 2, (2)
which is the form in which it is most frequently used.

Corollary 2. The differentials of the first kind form a C-vector

space of dimension g, provided S is connected.

Proof. This is just the equation !(k) = g in a new form. For
let w be a given non-zero differential; then the differentials are just
the Yw where ¢ runs through all meromorphic functions on S, and
Yw 1is a differential of the first kind if and only if Y is in L((w)), which
has dimension g,

The statements of both these Corollaries need to be modified if
S 1s not connected; in that case both (k) and the dimension of the space
of differentials of the first kind are equal to (g - 1) plus the number of
connected components of S,

The integer g in Theorem 5 is called the genus of S; if S is

connected its genus is equal to the g which we have already defined
topologically by the condition that I-Il(SJI Z) is a free abelian group on

2g generators. To prove this we consider maps from one Riemann
surface to another. Let S1 and S2 be compact connected Riemann sur-
faces; then a map f : 81 =3 S2 is said to be holomorphic if for any point
I‘-"1 on S1 and any local variable "bz at f(Pl) on Sz the function ¢, ° f
is holomorphic at P . The point P~ 1s said to be a ramification point

of order r for f if {:;:2 o f - Q‘)E ° f(Pl)} has a zero of order r at P1

and r > 1; it follows from the compactness of SI that if f is non-
constant it has only finitely many points of ramification. Moreover if

]F'E 1s a point of Sz then the degree of I‘I(PEJ does not depend on the
choice of P2 provided that points of ramification in f'l(PE} are taken
with multiplicities equal to their orders of ramification; if this degree is

n then we say that f is an n-to-1 map.
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degree of (wl} both directly and through this decomposition. which is C-linear in the first argument and additive in the second; so
In particular let S2 be the complex plane including the point at this map induces a canonical homomorphism

infinity; then f can be any non-constant meromorphic function on S:_L

and n is the valence of f. Moreover g, = 0 since the differential dz Hl(S, Z) = &* = Hom(Q, C). (5)

e e Cail the image of this map A; it is obviously a free abelian group on at

most 2g generators. Now let O be a fixed point and P an arbitrary

2%, =2- 2+ X(r, - 1), (4) k
point of S; to an arc OP corresponds an element of Q* given by WIOW-
If one now constructs a triangulation of S, which has all the images of If we change the arc OP, leaving O and P the same, this element of
ramification points among its vertices, and lifts it to a triangulation of Q* is changed by an element of A; thus to P corresponds an element
S)» a straightforward calculation shows that the rank of H (S., Z) is ; of Q*/A, and by additivity this correspondence can be extended to a
2g1' L homomorphism

In the classification of connected Riemann surfaces, the genus is

the only discrete-valued invariant that {Divisors on S) = Q*/A. (6)

occurs; all connected Riemann

surface

5 of the same genug form a single continuous system, How can
one most easily calculate the
If th

If we restrict this homomorphism to divisors of degree zero, it no longer

A genus of a given connected Riemann surface? | depends on the choice of the point O; and it is just what we need to pick
elined topologically then one should use the topological

s s e =

8
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. Svr I'S.
out the principal diviso

Abel). With the notation above, A lﬁ_i}juttic_m
Tt m 7 . ith the |
wort | ian group on 2¢ generators which spans Q»*
jan group o7 At b

a free abel -
, 22ree Moreover the homomorphism (6),

rector space.

—

__.,_-—'—-_—

i as a real V = i
e 0, | and its kernel is ju

_:;} to divisors of degree zero, 1S gritg and 1ka anlaes —j—m
restricte divisors =- ~7o
group of principal divisors

T stating the first sentence is to say that (5) induceg

Another way of th the discrete topology and it
' ' 7) with the discCr A

1 homeomorphism between H, (S, Z)

a subset of ¥,

image A with the topology induced on it as
Abel's theorem identifies the group of divisor classes of degree

ro with the complex torus Q* /A of dimension g, which is alsc called
ZE F &

the Jacobian of S. Not surprisingly,
abelian manifold - that is, it has enough meromorphic functions on it to

this complex torus is actually an

separate points, This will be proved in §9; for the proof we shall need

further information about A or, which comes to the same thing, about

the periods associated with S. This information is contained in Riemann's

relations: to state them it is convenient to choose a normalized base for

HI{S, Z). So let 1"11 Ty I“g, 1"'1, : F;; be closed curves on S
such that
(i) the corresponding classes generate Hl(S, Z); and XL
(ii)  no two of these curves have a point in common,
except that for each v the curves Fu and I‘L have one T
v

common point at which they cross with the orientations shown
in the diagram,

Such curves can be found, for if we consider S as a sphere with g

handles
we cantﬁhnnse I“u to go once round the yth handle and T, {0
run along the v j
. andle and back along the surface of the sphere. BY
consi ' i .
€Ting intersection numbers we see first that the homology classes

of these 2 , ; :
g curves are linearly Independent and then that they form a

base for H (g
18, Z). Moreover any closed curve which does not meet any

I' o :
, or I‘u must be humnlugicauy trivial,

Theorem 8,

(i) Let w
21 5 andlet ¢

; 10 @, be differentials of the first kind
ur' uy be the periods of ¢

" with respect to I' , I,

10
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respectively. Then -

e ' &' By (7)

E - L] ¥
1V 2V 1v 2V

(ii) Let w !J_e_"gl_k_r_"l_gl_r}—zem_differeptml of the first kind on S

and let ¢ , ¢ = Dbe its periods with respect to Pu’ I"U respectively. Then

ImLcucu 2 (8)

Proof. (i) Cut the Riemann surface S along all the I and
v
I') and call the result S*. The boundary of S* consists of g pieces,

a typical one of which consists of Fu and I"L, each taken twice, as in

the figure; as one goes round this piece
of the boundary one traverses each of

Fu and 1"‘1"r once in each direction. The /

/

=N

Moreover if w* is any holomorphic differential on S* then the integral

integral of W, round any closed curve

in S* 1s zero, since such a curve is
homologically trivial in S; so W, has
an indefinite integral 1‘1 on S* which

is a single-valued holomorphic function.

of w* round the boundary of S*, each piece of the boundary being tra-
versed so as to leave S* on the left, is zero by Cauchy's theorem. In
particular this holds for w* = flwz.
two points of the boundary of S*, and the values of f1 at these two points
differ by c:'w because any path in S* that connects them is homologous

in S to I“v. Taking account of directions, the integral of flmz
the two parts of the boundary of S* which correspond to 1"‘,u is

But to any point of Pu correspond

round

_Cr W = -¢' .
wIl"u 2 cwczu’

and similarly the integral round the two parts that correspond to I‘L is
¢,,¢,, Summation over the g pieces of the boundary now gives (7).

(ii)  Define S* as before and let f be an indefinite integral
of w on S*. By a calculation like that of (i), the integral of fw/2i

round the boundary of S* is equal to

11



C ~vy/2i =Im Z¢C C 5
Z(e L~ ¢, 01/t vEv
is strictly positive. Write

] ~oral
so we need only prove that the integra

f =u + iv; then

1 L ¥ R :
fw/2i = l:i(uE ¥ v'?},fﬂl + 3 (udy vdu)

By Green's theorem we obtain
[fw/2i= 2 [(udv - vdu) = [[dudv

where the simple integrals are taken over the boundary of S* and the
double integral is over S*. :
integrand at any point P 1s equal to [difd(,bf dédn where ¢ = £ + in

is a local variable at P. This proves (8).

The double integral is positive since the

By means of the Riemann-Roch theorem we can put into canonical

form the function field of a Riemann surface of small genus, Consider

first the case g= 0. Let P be any point of S; then ((P)= 2 by (2)
and hence there is a non-constant meromorphic function z on S whose
only singularity is a simple pole at P, By Lemma 3 the field of mero-
morphic functions on S is just C(z), and S can be identified with the
z-plane including the point at infinity, We have already seen in the proof
of (4) that the z-plane has genus 0; what we have now shown is that it is
essentially the only connected compact Riemann surface of genus 0.

Consider now the case g =1 and again let P be any point of S.
Now (2) implies I(P)=1, 1(2P) =2 and I(3P) = 3; so there exist

meromorphic functions u, v on S with no singularity other than P and

with r;espectively a double and a triple pole at P, The seven functions

2 . &
U, V,uv, u, v, u and 1 lie in L(6P) which has dimension 6; so they

must be linearly dependent over (. Moreover the linear dependence

relati i :
On must involve bhoth y and vz, for otherwise one of its terms

would have a pole of strictly greater order than any of the others. By
replacing v by v + ay + b for suitab]
In uv and v; and then by re i

term in uz.

€ a, b we can get rid of the terms

Multiplyi :
iplying u or v by a suitable constant now reduces the

linear dependence relation to the form

12

R,

vz = 41.13 - F Uu-
N B, E, (9)

for some constants g, and g3. (The notation, and the factor 4, are

chosen for historical reasons which will be explained in §2,) The only

[reedom left to us is to replace u and v by czu and cjv respectively
?

for some c¢ # 0; this would replace g, by c“‘*gz S g, by ¢ % .

¥ u L] 3

The function field of S is at most quadratic over C(u), by the
argument of Theorem 4; so it is precisely C(u, v). Moreover the right
hand side of (9) splits into three distinct linear factors, for if it were of

the form 4(u - ﬂ')z(u - B) we could write w = v/2(u - a) whence

2 ,

u=4£+w and w would have a simple pole at P and no other pole,
contrary to {(P) = 1. The condition that the right hand side of (9) splits

into three distinct factors is gz - 2?gi # 0; we therefore write
. e 2
)= 1728g,/(g, - 27¢g.)

so that j is finite and depends only on S and perhaps on the choice of
P. (We shall see below that in fact it does not depend on the choice of
P.) Conversely, consider the function field C(u, v) where u, v are
connected by (9) with gz - Z?gi # 0, It can be verified that du/v is a
differential which has no poles or zeros; indeed this is implicitly proved
in the next paragraph. Hence g=1 by Corollary 1 of Theorem 5,
Moreover du/v is the unique differential of the first kind, up to multi-
plication by a constant. By Theorem 5, to any divisor a of degree 0 on
S there is a function f, unique up to multiplication by a constant, such
that (f) +a + P = 0; and hence there is a unique point Q@ on S such
that (f) + a + P = Q. This is the same as saying that a is linearly
equivalent to Q - P; and in this way we identify S with its Jacobian, the
identification S = C/A being induced by

Q - Ig du/v

which is a holomorphic map. On the one hand this means that S has a
natural structure of abelian group once one has chosen a base point P;

on the other hand it means that a change of base point merely corresponds

to a translation on C/A. In particular, j does not depend on the choice

of P. Thus any Riemann surface of genus 1 corresponds to an equation

13



rfaces are classified by the points of the

of the form (9), and such su

affine line.

Now consider tho
function u of valence 2.

u) so it must be a quadratic extension of

se Riemann surfaces of genus g ~ 0 which

hi The function field of
admit a meromorphic

such a surface cannot be Cl
efore suppose it to be C
of degree n with no repeated root,

th (u, v) where v’ =f(u) for
C(u). We can ther

some polynomial { (u)
a local variable at any point of S
here v is a local variable, and the one or two points at

- Un T e
, except for the n points at
Now u 1S
which v=0, W
infinity. If n is odd there is one point
(n—l}/Zv; if 1 is even there are two points at infinity and a

at infinity and a local variable

there is u
local variable at each of them is 1/u.
differential du/v has no poles or Zeros except perhaps at infinity; it

has a zero of order n - 3 at infinity if n 1s odd, and two zeros each of

It is now easy to check that the

order in- 2 if n is even. So the genus of S is s(n-1) if n is
oddand 2(n-2) if n is even. For g> 1 such a surface is called

hyperelliptic.

Every Riemann surface of genus 2 is hyperelliptic. Indeed, let
k be a canonical divisor; then deg(k)=2 and !(k)= 2, sothat k

is linearly equivalent to a positive divisor. Without loss of generality

we may therefore assume K positive. There is a non-constant function

u on S with (u) +k = 0. This u has at most two poles and therefore

has valence 2; valence 1 is impossible since a surface with a function

of valence 1 must have genus 0, Using the results of the last paragraph,
we see that the function field of S has the form C(u, v) with vé = f(u),

where f is a polynomial of degree 5 or 6 with no repeated root.

For any g> 2 there exist connected Riemann surfaces of genus

g which are not hyperelliptic; but I do not know an easy proof of this
fact,

2. Doubly periodic functions

In this section we consider the ¢
dimension 1, where A is a lattice

genus 1, but we ghall develop its th
results of §1. pLet » =7k
. 1

omplex torus C/A of complex
in C; this is a Riemann surface of
eory directly rather than quote the
, be apair of generators of A, ordered SO

14

that Im(;\l/’hg)f 0, and let Z be a point of C: denote by II the interior

of the parallelogram whose vertices are 7 y T K - B BN &R
0" 0 27 T 1 - &
7z 4+ A

. 1 and by I' the boundary of Il taken anticlockwise, as in the

Z t+A +
0 1}‘2

Z

0

figure. In what follows we shall always suppose z, 80 chosen that none
of the functions we are concerned with has a pole or zero on I'; apart
is of no importance. By a doubly periodic function or

elliptic function with respect to A we shall mean a meromorphic function
f(z) on C such that

from this, Z,

flz + X) =1f(z) forall x in A:

this is the same as saying f(z + hl) = f(z + AE) = f(z). Elliptic functions
are so called because they were first obtained by inverting the integrals

involved in finding the length of an arc of an ellipse.

Theorem 9. Let f(z) be a doubly periodic function not identically

zero, and let Pl, e g Pm be its poles and Ql, I Qn its zeros in

[1, account being taken of multiplicity. Then m =n and

P +...+P_=Q +.

+ A,
1 m 1 | Qn mod

Proof. We have

Il" %%l dz = 27i(n - m), II‘ Efft—);(zl dz = 2ni(EQp - EPp)_ (10)

In each integral we compare the contributions of opposite sides of the

parallelogram. Since f'(z)/f(z) is doubly periodic, we have

7 +A Z TA
0o "2 f'(z) 0 1 f'(Z)d
Izﬂ fizi dz + Izﬂ+.ll+.lz lej *

15



5 . g LA

'z -
=Jﬂ ziﬂ}j" '[mlj

Z
r two sides and comparing with

ldz = 0;

0

' the
adding the gimilar equation for the o

10), we obtain m = n. Similarly

the first equation (

2, %A ot bk 20(2) 4,

z
(2) 4z + | " Z
| 1(z) Eru;;]HLl"Hh:e 1)

“0
z +X, -2, £(2)
=/, T 1(z)

0

I

zﬂ+hg
dz = I‘-Allng [(z}}zn = 2?1111111

and comparing with the second equation (10), we obtain

~ - = 0 mod A.
ZQ,, - z,pu =n A tnA,

This completes the proof of the Theorem. It has a converse, which will
be stated and proved as Theorem 10; the two together are just Abel's
theorem for C/A, since the differentials of the first kind on C/A cor-
respond to the constant multiples of dz.

We cannot have m = n=1 in Theorem 9, since the one pole and
the one zero of f(z) in Il would have to coincide; so the simplest non-
constant doubly periodic function that we can hope to construct will have
double poles at the points of A and no other singularities. Let f(z) be
such a function; then {(z) - f(-z) is doubly periodic with at most simple
poles at the points of A, and therefore must be constant - and since it is
an odd function of z this means it must be zero, Thus f(z) is even, and
by considering af + b instead of f we can normalize it so that
f(z) = 27 + 0(z) near the origin. This is in fact enough to show us how

to construct f(z); but there is a slight difficulty over convergence which

leads us to construct its derivative first. This satisfies f'(z)= -227+0(2);

S0 write

convergence; indeed for thig and the sums that occur in (12) and (14) one

ca ' '
n easily prove the following, T,et U be any compact subset of C and

16

delete from the sum the finitely many terms that have a pole in U: then

s 1 in U, This result
is enough to justify all the formal manipulations that follow

Clearly ®'(z) is odd and doubly periodic.
single-valued because ®'(z)

the sum that is left is uniformly absolutely convergent

Its integral, which is
has residue 0 at every pole, is

P(z)=2""+ [*{®@'(u) + 20" Jdu=2"% + 3 {(z+2A)"2-A"2)

0 (12)

where the prime denotes that the sum is over all non-zero A in A

Clearly ®(z) is even. One way to prove that ®(z) is doubly periodic

1s by rearranging the series, but it is tedious to justify this
proceed as follows. The function gz) =®(z + 1)
1

, instead we
- ®(z) is constant

because its derivative vanishes: and g{-%hl) = 0 because ®(z) is even.

So ®(z + ?11} = ®(z), and similarly @®(z + .‘&2) = ®(z). This function

®(z), which is the simplest possible doubly periodic function, is called
the Weierstrass ®-function.

2 3 .
Now @'" - 4@ is an even doubly periodic function which has at
most poles of order 2 at the points of A and no other singularities. Sub-

tracting a suitable multiple of ® we obtain a holomorphic doubly periodic

function f(z) say; and f(z) - f(0) must vanish identically by Theorem 9,

So there is an equation of the form
2 3
® = 4@ - gE{P - g3 (13)

where g, and g, depend only on A. Moreover the function on C/A
corresponding to ®(z) has valence 2, so that as in the proof of Theorem
4 the field of doubly periodic functions is at most a quadratic extension
of C(®). Hence this field is precisely C(®, ®') with ® and ®' alge-
braically related by (13).

Since (z) has residue 0 at every pole, it has a single-valued
integral which we write after a change of sign as the Weierstrass zeta-

function
tz) =z - [P{®() - v ? Jdu=2z"+Z' {z+0) a7 2% (24)
0

here as in (12) the prime denotes that the sum is over all non-zero A in

A. The function t(z + A) - £(z) is constant for any fixed A because its

17



there is no longer any reason why this constant
but ther

derivative vanishes; )
] ¥:
should vanish. Define 1, TIE
z + ) - §(z2) =T,
E{z+hl)~ g(z) = 1 (z 2) 5

vs that

' o)
a trivial induction argument sh

_t(z)=n_n, T 07
{(z + n,A +n2) Clz) =0T, ™ Talts

er an argument similar to that in

and n,. Moreov

for any integers n,
the proof of Theorem 9 shows that

; 16
Irc{z)dz:’gﬁi:.ﬁ.lnz - hzﬂl* (16)

the right-hand equality here is known as Legendre's relation,

The singularities of {(z) are simple poles of residue 1 at each

point of A; so the integral of t(z) will have a logarithmic branch point

at each of these points. We obtain a single-valued function by taking the

exponential of this integral; the result is the Weierstrass sigma-function

o(z) = exp {log z + fﬁ{((u) - u'l)du] = f] ! {E;j- exp(—; + ;;E)]

where the product is taken over all non-zero A in A. Clearly o(z) is
an odd holomorphic function whose only zeros are simple ones at the

points of A, Integrating (15) and exponentiating gives
o(z + }.v] = Bu-::r(z)exp(znu) (17)

for ¥v=1, 2 and some constants B . Setting z = -;l-g}\u and remember-
ing that o(z) is odd and does not vanish at %P«u, we obtain the value of
B ; substituting this back into (17) we obtain

oz +3,) = -o(zlexp ln (z + 42 )} (18)

for v=1, 2. From this we can obtain the general functional equation
oz +2) = (-1)"o(z)exp { (z + 1))

Where;’kzn}t +n A N
171 " T A=, g, VERL o, aod g B

18

R e e .k L]

are integers. In many ways the sigma-function is the most important of
the Weierstrass functions, the extra complications of its functional equa-

tion being counter-balanced by the simplicity of its divisor. This is
illustrated by the proof that follows.

Theorem 10. For some n> 1 Jet P P and Q Q
| - 1, oy n 1, s oy
be points of II, not necessarily all distinct but such that no P "
Suppose also that

u 1S a Qu‘

P. T ous + = -
i Pn QII-,__

——

P =~ and whose zeros in Il are just the Q
v = V'

Proof. Choose points Rl iR Rn such that Rp =P modA
) v
and ERu = Z’Qu; then the function

o2-Q,) ... 0(z-Q)
L oz-R ) ... 0z-R ) (19)

has the correct poles and zeros, and it is doubly periodic by (18).
An important generalization of the sigma-functions is given by

theta-functions; these are the holomorphic functions 6(z) such that to

any A in A there corresponds an inhomogeneous linear function of z,
say F(z, ), such that

6(z + A) = 6(z)exp F(z, A). (20)

Clearly it is enough to check this for }\1 and }12. Now assume that
6(z) is a theta-function not identically zero, and let Q,, ..., Q beits

zeros in Il with the correct multiplicities; thus

V(z) = 6(z)/{o(z - Q) ... 0z - Q) }

n

1s a trivial theta-function, that is, a theta-function with no zeros.

Lemma 11. Any trivial theta-function has the form exp Q(z)

where Q(z) is a quadratic polynomial; conversely any such exp Q(z)

is a trivial theta-function.

19



(z) be a trivial theta- function; then any branch of
z) Dbe: ‘

Proof. Let 2] I
log 6(z) is holomorphic 1n the z-plane and satisfi
og
_ p(z. 2 )=o0( + |z]) (
log 0(z + Ap) - log 0(z) = F(z, u)

is bounded on Il and it takes only

* log 6(z) :
fDr P ]., 2; SIHCE g . i gD f-rﬂn] [ln}’ V7 to a ]JDIHt of II’
2

ol + ]z’} steps each *A Ol

it follows from (21) that

log 6(z) = O(1 + IZ’E);

d this implies that log 6(z) is a quadratic polynomial, The converse
an

is trivial. |
Lemma 11 and the argument above it shows that any theta-function

can be simply expressed in terms of sigma-functions; but there are other

ways of writing them down. First of all, we consider the number of
zeros of 6(z) in Il - the zeros are periodic even though 6(z) itzelf is

— =1, 2; then
not. Let F(z, P«y) =az+ b, for v :
' = §' s
6'(z + 2 )/0(z + 2 )= 0'(2)/6(z) +a,

and so the number of zeros of 6(z) in Il is
Aa -Aa

1 [ E‘(z)dz__12 i
27 ‘T 6(z) ° 271

by an argument like that in the proof of Theorem 9. In particular
113'2 - Azal = 27in for some integer n = 0 (22)

which is the number of zeros of 6(z) in II.
We now show how to construct all theta-functions with given au’

b, satisfying (22). It is convenient to construct not 6(z) itself but
z) = 0(z -5 = — - -1
Y (z)exp { zazhz z(z ?12) bzlz z |
where the multiplier has been chosen to ensure

Wz + AE] = Y(z), (23)

20

The other functional equation for Y has the form
7 + —
Wz + X ) = Y(z)exp(az + b) (24)

: : . _ S |
for some a, b; here a = -2‘-'?1!1&2 by (22), and the value of b is not
important. By (23) we can write

o)

Y(z) = ) c, exl}(EﬂiuzfAE) (25)

- OO

for some constants C; and (24) now becomes
Copn =€, e:-:plzmuhlfhz - b,

A simple induction argument shows that

Chtmn = €, €XP !ﬂim(m—l)nhl/lg + 2ﬂium11/}12 - bm )

for every integer m. Hence we can choose Cor veey C arbitrarily

(provided n > 0) and the other ¢, are uniquely deterer:;r}ed. Since
Inl(Al/Az) > 0 the Q. die away rapidly as ‘vl = %, in particular the
series (25) is absolutely convergent,

It follows that for n> 0 the theta-functions with given a , bu
form an n-dimensional C-vector space. We could use this to give a proof
of Theorem 10 which does not involve constructing the Weierstrass func-
tions. Again, we can express o(z) as an infinite sum in this way, up to
multiplication by a suitable constant, Unfortunately the constant involved
can itself only be written as an infinite sum or product, and it is not
possible to give a concise account of the calculations involved. Further

information may be found in Weber [13] or Tannery and Molk [12].

3. Functions of several complex variables

Much of the theory of functions of several complex variables is a
routine generalization of the corresponding definitions and results in the
theory of functions of one complex variable, For example, let U be an

open subset of Cn; then a function f(zl, ¢a s zn) is said to be holo-

morphic in U if it is differentiable at each point of U - that is, to any
point (Cl, T -;'n) of U there correspond constants B , ..., B
such that
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- B, (2,-§)) T olZ ‘Zu' Cuh'

= f(; : ' is isolated : . : ;
(2, ; zn) ] | | is isolated and can be considered S€parately. Moreover, the functions
- this 18 equivalent to [ being a dlfferﬁntiublﬂ which vanish at a given point p form a principal ideal in the ring of
o 1Y . . 4 :
et =K I/ 4 MNe 2 _ i hol : ; .
If we write 2, " ureﬂi variables X, ¥, and satisfying the n Cauchy. tunctions ho Dm"jrl’hm flt P, and that ring is a 1oca] ring. So one can
runction of the speak of a function having a zero of given order at P, and that one integer
Riemann equations gives the most important information about the behaviour of the function
_ : s i - at P. With functi . -
ooy = idl/ X (v=1, 2 ’ r”“' a | ”"L'm"S of n> 1 complex variables matters are more com-
Y . T plicated, primarily because the get of zeros of a holomorphic function
. about ¢ 0vy 45 a multiple . . : ;
1 be expanded 1! n will have complex dimension n - 1, at least In an intuitive sense. Such

It follows that { Ca
a set does not naturally break up into local pleces: vet we camncy e

1_ (2 -t )mn | give any but local descriptions, and indeed the only easy description of
n °n

the set of zeros of { will be by means of f itself. Intuitively one still

a(m_, ..., mn)(zl-Cl)

!

o~ g

. ]:E...
f(zlr' I 0

ent in SOME neighbourhood of (§’1 Ve ey L‘n). More- thinks of the divisor of g meromorphic function as 'zeros minus poles',
er series are given by a multiple and a general divisor as an element of the free group generated by
‘respectable’ point sets of complex dimension n - 1; but formally it is

absolutely converg
over the coefficients of this pow

Cauchy formula . '
necessary to proceed rather differently., For convenience we consider

1 1 n o1 n divisors on C; the definitions can be transferred to complex manifolds

B foy exn 1
E'(m]_’ mn) {2ﬂ'i)n I-‘1 Fll(zlngl)ml-}-l.-.(Znhcn)mn+

of dimension n by means of local coordinates, much as in §1,

: Let {U be a ' #
where I' is a closed contour in the zu—plane surrounding Cy and - o | be covering of C by open sets, and for each «
¢ . et f be a meromorphi i : :
UDD X...xD where D is the closed disc in the z -plane whose o .{11* er [mmphlc} function on U, not identically zero. We say
: ; - at the system {U_, f } is a description of a divisor i -
boundary is I' . However there is no analogue of a circle of conver- | o o ription of a divisor if the following
4 consistency condition holds:

gence; indeed the domain of absolute convergence of a multiple power |
If Uﬂ N UJB 1s not empty then f /f, and f./ are equal to

series can be quite complicated. : ; ol A" a
holomorphic functions on U& N UB'

Let U be a connected open subset of c”. A function g(zl,..uzn) -

s said to be meromorphic on U if it is defined on a dense open subset
of U and if for each point P of U there exist a neighbourhood N(P)

In such a case, of course, the holomorphic functions will be inverses of

each other and will therefore have no zeros in U& N Uﬁ. So intuitively

this means that fcr and f, have the same poles and zeros in Uﬂ, fl Ug'

;f__j ;ﬂd :Zi::;t:::zt ilf :Ei]fzat ?}:?TGTF h'ic ;nfi::z) ::;1 ::z::tiﬂﬂﬁ | Tuiany refinement of the cgvering {Uﬂ } there corresponds an obvious
-~ ]l'nEf'Dm{]rphic oo 5 s i lthg 1s de 1. +t evary polat o refinement of the description of a divisor. Since any two open coverings
which they are both Pl a; 1€ 1{ | €y are equa o soeak il § E havfa 4 common refinement, in defining two descriptions of divisors as
having the value ity at E Ertz “5-"3 Ol language one C | + ith €quivalent we can confineourselves to the case when they 'are both based
In points, but even then (in contras | On the same covering. We shall say that the two descriptions {Uﬂ, fﬂ]

the gi ]
Situation for meromorphic functions of one complex variable) € ~
have no definable value at

at the origin,

and { U, g, | are equivalent if and only if f,g, and g /A are
€qual to holomorphic functions on Uﬂ for each «, An alternative
definition, which works even if the two descriptions are not based on the

In the th . of 2 .
cory of functions of gne complex variable, each zero Same open covering, is to say that two descriptions are equivalent if

g::ﬂlfzz

PR TS e e - -

certain points - consider for example
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n .
T 3 vale .
Now a divisor on € is 4l equivalence clagg

r of a holomorphic or meromor-

ass of the description (Cn, £),

their union is a description.

1Vi ViSO
of descriptions of divisors. The div

i the equivalence ¢l

L] '!-l -1 { : :
e if it has a description [Uﬂ,} N | &
o if so, every description of

n
phic function f on C

. —
A divisor is said to be positiy

iC | - each
that fﬂ is holomorphic 1n Ua for ea

it has this property.

It is now a straightforw | |
and to show that they have all the properties which one

ard matter to develop the elementary

theory of divisors

expects by analogy with divisors on Riemann surfaces or in algebraic

closely connected exceptions, It is not obvious how

geometry - with two

to prove that every divisor is the difference of two positive divisors, nor

how to prove that two positive divisors have a highest common factor,
For both these proofs, we need the Weierstrass Preparation Theorem,
which tells us how far we can normalize a holomorphic function in a
neighbourhood of a point P by multiplying it by a function which is holo-

morphic and non-zero at P. To simplify the notation, we take P to be

the origin,

Theorem 12 (Weierstrass), Let f(zl, zn) be holomorphic

in a neighbourhood of the origin, let qb(zl) be the restriction of f to
2, = ... =2 = 0 and suppose that (,b(zl) does not vanish identically

2
and has a zero of order m = 0 at z, = 0. Then there exist a function

g(zl, o ng zn} holomorphic and non-zero at the origin and a polynomial

in Z, of degree m

]

m, m-1
Z_; o =
P( 1’32’ : zn) zl +zl al(zz’ v o0y Zn)+---+am(22!""zﬂ)
where the ap(zz, i Gy zn) are holomorphic at the origin, such that
flz_, ... v B )= :
1’ n) g(zl ] e oa oy zn)p(Z'i ¥ ZE" s 4y zn)i

Moreover these conditions determine g and p uniquely for given f.

Proof. We can assume that m > 0 gipce if m = 0 the choice

P=1, g=1 is both forced and acceptable, Let
|2.1| = € in the zl-plane, where ¢ > 0
Zeros of tp(zl) inside or

I' denote the circle

1s chosen so that there are no
on I' except for the m-folq zero at the origin;

24
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(?32, , 2 _)-space such that f has no zero on I' X N. For any
(32, y 4 ) in N,
* . -1 of
I(Lz’ ’ Zn)"m Ipt =, 92,

is the number of zeros of f inside I', where { is considered as a

function of z1 alone,

So this is equal to m at the origin and is integer-
valued; on the other hand it is continuous in N. So it is equal to m for

all (zz, ; Sy zn) in N. Denote the m corresponding zeros of f by
tjl, ey Cm’ these being complex numbers depending on Zy eeny Z .
For any integer r = 0 we have
T
r r | 1 df
T e F = — —
Cl §m 27i J‘I‘ { oz dzl

1
and this is clearly a holomorphic function in N; hence so are the ele-
mentary symmetric functions of the Cp. Now let p(zl) be the poly-
nomial whose roots are the C#, and let D denote the interior of I" in
the zl-plane. By writing it as an integral over I' we see that f/p is
holomorphic in D X N, and by construction it is non-zero in D X N; so
p and g = f/p have the properties stated in the Theorem. Moreover,
any candidate for p must vanish at t,'l, A Cm as long as these lie in
some suitable neighbourhood of the origin, and this is enough to prove

uniqueness,

Corollary. Let f(zl,

Then there is an open neighbourhood N of the origin

: zn) be meromorphic in a neighbour-

hood of the origin.
and two functions u, v holomorphic in N and such that f =u/v in N,

with the following property. For any open subset U of N and any
v, holomorphic in U and such that f=u /v in U,

functions u

1!

there is a function ¢ holomorphic in U such that u, = pu and v = oV

in U,
Intuitively, this says that the fraction u/v =1{ is in lowest pos-

sible terms everywhere in N, Of course, u and v are not uniquely

determined.
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does not vanish identically, for

at f
assume that
proof. We may a5 and s be holomor-

ake u=~0 and v=1. Let u2

. an t P af s
otherwise We © ighbﬂurhm}d of the origin such that | “g/""z-

phic functions ! ches, S0 after 2 linear transformation on
. vy vanl ! ; e 33
Neither u, nor V, e can ASSUmMe that the restrictions of u,
: W :
if necessary, _ o
Z oy orer Iy 0 do not vanish. Applying Theorem 12 to
e i
and v, to Z, Tt " p : 4 rhood N=D X N_ of
E d 21! we find that there 15 a neighbou 1
both u, and %, wadin the B -plane and N_ is an open set in
the origin (where D 15 disc 1n the 2, 1
e or e — pu /v where ¢ is
2 )-space) and a decomposition = Bu,/V, :
the (z,, --+» % . N and u., v, are holomorphic functions
zero 1n ¢ 3! 3

holomorphic and non-

U i P {}!I illi iI] z ']

: ‘0 -
Let K be the field of functions of ZE, ..., z_ meromorphic in

P.’IDFED‘UEI‘:] f[}l' (sz s e ey Zn) i.n.
all lie in D,

I
N ; then u, and v regarded as elements of K[zl] have a highest

3 14 L ]
cc:mmun factor p(zl} and we can require p(zl) to have leading co-
z ) in Nl the roots of p(zl) all lie in D
n

efficient 1. For (zz, Cee
are bounded; being also meromorphic

and so the coefficients of p(zl]
they must be holomorphic 1n N1' Thus we can divide u, and v, by p
without altering the holomorphicity of their coefficients; in other words
to be coprime as

Let R(zz, ...,zn)

we can without loss of generality take u, and ¥,

elements of K[zl]. We now set u = gu, and v=v_.
and v,; then provided (22, -
are respectively the zeros and
poles of f regarded as a function of zl in D. It follows that the decom-

position f =u/v does not depend on the choice of the original decompo-

be the resultant of u, s zn) in Nl is

such that R # 0, the zeros of u, and v,

sitlon f=u_/v_; and u/u= v,/v is holomorphic in N.
Suppose we repeat the process after a linear transformation of

coordinates, obtaining this time f = u, /vq; by the final remark in the

last sentence, both u,/uq = *l.r/v,,r‘4 and uq/u = vq/v are holomorphic at

the origin, so the only effect is possibly to decrease N and to multiply
both ;
Oth numerator and denominator by some invertible holomorphic function.

No — ;
wlet f “1/‘-’1 In U andlet P be any point of U, Since the

decompositi - - :
Position f=u/v ig essentially independent of choice of coordinates,

We may suppose the Coordinates so chogen that

T Y i i e g e e &

e e R

u and v at P are coprime, since they are factors of U and v res
3 3 A

e is obtained
from u/v by multiplying numerator and denominator by a function holo-

pectively; and so the canonical decomposition of f at P

morphic and non-zero at P. By the fina] remark in the second paragraph
of this proof, u Al = vl/v 18 holomorphic at P, and since P is any
point of U this completes the proof of the Corollary

Theorem 13, Any divisor on a complex n-dimensional manifold

can be written as the difference of two positive divisors

Proof, ] ipti
r Suppose that (0, f | is a description of the divisor.

To each point P of each U& we can construct a neighbourhood N
P contai ] ] =,
;1‘ ntained in Uﬂ and functions u.,p and Vap holomorphic in

Corollary in Nr:rP'

&P such that IE - uﬂp/v&P satisfies the conditions of the last

Clearly {N f

op’ f, ! 18 a description of our original

divisor, so to prove the Theorem it is enough to show that {N b
aP’ aP
meets

and AN ps Vyp P
NﬁQ’ where o and 8 or P and Q may be the same. In the inter-

} are descriptions of divisors. Suppose N

section we have

uap/vﬂp — 1‘& — fﬁ — uﬁQ/vBQ

and h by th = ‘
nd hence by the last Corollary 1|.1m_p/MﬂQ = ‘F&P/VBQ is holomorphic

and invertible in N& N NﬁQ' This is just the consistency condition we

P

need,

A similar argument proves that two positive divisors have a
highest common factor; but we shall not need this result in what follows.

It is convenient to include one more Lemma in this section. Even
if we are initially given a covering with lots of good properties, these
are likely to be lost during the processes described above; so it is
desirable to know that we can refine any covering to a 'good' covering.
Lemma 14 below is stated for a complex torus Cn/ﬁ, where A is a
lattice in Cn, because this is the case which we shall need; there is an
analogous result for c" with 'finite' replaced by 'locally finite' which is
proved in the same way. We shall say that a set U in C'/A isan open

hypersphere if its inverse image in Cn is the disjoint union of an open
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hypersphere

2 .
1‘2'}‘..- + I?‘HF Cn‘ h

Izl-’;

ments of A.

le :
and its translations by € enough for its translations

hich is small €
an open hypersphere in c" which is

not to overlap itself.
the complex torus

(U, | be a covering of

4, Let
Lemma 1 by open hyperspheres,

ned tD a finite cover ing

C /ﬂ then it can be FI:_E'_f]

...-_——l—"—'_

this U The set of all these open hyper sphm es forms a mvermg of

c”/A whmh refines the original covering;

pact we can select from this a finite cover ing.
r the application that the new covering should be

and because c" /A 1is com-

It is essential fo

locally finite, that the open sets involved and all their intersections

should be 'nice' sets, and that their inverse images should be disjoint

unions of open balls, That the sets are open hyperspheres is just a

device to simplify the construction of 'partitions of unity’ in 84,

28

In other words, it is the image of
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— I T

Il-Theta functions and Riemann forms

This Chapter is mainly concerned with the question: when does a
complex torus T = c” /A have non-constant meromorphic functions on
it, and how does one construct them when they exist? It is not possible
to mimic the method used in §2 to construct the Weierstrass ®-function,
essentially because when n > 1 the set of poles of a multiply periodic
meromorphic function on C" does not break up naturally as a union of
local objects; so a series expansion analogous to (11) or (12) can no
longer be expected to converge, and indeed in general any neighbourhood

of a given point will contain poles of infinitely many terms. Moreover,

M&MmmMMWMLintinn gi the set of poles

e T e i il ol

fall back on the other method outlined in §2, by shnwmg that any multiply

periodic function can be written as the quotient of two theta-functions and
by then constructing all theta-functions for A.

The first part of this program is carried through in §4. In the
case n =1 we could give a very simple proof of this result, because we
had a good description of the possible divisors of multiply periodic func-
tions and because we had a large enough supply of theta-functions; so
from our stock of theta-functions we could construct a meromorphic theta-
function with the same poles and zeros as our given doubly periodic func-
tion, This reduced the problem to the study of trivial theta-functions.

For n> 1 this method does not work; instead we have to construct from
the given multiply periodic function the theta-functions that we need. The
ideas involved are really those of Hodge theory and of cohomology, but
because one has so explicit a description of T the proof can be made to
appear totally elementary; but this does make the motives for some of the
steps obscure.

The second part of the program is complicated by the fact that A

only admits non-trivial theta-functions if it satisfies a further condition;
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ivial Riemann form which is at least
3

non-tr
d no part in 82 because it

(This condition playe
o m="F; 1 I 85 We PrOYE that this conditiop

this is the existence of a

positive semi-definite.

ig automatically gatisfied w
in §6 we assum

associated with it:
1 §6 contains a discussion of the

her
e that a Riemann form for A exists and

is necessary,
construct all theta-functions

Both these sections con-

in particul

tain other related resulls; o
\ifold, and the theorem of the projective

function field of an abelian mi

embedding of an abelian manifold.

In Chapters II and I it will be convenie
particular space Cn in w d, or sometimes the under-
ar Z

2“_ The compl

nt to denote by V the

hich A 1S embedde
s o
lying real space R ex torus V/A = C /A will in general

be denoted by T; but it will be denote
if A admits a positive definite Riemann form,

d by A if it is known to be an
abelian manifold - that is,

4. Reduction to theta functions

In most of this section, we shall consider V as a real vector
space spanned by the lattice A, and T = V/A as a real torus; and unless
otherwise stated functions on V or T will merely be complex-valued
infinitely differentiable functions of the 2n real local variables X, and
Y, where L, =X, + iyu. What forces us to this is the fact that Lemma
16 below has no holomorphic analogue, It turns out also to be convenient
to make the complex change of variables from x , y to z , Eu; the fact
that the new variables are complex-valued does not invalidate any of the
standard formalism, Moreover, a function { is holomorphic in an open
domain U if and only if it satisfies the Cauchy-Riemann equations in U;

and in terms of the new variables these take the convenient form

af/Bzu=U for v=1, 2, ..., n.

In view of this, one says that a differential r-form is holomorphic if it
can be written

Govin D L
il-."i 11""Jirdzi ﬁ...hdzi
1 I 1 r
with all the f :
i, .., X holomorphic, Again, an (r+s)-form is said to

30
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be of type (r, s) if it can be written

b3

i . dzi No.ondz, ~dz, A, L. Adz.

. Zfi r

\ 1 \ R 11 : L

11*--:11.!.]1:*--:.]5 1 TI']]. "]5 1 11- ]1 J
S

where now there is no restricti
ilction on the functi
nctions involved, If -
‘ w is of

type (r, s) then dw is the sum of a form of type (r+1, s) andaf
. orm

- Moreover an r-form w ig holomorphic if and only if
it is of type (r, 0) and dw is of type (r+1, 0)
!

of type (r, s+1),

_ o n
If A 1is alattice in C then the definition of a theta-function with

respect to A is the obvious generalization of that given in 82 for the case

n=1, Itis a function 6(z) holomorphic in ¢" and such that to each

A in A there corresponds a form F(z, A) inhomogeneous C-linear in
z and satisfying

6(z + X) = 6(z)exp F(z, ).

The divisor of 6 is positive and periodic: 6 is called a trivial theta-

function if its divisor is null - that is, if 6(z) is never zero. In this

case log 6(z) is holomorphic, and an argument like that in the proof of
Lemma 11 shows that the trivial theta-functions are just the exp Q(z)

where Q(z) is inhomogeneous quadratic in Ziy eeey 2.
n

Lemma 15 (Poincaré). Let U be a convex open subset of o
and w a l-form on U such that dw = 0. Then there is a function f

on U such that df = w.

Proof. For some fixed point O in U write {(P) = J‘gw where
the integral is taken along any polygonal arc lying entirely in U; then

to prove the Lemma we have only to show that f is well-defined - that

is, independent of the path of integration. For this it is enough to show

that [w = 0 when the integral is taken over any closed polygon, and an

obvious dissection reduces this to the case of the boundary of a triangle

A. But by Stokes' theorem

[apW = Hﬂdm: 0.

The result holds if U is any open ball, but the proof in this more general
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' jcations.
case involves tnpﬂlﬂglcal complici

Let U, e UNJ be a covering of T EMPSQ

¢ r=0 bean integer. Suppose that for eachm

heres and let :
WPESE h that U N U; is not empty we are given an r-forp,
i B B

suppose that for each triple of subscripts i, j g

is not empty these forms satisfy

subscripts i, ] 8YC

w,, On UiﬂUj; and
ij —
such that Ui n Uj N Uk

Co— 0 i .nu, nuU,.
wij+“’jk+ukipo - 4 U] k \26)

U. for each i such that
an r-form w; on U, 29% %¢

Then there is

= = ; u. n U. (2?
5 ke S Lt )
whenever U, N U. is not empty.
: J \V .
\ .H -~ O
Proof, From (26) we deduce first w..= 0 and then w,, = -w,,

17.) )L ij
We now construct a partition of unity corresponding to the covering

iUl, - UN] - that is, a set of infinitely differentiable functions

fl, Ceey fN on T such that
W f,201in U and f =0 outside U  for each v, and
(ii) f,+... +1=1 ateach point of T.

For this purpose, associate with UH real local coordinates

E1r vens §r Ty ooey T, suchthat U is the set of points satisfying
2 2 2 2 2
§1+ﬂ1 + ... + §n+nn< c

f . oo 1
Or some constant c¢; that thig ig possible follows at once from the defi-

nit; :
'on of an open hypersphere in T given at the end of §3. Define the
function ¢u on T by

O =g f<] ¢ 2 2
e RTM e gl in U

r e e o Sl e . ] BT I 5 e B By ———

it

W =f w._ +,,. + fo.rJiN in Ui

where any term which is undefined at a point

uhere any e is to be taken to be zero at
1at point, 1S easy t ]
) Sy to check that -:ui 1§ an r-form (that is to say, the

functions that occur in it are infinitely differentiable) and (27) holds

Lemma 17,

Let @w bea2-formon T = V/A such that dw = 0,
let w* be the induced form on V and let ¢
17

5% g §2n be real coordi-
¥ on T, with induced form Y*

nates on V. Then there is a 1-form

on V, and a 1-form ¢ = 3¢,
= i
such that w* = dy* + d¢.

jgidﬁj on V, where the Eij are constants,

Proof. The truth of the Lemma is not affected by a change of

coordinates, so we may assume that A consists of all points with integer

coordinates. We have
A
W L'Efijdgi ~ dgj

where the fij are periodic and infinitely differentiable: so each of them

can be expanded as a multiple Fourier series

f.. =3 a(m)exp {Zﬂi(mlél +,.. +m } (28)

1] 1] 2n'§2n)

where the sum is over all integer vectors m. Since the exponential
factors are not altered by differentiation, terms with different exponen-

tials cannot interact; so for each integer vector m we have
d[multiple of exp {27iZm ¢ | in w*]=0.

To prove the Lemma we must therefore prove first that it holds for the

individual components of w*, that is in the special case
_ - 3 | 29)
W* = {exp(EmEmV&p) ]P-:Zxﬂijdﬁi ~ d§]; (

and second that in the general case the resulting formal Fourier series
for Y* is a 1-form - that is, the functions that occur in it are infinitely

differentiable,
In the case m = 0 we can take Y* =0 and ¢ = EERH §id§j; SO

henceforth we may assume m # 0 and so without loss of generality

33



) , that a.. = 0 unless | < ;
e may assumec that « 1] J.

in (29) w ;
Moreover e, o~ ag gy I dWB=0 we obtayy
1

m *#0. |
1 considering the term 1

Now by

= « 1% 4%

- el o m.ﬂli — 0 for ,
mlaij i 1) )

and it is now easy to verify that

2n 2n ]
i “lex ») a d&, |,
(i E = (Eﬂi} ld {I]],l Eh}J[E‘ﬂl ;_,. I'ﬂyﬁy}% lj j
Thus w* = dy* for the obvious 1-form .

It is well known that the series (28) represents an infinitely differ-

entiable function if and only if

_N)

agf“): o((1 + Iml] P | ’“12{1'}

for each integer N. In going from the Fourier series for w* to that for

y* we have made the coefficients smaller; so the formal Fourier series
for y* represents a 1-form, and this completes the proof of the Lemma,

Corollary, If w contains no terms of type (0, 2) then we can

further require that ¢ and ¢ are of type (1, 0).

In the proof of the Lemma we had to choose ¢ so that
With

Proof,
d¢ was equal to the constant term in the Fourier expansion of w*,

the extra hypothesis of the Corollary, this means we must choose ¢ to

satisfy

dp = ZZa.dz. ~ dz. + &3 7
i z1 u:;lzJ Elﬁijdzi ~ dzj

¢ . , ,
or given constants ﬂij’ ‘ﬁij’ and for this we may take

v=ZZa.zdz. - 3 z
K M

which is of type (1, 0). Now let

exp {2713 a z z

Xp {27 (uuzp ‘ ﬂuzu) ]E(ﬁjdzj + yjdzj) O
be a general term in the Fourier e
Proof of Lemma 17,

and without loss of

Xpansion of the Y* obtained in the
Since this Y+ hag o constant term, some «,# 0

generality we cap assume @ #0. Since the derivative

34
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of (30) has no terms of type (0, 2) - -
¥ ¥ WE havE {r f) s ] »
Y ﬂ‘-?l, and thus if

we subtract 1] J

d[(v, f’2niﬁ?1)exp {ENIE(GUZU taz)l]

from (30), which does not alter itg derivative, we obtain a form of type
(1, 0). It is easy to check that this Process at most doubles the coef-
ficients in (30), so the modified ¥ still has the differentiability proper-
ties required.
Theorem 18, Let a be a positive divisor on T regarded as a
qulplex__turus, and let a* be the induced divisor on V: then there is

e .

a theta-function with respect to A whose divisor is a*

Proof. By Lemma 14 we can assume that a has a finite des-

cription [Ui’ ¢i] in which each Ui is an open hypersphere in T. Thus
q:ai,rr,-‘}j is holomorphic and nowhere zero on Ui N Uj and so the

wij = dlﬂg(¢1/¢j) on Ui N Uj

are forms of type (1, 0) which satisfy the hypothesis (26) of Lemma 16,

Thus there are 1-forms wi on Ui such that

w, - w,
1 ]

Il

mij =] lﬂg(qﬁi/qu) on Ui N Uj' (31)

Moreover we can suppose the w, all to be of type (1, 0), either by
looking at the proof of Lemma 16 or by deleting the terms of type (0, 1),
Now (31) gives dwi = dwj on Ui N Uj’ so the dmi piece together to give
a 2-form w on T which has no terms of type (0, 2). Locally

dw = d(dmi) = 0; so we can write w* = dy* + dp where ¢ and ¥ have
all the properties stated in Lemma 17 and its Corollary. Now write

“L’i = W, -y on Ui; thus the l‘pi are forms of type (1, 0) such that

d 1Dg(¢i/¢j) - l‘vi - :,Dj on Ui n Uj'

The inverse image of U, in V is the disjoint union of open hyperspheres

Ui » Where X runs through the elements of A and the notation is so
chosen that Uik is the translation of U, by A. Moreover d(#’i“-¢)=ﬂ
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: tion f on U such
15 there 1S a func i i\
by Lemma
on U and hence

iA
that

-__ * - ( Dn U ]
is holomorphic o :
Since the right hand side is of type (1, 0), 1) 181 ? ! Uil‘

and

« — (6. /6.)* on U, NU,
dfih - dfjp = "11" - 13’]- =21} lﬂé.(ﬁjlfﬁb] i i
ntersection is not empty. Hence qbi“ Ehp("fil) is a

provided that this i l
) in this intersection, both being holo-

constant multiple of t,ﬁ* exp(- 1”“1

and in th15 way we can analytically continue t,b* exp(-f )

morphic there; 10

say to a function #(z) holomorphic in the whole of V. Clearly the

divisor of 6(z) is a*, so it only remains to prove that 6(z) is a theta-

function for A. Fix A in A and suppose say that z is in Uln; then

z + A is in Ulh and by the periodicity of qw{,
8(z + 1)/6(z) = ¢ exp lf1 u(z) 5 flh(z + A) )
for some constant ¢ # 0. Writing

= +b,.z
¢ EE(aijzi bi].zi)dz],

we obtain
dlog{6(z + 1)/6(z) } = df  (z) - dfy,(z + )
= + A) - =) A
¢(z + ) - ¢(z) Lb(aijhi - bi].;\i)dz].

where exceptionally the li are the complex coordinates of A. The

functi .
unctional equation for 6(z + ) /6(z) follows by integration, and this
completes the proof of the Theorem, By deflnltmn a determines 6(z)
up to multiplication by a trivial theta. function,

Coroll
ary.  Any multiply periodic function can be written as @
quotient of theta functions.

Let
€ 1 be multiply periodic and not identically zero,

m 1
> we can write (f]—ﬂ*— a'; where a_. and Hz e
]

positive divisors on T. Let 6 be g theta-function whose divisor is

a*;, then {6 is holomorphi : , _
> phic because its divisor is a’f = 0, and it satis-

fies the same functional equation as 0, So fg is a theta-function and

this proves the Corollary,

5. Consistency conditions and Riemann forms

In the functional equations
6(z + A) = 6(z)exp F(z, A) (32)

for a theta function which does not vanish identically, the F(z, A) for
various A cannot be unrelated. In this section we first show how to
describe F(z, A) in terms of the F(z, A ] where I& .. is a
base for A, and then we find necessary conditions nn the F(z ZI;L) for
(32) to have a non-zero solution. In §6 we show that these conditions

are also sufficient, and determine in terms of the F(z, A) the dimension
of the linear space of solutions of (32).

Now let A, X' be any elements of A. The identity

g(z+x + )\") 8z +x +2") 8(z + A)

0(z) - 0z+ ) " 6(z)

together with (32) gives
F(z, X + X") = F(z + X, X") + F(z, A) mod 2w7i. (33)

It is now convenient to split F into its linear and constant parts, writing
F(z, A) = 27 {L(z, A) + JQ)}

where L(z, A) is homogeneous C-linear in its first argument; thus
L(z, A) is fully determined but J(\) is only determined mod 1. When
we substitute this into (33) we can separate the constant terms from the

linear terms by setting z = 0, and since the congruence for the linear

terms can only hold if it is an identity, we obtain

L(z, A + ') = L(z, A) + L(z, "), (34)
JA + ") - J) - JA") =L(A, A') mod 1. (35)
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¢ that L canbe uniquely extended to a C-

hich is R-linear in the s
d function also by L, and

v = A ®R, (34) show
V W
Denote the extende

Since econd argument and

valued function on V X

still C-linear in the first.

write

(36)

E(z, W)= Lz, W) - L(w, 2),

w) = E(iz, w) T iE(z, W). (37)

H(z,
19 j ' . real-valued and alternating on

Theorem 17. is R-pURes S, e ———— — 1

v X V: and E(z, W)= E(iz, iw). S(z w) = E(iz, w) is R-bilinear, real-

and S(z w) = S(iz, iw). H is Hermitian, MDI‘E..

valued and symmetric;
r E is integer-valued on A X A,

ove

Proof. E is R-bilinear and alternating by (36). Since the left

hand side of (35) is symmetric in A and A', L(x, A") = L(A', A) mod 1

and so E is integer-valued on A X Aj since it is R-bilinear, it is also

real-valued on V X V., Moreover

E(z, w) - E(iz, iw) = L(z, w) + L(iw, iz) - L(w, z) - L(iz, iw)
= i{E(w, iz) - E(z, iw) !

since L is C-linear in its first argument. Since the first of these
expressions is real and the last is purely imaginary, they must both
vanish; and with a little manipulation this completes the proof of the first
sentence of the Theorem. But an easy calculation using (37) shows that
the second and third sentences follow from the first; indeed given (37) and
the fact that E is the imaginary part of H, any two of the first three
sentences are equivalent. This completes the proof of the Theorem.

A function E which satisfies the conditions of Theorem 19 is
called an alternating Riemann form on V XV with respect to A, and
the corresponding H is called a Hermitian Riemann form. It is worth

while to consider the interpretation of Theorem 19 in the special case

n=1, and to compare it with the results of §7-
l ?

solet n=1 and let
(ll /)‘2) > 0, If T denotes as before
parallelogram then by (32) and the sameé

= lz be a base for A such that Im
the boundary of the fundamenta)
argument as in the proof of (22)

38
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1
st T oy % =LA, 1) - L, A) =m

where m 1is the number of zeros of 6 in a period parallelogram, This

48 an integer and indeed shows that
it must be positive; the generalization of this last fact will appear in §9

Since E is R-bilinear and alternating, it is completely
a knowledge of E(Al, AE).

gives the interpretation of E(ll, A)

determined by
Moreover E(z, w) must be a constant mul-
tiple of the area of the (oriented) parallelogram generated by Oz and

Ow; so the remaining condition E(z, w) = E(iz, iw) is satisfied auto-
matically. Thus to given A and m there corresponds just one Riemann

form; it is for this reason that the Riemann form did not appear explicitly
in §2.

When n > 1, however, a general lattice A will admit no non-
zero Riemann forms. For if ll, il & AZn 1S a base for A then E
as an R-bilinear alternating form is uniquely determined by the
E(Ai, Aj), which are integers; and the condition E(z, w) = E(iz, iw)
induces linear relations with real coefficients between the E(.\i, lj),
which for general A have no non-trivial integer solutions. However it
can be shown that with the obvious topology the set of lattices A (for

fixed n > 1) which admit non-zero Riemann forms is dense in the set
of all lattices.

We now turn our attention to (35). Writing
J(A) = K(A) + 3L(A, A)
in (35), we obtain
KA + 1') - K(A) - K(x") = 2E(2, A") mod 1. (38)

Now let B(z, w) be an R-bilinear form on V X V which is integer-

valued on A X A and satisfies
E(z, w) = B(z, w) - B(w, 2);

that such B exist can easily be shown by considering the matrix repre-

sentation of E with respect to a base for A. Write
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K() = K'(Q) + LB(A, M

then (38) reduces to

K'{(A+A") = K'(A) T K'(x') mod 1,

alent to the statement that K' is @ homomorphism

so that (35) is equlv
A =+ C/L.
We say that tw

is a trivial theta-function; thus by |
valence class of theta-functions. Suppose

o theta-functions are equivalent if their quotient

Theorem 18 each positive divisor on

V/A corresponds to an equi
that in the calculations above weé replace 0(z) by

6'(z) = 0(z)exp { 27i[Q(z, z) + R(z) + S] | (39)

where Q is C-bilinear symmetric, R 18 C-linear and S 1s constant;

thus 6'(z) is the most general theta-function equivalent to 6(z). Then
L(z, A) is increased by 2Q(z, A) and J(A) 1is increased by

Q(A, A) + R(\); thus E(z, w) remains unchanged and K(A) is increased
by R(A), as also is K'(A). Butif E is given, (36) determines L up to
addition of a C-bilinear symmetric function; thus within an equivalence
class of theta-functions we can obtain all L compatible with (36). We
can use this in various ways to pick out from each equivalence class a

normalized theta-function, determined up to multiplication by a constant.

For example
%iH(w, zZ) - éiH(z, w) = E(z, w)

S0 that to choose L(z, w) = -3iH(z, w) is compatible with (36). Again,

let f(A) be the imaginary part of K(A); then (38) shows that
A+ A =1(0) + f(A"),

real-valued function on V. Take

R(z) = -f(iz) - if(z):

:

then K()) + R())

0(z) is a normalized thetg-

function if L(z, w) = -1iH(z. w) and K()
and K'(A) are real-valyeq, ey

40

o that f can be uniquely extended to an R-linear

is real-valued and R(z) is C-linear. We shall say that
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Lemma 20. Every equivalence class of theta-functions contains

a normalized theta-function, which is unique up to multiplication by a

constant,

We have already proved existence. As to uniqueness, suppose

that ¢ and 60" in (39) are both normalized: then Q=0 and R(z) is

real-valued and hence must vanish.
Since E is the same for all theta-functions in an equivalence

class, it is determined by knowing the divisor of 6(z); and in view of
Theorem 18 we can associate to each positive divisor on V/A a Riemann
form E. This map is easily seen to be additive, and therefore extends
to 2 homomorphism from the group of divisors on V/A to the group of
Riemann forms with respect to A, In particular, to a trivial theta-
function corresponds the trivial Riemann form E = 0. Conversely we
shall see below that if a holomorphic theta-function has E = 0 then it

is trivial; in other words the kernel of the homomorphism above contains
no non-trivial positive divisors. A fuller investigation of the kernel will
be given in §8. The homomorphism is not necessarily onto; examples

where it is not onto can be constructed with the help of the next Lemma.

Lemma 21, The Hermitian Riemann form H associated with a

theta-function 6(z) is positive semi-definite; that is, H(z, z) = 0 for

all z in V.

Proof. Without loss of generality we can assume that 6(z) is

normalized. Write

¢(z) = 6(z)exp {-z7H(z, 2z) )
so that ¢(z) is continuous although not holomorphic. We have

6(z + A) = 6(z)exp {7H(z, A) + $7H(A, A) + 27iK(}) ] (40)
and so the functional equation of ¢(z) is

¢(z + A) = ¢(z)exp {7i[E(z, A) + 2K(d)] }s

Here the expression in square brackets is real, so that |¢(z)! is periodic
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.« a constant A such that
d: thus there 15
and therefore bounded,;
* (41

IE{E)JEAE}:[}f;I?ﬁH(Z, z) ], )

z )< 0, and
Now suppose that there exists Z, such that H(z , u) 0 | set
with t in C. Viewed as a function of t, ﬂ(tzﬂ} is IDIDm{]rphic;

z =1tz D g(tzﬂ) vanishes identically,

. t
- (41) it tends to 0 as | :
and by (41) But H(z, z) < 0 for all z in some neigh-

: + =0
and in particular B(Zﬂ) ' o ‘
so by the same argument 6(z) = 0 in that nelghbuurhngdi

bourhood of ED; o
nuation. This is absurd; so there

and hence everywhere by analytic conti

is no such 2, and the Lemma is proved.
We say that a theta-function if degenerate if the corresponding H

is not positive definite; we now show that a degenerate theta-function ig
essentially the same as a theta-function on a quotient space of V, For
any positive semi-definite Hermitian Riemann form H we define the

kernel of H to be the set of w such that H(z, w) =0 for all z in V;

clearly the kernel is a C-vector space,

Lemma 22, Let H be a positive semi-definite Hermitian

Riemann form on V, and let W be its kernel. Then W consists of all
w such that H(w, w) = 0; and H induces a positive definite Hermitian
form on V/W. Moreover the image of A in V/W is a lattice and the

Induced form is a Riemann form with respect to that lattice.

Proof. Let w be such that H(w, w) = 0. For any t in C and

z in V,
0=H(tw + z, tw + z) = 2Re {tH(w, z)] + H(z, z).

For fixed z, this inequality can only hold for all t if H(w, z) = 0; and

since this must hold for all z, w must be in W. The converse is trivial

Moreover H(w + Z, W' +2') = H(z, 2

—

In V, sothat H induces a bilinear form on V/W; and it is easy to see
that this form is Hermitian ang positive definite
V/W clearly spans V/W, soto prove
bak vz o ,

at it is discrete, Fix a base .11,

The image of A in
it is a lattice we need only show

: ++3 A, for A andlet N bea
neighbourhood of the origin in v /w such tzl?at

42
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IH(E: )'»U)[C:: 1 for L-':]_, 2,‘.‘,2].1

whenever the image of 2z ig in N; such an N exists because H induces
aformon V/W. Let X be 4 point of A whoge image is in N: then

E(X, Au][ < 1 for each v since E is the Imaginary part of H and so
?

‘ . This implies E(A, z) = 0 for
all z in C, whence H(A, z) = 0 for aqy Z, 80 A isin W and its

image in V/W is the origin, Thus the image of A in V/W is discrete
and the Lemma follows at once,

E(X, A) =0 since it must be integral

Theorem 23, Let 6(z) be a normalized theta-function on V with

respect to A, let H be the associateqd Hermitian Riemann form and let

W be the kernel of H. If A' is the image of A in V/W then 6 induces
a function €' on V/W which is a theta-function with respe;Tu A', and
the Hermitian Riemann form on Vv /W corresponding to 6' is the fnr:
on V/W induced by H.

Proof. We need only prove that 6(z) induces a function on V/W -
that is, that 6(z) is constant on each coset of W - since the rest of the
Theorem will then follow trivially, Suppose that z isin V and w in

W, then (41) implies
lﬂ(z + w){ = A exp{z7H(z, 2z))

for a constant A which depends only on 6, Thus 6(z + w), regarded

as a function of w for fixed z, is holomorphic and bounded: so it is
constant and in particular 6(z + w) = 6(z). This is what we needed to
prove, The condition that 6(z) is normalized is essential; but it follows
that any degenerate theta-function can be built up from a trivial theta-

function and a non-degenerate theta-function on a proper quotient space.

Corollary. If H= 0 then 6(z) is trivial.

For now W = V and so the normalized theta-function is constant,

Now suppose that H is non-degenerate or, which is equivalent,
that E is non-singular. As a Z-valued alternating formon A X A, E
Is represented by a non-singular skew-symmetric matrix with elements
in Z as soon as we have chosen a base for A; and the deierminant of

43



hich does not depend on the choice of

fect square W
a perfe 1inant is called the Pfaffig,
L ———

quare root of this detern
we can even arrange that the

this matrix is

The pnsitive 5

base. |
choice of a base for A,

of E. By suitable

matrix for E has the form

0 Dy yhere D= diag(d,, - Iy
0

(p
gers such that db’ divides dU+1 for

are positive inte
The Pfaffian of E 1S then equal to dldz L dn'

ermined by E, even though the corresponding

and the du
P 1y By ey n-1.
The du are uniquely det

base for A is not unique. |
A theta-function for A will also be a theta-function for any sub-

lattice A, C A, an

times its Pfaffian with respect to A,
e A DA; butifitis non-degenerate there can only be
2

because [A, : A] must be a factor of its

d its Pfaffian with respect to 1'11 will be [ﬂ : ;’11]
It may also be a theta-function with

respect to som
finitely many such 1‘12
Pfaffian with respect to A.

6. Construction of theta functions

To find all the theta-functions corresponding to given L and J,
we essentially mimic the construction at the end of §2. There is however
one extra complication. The naive way to proceed would be to take any
- for A such that }11, Cea ln

dent over C, and then multiply the theta-functions we are looking for by

base A, ..., A are linearly indepen-

an assigned trivial theta-function so chosen that the product is periodic

with periods ?‘1’ i 3 hn. However when n > 1 there are not enough

free parameters in the general trivial theta-function to do this in a

e A o

make it possible. This is the reason for the opening steps of the proof
of Theorem 24 below.

straightforward way, and it needs 2 special choice of X

Clearly we can assume that L and J satisfy (34) and (35), and
that the Riemann

19
and Lemma 21. Moreover Theorem 23 enables us to reduce to the

case when H is positive definite,

44

forms E and H have the properties stated in Theorem

o e R e e " = = Femrer

Theorem 24,

. . ?UDDDSE that L(z, w) is C-linear in its first
argument and R-linear in itg Second, that J()\) satisfies (35), that E
]

37) have the properties stated in Theorem 19
and that H(z, z) is positive definite.

and H defined by (36) and (

?

Then the space of functions 6(z)

e

holomorphic on V and satisfying

0(z + A) = 0(z)exp {27i[L(z, 2) + J1) (42)

for each A in A has dimension equal to the Pfaffian of E

Proof. As at the end of 85, we can choose a base 2\ A
SRR

for A with respect to which E is represented by the matrix ( 0 D"

)
o -D 0
where D = dlag(dl, Cee dn) and the d, are positive integers. Suppose
that }11,

relation

, An were linearly dependent over C, so that there was a

+ ] , »
(511 lbl)a"ll T e TF (an + lbn)}\n =0

with the a, by real and not all zero. Thus we would have

Eauhv = 0, Ebvlp = -ia

for some a in V; and a # 0 since }‘1’ T ln are linearly indepen-

dent over R. But now
0 < H(a, a)=E(ia, a) =ZZ apbuE(A“, lu) = 0

by the choice of the matrix representation of E. This is absurd; so

?«1, e ’\n

be a base for the system of coordinates Ziy eeey
By multiplying 6(z) by exp{27i[Q(z, z) + R(z)]}, where Q is

C-bilinear symmetric and R is C-linear, we increase L(z, w) by

2Q(z, w) and K(A) by R(A).

are linearly independent over C and we can take them to

z on V.
n

Choose
Qz, w) = —%EEZPWPL(?&“, r), R(z)=-ZzKQ2)

where all sums run from 1 to n, and replace the old L, J, K by the
new; since L is C-linear in its first argument we obtain for

¥ =iy s e B
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(43)
L(Z, ;'LH) = D: I{(‘lp) =0
the modified 0(z) has period 1

— 0. In other words,
1 as a multiple Fourier

d thus also J(A ) .
- ’ and can therefore be writtel

in each of B e Zn

series

: A + M.z 3
E clm,, ... » Moexpi2aim, & oo T Ty W’

E{E)ZE.-- 1

Since (34) and (35) are satisfied, the arguments at the beginning of
ir

5 u L % — A L
§5 show that (42) holds for all x in A if it holds for A e , ,12“_

The first n of these cases have been dealt with already. Moreover for

u, v between 1 and n

o {du il b=
L("\.ui lnﬂ.) = -EQ 4 h,u] — '0 otherwise

th :
' 5 : at
by (43); thus L(z, hn+u) = duzu and in particular the v coordinate of

lnﬂx is equal to d;lL{hn+p, ‘)‘n+u}'
A=A now takes the form

The functional equation (42) with

n+v

8(z + ;"n+u} = ﬁ{z)exp{hi[duzu + J(hn+u)] J
which is equivalent to the set of equations

o b0 TR

. , m )/e(m_, ..., m)

,mu'du,--- H

— - -1
= exp {27i[Z de’u L(A ¥] 15

n+v’ ln+n] - J(hn-i-v

Formally this means that we can choose the c(ml, has mn) with

0=m < d, for each v and all the other coefficients are determined by
degrees of freedom, and

is just the Pfaffian of E. It only remains to check that the

resulting formal Fourier series converge. But it is easy to see that

the last equation, This gives dldz eoo @
n
dld.‘! .. dn

provided each m  stays in a fixed congruence class mod d,
c(m_,

whe =%m ¢q°} :
KR medp hn-}‘p’ S0 to prove convergence it is sufficient to show

that the imaginary part of L(z, z) is negative definite.

where x and Y are linear combinations of )
1'.'

..., A_ with real co-
n
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p» +++» M) =exp{-7L(g, B) + linear form in the mu+cunstﬂﬂt]

Write z=x*+1

——ra . e

L ——— AL WS L S EW L 3 T e

efficients; then

L(z, z) = L(x, z) + iL(y, z) = E(x, z) + iE(y, 2)

by (43). The imaginary part of this is

E(y, z) = E(y, x) + E(y, iy) = -H(y, y) < 0

for y # 0; and since here z lies in the real vector Space spanned by

An+l’ — A2r1 we cannot have z +# 0 and y = 0, for this would imply

EE .

pletes the proof of the Theorem,

Corollary. Under the conditions of the Theorem, almost all of

the theta-functions satisfying (42) are not theta-functions for any lattice

A' strictly containing A.

Proof. Let m =[A':A] andlet d be the Pfaffian of E with

respect to A, The vector space of solutions of (42) has dimension d.

It was shown at the end of §5 that if there is a solution of (42) which is

a theta-function with respect to A' then m divides d; so there are
only finitely many candidates for A'. To each of them corresponds only
finitely many ways of extending the functional equation (42) to A'; indeed
L extends in just one way and K' in just m ways. To each of these
extensions corresponds a space of solutions of dimension d/m: so the
solutions which are theta-functions for some A' form a finite set of
proper subspaces, and this proves the Corollary.

We shall say that two divisors a, and a, on T=V/A are
linearly equivalent if their difference is the divisor of a meromorphic
function on T; and we write this as ﬁl ~ az. Clearly this is an equi-
valence relation and is compatible with addition and subtraction of divi-

SOrs; moreover if two divisors are linearly equivalent their associated
Riemann forms are equal, We shall say that a positive divisor is degen-
érate if the corresponding Riemann form is degenerate; after Theorem

23 this happens if and only if there are infinitesimal translations under
By analogy with §1, we shall for any

Which the divisor is invariant,
divisor a on T define L(a) to be the C-vector space of those mero-
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T for which (f) +a = 0, together with the zero

morphic functions { on
(a) = dim L)

function; and we write

a__ be positive lelbUl_é_Eﬂl T and
Lemma 25. LEt Hﬂj LB | m — H

at least is non-degenerate.
r ) of degree n :S_l.}i,i_l_tﬂEIL
S ) -

T e —— e e

suppose that HD

ous polynomial P(r 0’

=P{r, ..., 1T )
g(rnﬂﬂ + i +rmﬂm) ( 0’ ' m

: 13 . are non-negative.
is positive and 1, ..., B ALE ‘

whenever T ;

Let E be the Riemann form corresponding to n“; then

Proof.
: . ' rE oo E
the form corresponding to r @ * ... T T3, will be r E mE

which is non-singular because the associated Hermitian form 1s positive

+r E with respect to A
m m

definite. The determinant of rﬂEﬂ e
is a homogeneous polynomial of degree 2n and is a perfect square for

all allowable values of the rp; it follows easily that it is a square when
viewed as a polynomial, and hence the Pfaffian is a polynomial of degree

n in the ru. The Lemma now follows from Theorem 24,

Lemma 26, Suppose that there is a non-degenerate positive

divisor on T; then the field of meromorphic functions on T has trans-

cendence degree at most n over C, and if it has transcendence degree

exactly n then it is finitely generated over C.

Proof. Let fl, e fn+1 be meromorphic functions on T, and

let a be a positive non-degenerate divisor on T such that (f Jtaz0

for each v,

The number of distinct monomials in the fy of total degree

at most N is

(N+n+DU/N @+ 1)t =N 0+ 1)1+ om®

All these monomials lie in L(Na), whose dimension is O(N") by Lemma

25. So when N is large enough there is a linear dependence relation

between the monomials, and this is an algebraic relation among

Il’ ..y fn+1.

Now suppo
Ppose that fla W fn are meromorphic functions on T

r
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e

divisor on T such that (f = 0 for each v, let d be th
e the

Pfaffian of the Riemann fnrm assucmted with a ., and wr1te M 'd
0? = Nl .
0

Let g be any meromorphic function on T, and let

ﬂl be a positive
divisor on T such that (g) + 5 = ¢ By I,
y y Lemma 25 and Theorem 24,

a5 B N n-1
E{NﬂﬂiMﬂl)—-an + O(N )asN‘*W*

On the other hand the corresponding linear Space contains all the mono
mials

m1 m
f ¢ nom
1 n
with m .., IM - ' '
o . nnnnnegatlve, m1+,,,~rmnEN and 0 =m =< M.

The number of these is
(N+ ! (M +1)/Nin! = (d, + 1/n1)N" + o(N"" 1),

so when N is large enough there is a linear dependence relation between

them. This relation must really involve g, because the f are alge-
7

braically independent; so it shows that g 1s algebraic of degree at most
M

over C(fl, ., fn).
the field of meromorphic functions on T is algebraic of degree at most
M over C(fl, i fn).

Since the characteristic is zero, it follows that

Lemma 27,
and let £, .. f
1 m

Let a be a positive non-degenerate divisor on T
be a base for L(3a).
has rank n at any point not on the support of a

Then the matrix of partial

derivatives af”/ Bzy
and the field C(fl,
C.

, f_) has transcendence degree at least n over
m

Proof. We need only prove the first statement, since the second
If it is false, let w be a point not on the
After a linear

follows immediately from it.
Support of a at which the matrix has rank less than n.

transformation on the z , we may assume that

u?
af/azl =0 at z =w for each f in L(3a). (44)

Let 0(z) be a theta-function cﬂrresp{]nding to a ; then for each u, v
in Vv
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o(z +u + v)/0 (@) (45)

ion and 18 therefore in L(3a). Write

is a m .od to the f(z) in (45) gives

6= 0 'o6/ez ; then (49) app]

d(w - u) + o(w - v) T pw +ut v) - 3¢(w) = 0.

) - ¢(w) considered as a function of u, is
= y

: s that olw - U & 1
This shows that ¢l since it is meromorphic, it must

additive and therefore Q-linear;

' Itiply
even be C-linear. To mu . |
| would increase ¢(w - u) - ¢(w) by -4miza, u

so by replacing 6(z) by an equivalent theta-function we can arrange that

] 1S Wi find that
d(w - u) - ¢(w) = 0. Integrating this with respect to u , welin a

g ; and thi
6(u)exp {-u ¢(w) | depends only on U, ..., U and not on u, 1S

contradicts the non-degeneracy of a. This proves the Lemma.

Putting the last two Lemmas together we obtain

and
6(z) by the trivial theta-function

exp {271 ZZ auuzuzb'

Theorem 28. Suppose that there is a non-degenerate  positive

divisor on T; then the field of meromorphic functions on T is finitely

generated and of transcendence degree n oOver C.

In the general case, let W be the intersection of the kernels of

all the positive semi-definite Hermitian Riemann forms on V; it is easy

to see that there is a positive semi-definite Hermitian Riemann form on

V whose kernel is precisely W, so that V/W and the associated lattice

define a torus T' which satisfies the conditions of Theorem 28. It
follows easily from Theorem 23 that every meromorphic function on T
1s induced by a meromorphic function on T', so the theory for T is
essentially the same as the theory for T'. For a general A we saw in

§5 that there are no non-trivial Riemann forms, so that W =V and the
only meromorphic functions on T are constants.

Theorem 29,

then L(2a) induces an embedding of T
plete non-singular variety,

Proof,
i We can replace a by any positive divisor linearly equi-
It without altering the projective embedding; so by the Corollary

valent to
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Let @ be a non-degenerate positive divisor on T;

into projective space as a com-

to Theorem 24 we can assume that there is no non-zero translation which

leaves a fixed. In the notation of Lemma 27, the embedding takes z
in V into the point

(1, (2)0°(2), ..., {_(2)0°(2)),

each of these coordinates being holomorphic on V. Since for every u
b
v in V,

0(z - u)6(z - v)6(z + u + v) (46)

is a linear combination of these coordinates, there isno z in V at
which they all vanish. To show that the map separates points it is enough

to show that given any z' and z" in V which are incongruent mod A,

we can choose u and v so that the function (46) vanishes at z' but not

"

at z". For this we choose u sothat z'- u is in the support of a

but z" - u is not, which is possible by the auxiliary hypothesis on a:
and we then choose v in general position,

The image is non- singular at any point outside the support of a
by the first part of Lemma 27; and a similar argument works for the
points on the support of a . The image lies in a complete variety of
dimension n, by Theorem 28; since the image is compact and we have
already seen that it is a complex manifold of dimension n, it must be the
whole of the variety. This completes the proof of the Theorem.

Conversely if a positive divisor on T is degenerate, there are
infinitesimal translations that leave it invariant; and every positive
divisor linearly equivalent to it has the same Riemann form and therefore
is invariant under the same infinitesimal translations. So the map into
projective space induced by such a divisor does not even preserve dimen-
sion, Thus if T can be regarded as an algebraic variety at all, it must
contain a non-degenerate positive divisor. Moreover the projective em-
bedding of T given by Theorem 29 clearly carries with it the group
structure on T; so the associated projective variety is an abelian variety

in the sense of the Appendix. For this reason, we shall say that T is an
abelian manifold (and will then usually denote it by A) if T contains a

non-degenerate positive divisor.
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genemte positive divisor on T

Let @ be a non- de

Theorem 30. tive space as a_
) induces an embedding of T Into projecUye:sPace as
such that L{a) 2 dlet d be the pfaffian of the Riemann form
and ———

non-singular variety A;

and the ambient projective

H:l
associated with a . Then A has degree n

space has dimension (d - 1)

enience of reference. The

This Theorem is included for conv ‘
© but a rigorous proof

] ' f Theorem 24
tement is a special case O
e pe of this book. A

of the first statement would be far outside the scoO
pp. 206-10.
o the special case where

. ] < ] tﬂ var
sketch of a proof can be found in [2], The idea is y T

and @ continuously until the result is reduced t

T is a product of curves of genus 1 and the theta-function associated

with @ can be written as the product of theta-functions associated with

This special case follows immediately from the correspon-
A more

the curves.
ding result for a curve of genus 1, which was proved 1n 35,

natural proof could be obtained by cohomological methods.
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[1l-Morphisms, polarizations
and duality

7. Morphisms of Abelian manifolds and of tori

Up to this point we have considered a complex torus T as having

an assigned structural map i V=T with kernel A. 1t is now neces-

sary to show that T uniquely determines this structural map; in other
words, to show that any diffeomorphism T ~> 'I‘ between two complex
tori is essentially induced by a C-vector space 1snmﬂrph15m V -y

which maps Al onto ﬂz.

The key step is as follows:

Lemma 31. The holomorphic 1-forms on T = V/A are just the

where the a,

are constants,

2 audzy

Proof. At every point of T the Z, form an admissible set
of local coordinates.
'}"I

"‘fu(z)dzu

holomorphic if and only if all the fu(z) are holomorphic,

S0 any meromorphic 1-form on T can be written
where the fv(z) are meromorphic on T; and the form is
But the only
holomorphic functions on T are the constants, so the Lemma is proved.
Now on T the holomorphic 1-forms are a C-vector space ﬂ of
dimension n and we have a many-valued map T X 5'2 =+ C which takes
P X w to I w where O is any pre-assigned pmnt uf T. The many-
valuedness cnrrespnnds to the ability to alter J'Ow by J'I.w where T
Is a representative of any element of the homology group H (T Z),
Which is a free abelian group on 2n generators. If £F denntes the dual
Space of {2 there is a natural embedding of H, (T, Z) into ¥, given
by I‘ﬂapplng a closed curve I to the linear functmnal which takes w to
Jpw; and this identifies Q¥ with V and the image of H (T, Z) with A.
Thus given only the complex manifold structure of T and a pre-assigned
point QO on it, we can recover V and A in a canonical way; and it is
clear that a change of O merely corresponds to a translation on V.,
Moreover, this shows that a knowledge of the identity element on T and
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fold. structure On T is enough to determine the group
i
the complex mal

. i with identity elements
and T, be complex tori with 1€ Y O, and

el "]' be a hf_ﬂﬂlﬂ orp we
ely, and let ¢: T,

OE e e Q, defmed by a(P) = ¢(P) - 9’1{0 ); 1s a

: —_— o (¥
can write ¢ = p
hich takes O, to O,

g maps T, = T,

wher
and [ is just translutiﬂn by

holomorphic map W

in considerin
$(0,). So

that O goes to O,.

we lose nothing by assuming

be complex tori with identity

I_-‘_E:'_tTl -H—'IETE

Theorem 32.
respectively, and let ¢ : T, =T, be a holomor-

elements O and 0 ! :
is a group homomorphnis
phic map such that (,‘J(O )=0,. Then ¢ 1s a grovj phism and,

is induced by a C-linear map y : V| ""V

with the obvious notation,
such that lj/(f"al} C AE.

Proof. Let © denote the C-linear space of holomorphic 1-
) v

then ¢ induces a linear map ¢* :ﬂz—rﬂl

forms on T, for = 1; 2
and hence also a dual map y : Q; = Q; If I" is a curve on Tl, not

necessarily closed, and w is a l-form on Tz’ then thp*w = ft:)rwi
if a, for v=1, 2 denotes the canonical map which associates to a
curve T on T in @ to Ip® s
it follows that ¥ « a =a o ¢. In particular we can apply this to
H/(T), Z). Since ¢ maps H (T , Z) into H (T, Z), and @, maps
Hl(T”,r Z) onto A, this implies that 1,!}(!"11] Gk
proof of the Theorem.

the element of ﬂ: which takes wu

,» Which completes the
A particularly important sub-class of these maps ¢ consists of
the isogenies. In the notation of Theorem 32, we say that ¢ is an isogeny
if the underlying map  : N V, is anisomorphism. If ¢ isan
1sogeny then its kernel is f1n1te ¢ is onto, and dim T = dim T con- |
versely any two of these statements imply the third and also lmP]LY that
® s anisogeny. If we regard y as identifying V_ with V, and call
them both V, thep 1’1 C A and we can consider qb as the cﬂﬂﬂ“w&l
:‘:: t:; ‘;‘Eg":evfﬁ , the nrder of the kernel is [ﬂ2 A ] and we '3311
€ of ¢. In particular et 6 be the 1dentit3r map on T;

mb : T= for an
Y non-zero intege an be
factorized ag ger m is an isogeny which ¢

o4

V/A = V/m ‘A = VA,

where the left-hand arrow is induced by the identity map on V and
right-hand arrow, which is

the

an isomorphism, corresponds to multiplica-

tion by m. Cle'uly mb has degree m2"

and its kernel is isomorphic
G (24 mZ)

em : '
Lemma 33, Let qbl . T] -*T be an isogeny of degree m: then

:T -'*T suchthat t:J nl;l = mbd on T and
Cnnversely let qb T ++T and qb T -*T
be hnlnmm phic hﬂmnmnrphlsms and m # 0 an 1nteger such that

;;,Engblﬂmﬁ ﬂTl

isogenies,

there is an isogeny f,b

{,b nt,b =m0 DnT

and tial o r,bg = mb on Tz; then qbl and ¢t2 are

Proof. Suppose first that {,61

is an isogeny of degree m, and
as above write it in the form V/Al = V/AE where the underlying map
on V 1is the identity. Thus Al CA, and [A

2

ﬁl - mﬁz. The identity map on V induces

: ﬁl] = m, whence

‘V/rru'ﬁ1 = "o.?'/n‘u'l2 ~> V/ﬁl > V/Az

where the two outer arrows are qbl and the inner arrow defines an

i1sogeny tpz
arrows we obtain the results required.

: TE - Tl; by considering the composition of two successive

For the converse, we note that mé is onto and has finite kernel;

so the equation n,bg o ¢1 = mb shows that ¢E
kernel,

is onto and qbl has finite
Using ¢1 o {pg = md similarly, we find that ¢1 and ¢2
each onto and have finite kernel, and this is enough to show that they are
both isogenies.

We shall say that T1
geny T1 - Tz' By Lemma 33 this relation is symmetric, and it follows

is isogenous to T, if there exists an iso-

easily that it is an equivalence relation.
abelian manifold and TE
manifold. For we can take T1 = V/ﬁl and Tz 5 sz

now if H is a positive definite Hermitian Riemann form on V with

Now suppose that T1 is an
is also an abelian
with Al 2 AE;

is isogenous to Tl; then Tz

respect to ﬂl, it is one also with respect to A_.
There is an alternative way of defining an isogeny. Denote by
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Jolomorphic homomorphisms T1 -

additive group of | 2

1 + m. .
f holomorphic endomorphisms of T; and write
0

HDI"H(T T) the

and by End( T) the ring

(Tl’ Tg) © Q: LI‘IEi (L= - EndiT) ZQ (4?)

— Hom
Hom (T, T,)
at ¢ in Hom(T,, T,) is anisogeny if and

h:
om Lemma 33
B IF a right inverse in H”mn(T » 1 } and in this

It follow
only if it has both a left and
case the two inverses are the same. |

invertible in Enclﬂ(’[ ).

env if and only if it is 1n - | |
gd tj; t if T is an abelian manifold this condition 18 equivalent to ¢ not
34 that 1 '

In particular ¢ : T = T 1S an iso-

It will follow from Theorem

bei divisor of zero; but if T 15 merely a complex torus this need not
eing a ;

be s0. . : : : '
e of isogenies is Poincare's

One major reason for the importanc

Complete Reducibility Theorem for abelian manifolds, various forms of

which are stated below as Theorem 34 and its Corollaries;

not necessarily hold for complex tori,

this too does

Theorem 34, '
and let A3 CAE be the image of ¢. Then A3

Let ¢ :Al -*AE be an element of Hﬂm(Al, AE)
is an abelian manifold

A ¢ . A
1 2

A X —_— —_— X |
; Bl A3 A} ]32 .r

and there is a commutative diagram as shown, in which B, and B, are

abelian manifolds, the vertical arrows are isogenies and the lower hori- |

zont ' |
al arrows are the obvious maps. |

Proof. For V=1 2 write A =V /ﬁ and dim sz n,; we

shall extend this notation to p — 3 as soon as we have shown that A
lshﬂ- complex torus. The map ¢ extends to a C- linear map V, =V,
whi
ch we also denote by ¢. Now ;pﬁ spans n;,vl as an R—vectﬂr SPHGE’

and it
is discrete becauge it is a subgruup of nz; so it is a lattice in

is a Complex torus. If H inite
2

is a positive def
its restriction to

2’
SO A3 is an abelian

manifold.

Now choose a positive definite Hermitian Riemann form H
on
1

Vl with respect to hl; let W1 be the kernel of ¢ actingon V X and

let W be the orthogonal complement of w
in V_ with r
H ‘Slnm h and c,m hav k 1 Espect N
" € ranks 2]’11 and 2n respectively,
By, D W, I‘ﬂUhl have I‘Elﬂk 2n, - 2n, and is therefnre a lattice in W,

since it is discrete. It is easy to see that W 1s the orthogonal cnm

plement of W with respect to E . the alternating form associated with

H , and hence even the {thlmgonal com
, plement of W [ : 8
1 | ﬁl ; since E

is integer-valued on 1’1 X A
4 1 t}}is means that W f1 h]_ has rank 211

Let 1‘1 Lo be the projection of A
Since the kernel of this prmectmn is W N fi which has rank

on the other hand 1t cnntains W n A
as an R-vector space, so ﬁ

Let B

1nduces a homomorphism A " B

and therefore it is a 1att1ce in W
on W .
1

2h: g ok
3 10

which spans Wl

has rank 2111 - 2n3;

spans Wl and is there—
be the cumplex torus W f'ﬂl . then the

and we have

fore a lattice in Wl
projection V -+ W
constructed the left hand part of our diagram. Certamly
dim Al = dim A3 X Bl.
O : Vl = V3
identified by means of a suitable isomorphism between W
1S now clear that Al > A3 X E’:1 3
Finally, the proof that }31

for Aa; it suffices to consider the restriction to W1

Moreover the projections V1 - W3 and
are both epimorphisms with kernel Wl; so they can be
and Vj. It
is onto, and therefore it is an isogeny.
1s an abelian manifold is analogous to that
of a suitable integral
multiple of Hl.
The argument for the right-hand part of the diagram is similar but

We have identified V = ¢»V as a subspace of V let WE
in Vz with respect tn Hz' The

shows that W: N ﬂz
A}, which is an abelian

simpler,
be the orthogonal complement crf V

argument that was used above for W
in W ; let B be the complex tﬂrus W /W, 1
mamfﬂlcl for the same reason that A is. The inclusionmap W, C V,

su the right-hand part of the diagram
so that the right-hand arrow,

is a lattice

induces a homomorphism B A
Is constructed; and dim A, = dn‘n A, XB,,

being onto, is an isogeny. T}us cumpletes the proof of the Theorem.,
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Any subtorus or quotient torus ol an abelian mapj.

Corollary 1.

fold is an abelian manifold.

1s used to prove A3 an abelian

The argument which w

Proof. |
an abelian manifold.

y subtorus of Now suppose that

vorks for an
anifold works {0 . :
o where A is an abelian manifold and T

A—-T isa homomorphism onto,
The argument used to construct the left-hand side of the o
1e i

Jows that A is 1sogenous to T X T1
is an abelian manifold and, by the part of the

a torus.
in the Theorem sl
torus TI; thus T X Tl

Corollary already proved, SO iS g B
To state the next Corollary, we need a further definition,

simple if it is not isogenous to the product

for some complex

We say

that an abelian manifold A IS

of two non-trivial complex tori (or of two non-trivial abelian manifolds,

which comes to the same thing in view of Corollary 1). This is the same
as saying that A has no non-trivial subtorus, or that it has no non-

trivial quotient torus. Moreover, A 1S simple if and only if End(A) has

no divisor of zero, for an element of End(A) is a divisor of zero if and

only if its image has dimension lower than that of A. It now follows
from Lemma 33 that A is simple if and only if EndD(A) is a division

algebra,

Corollary 2. Any abelian manifold is isogenous to a product of

simple abelian manifolds;

and the factors are uniquely determined up to

T a—— T E

isogeny.

Proof. Induction on the dimension shows that any abelian mani-

fold is isogenous to a product of simple abelian manifolds, so we have
only to prove the uniqueness clause, Let

‘PZA Tl -
1 An"B X...xB

I

be an isogeny, where the A

and Bu
After re- ordering the B

are simple abelian manifolds.

1f necessary, we can assume that B KB
pruduct that contains qu Now ¢(A - N A )

- Br’ for otherwise it wnuld r.:t:mtam ¢A aﬂd

80 ¢ would
be a dlmensmn-reducmg map. After further re-—urderlﬂg
W€ may assume that q:.(A X and there-

is the smallest partial

cannot contain B X

X Am} does not contain Bl;
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L L

fore its intersection with E!.1

is fini v
nite because E',1 Thus the

is simple,
map

' W \
w*Az ...HAHI—*BE«{...KBH,
which is the restriction of ¢ followed by projection, has finite kernel

Again, the projection of ¢A on B has image a subtorus of B ; this

cannot be just the identity element hecause then ¢:A would be cnntamed
in 13 e gy & B .» 50 it must be the whole of B

The cnmpumte map A - B

1S simple.
is onto, and it has finite kernel because
Al is simple, so it is an isngenv Thus A and B have the same

dimension, whence the source and target of 1,!/ have the same dimension

51nc:e H1

So Y is an isogeny too, and the Corollary now follows by induction,
This Corollary enables us to describe Hom {A B) and End (A)

for any abelian manifolds A and B. First note that if A and B are

simple and not isogenous then Han(A, B) = 0. Next suppose that

A

l

>
X
X
>

WHERE Aoy o 5 A
1 r
and n,

are simple and non-isogenous, and some of the m,

may vanish.
m, n,

i ; :
Hﬂmu(Ai : Ai "), and this consists of the n, X m, matrices with elements

in the division algebra Endﬂ(Ai).

Clearly Humu(A, B) is the direct sum of the

The general case now follows by apply-
Ing fixed isogenies to A and B; and a similar treatment works for
Endﬂ(A).
End.

However there is no such simple decomposition for Hom or

Corollary 3. Let A be an abelian manifold and B an abelian

submanifold of A. Then there is an abelian submanifold C of A such

that B n C is a finite set and the natural map B X C = A is an isogeny.

Proof. Apply the Theorem to the inclusion map B =* A, so

that in the notation of the Theorem AE =A and A = .A3 = B, and let

C denote the image of B, in A. Themap B = A has finite kernel,
S0 BX C=A is anisogeny; and P isin BnC only if (P, -P) is in

the kernel of this isogeny. This proves the Corollary.
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Duality of Abelian manifolds

E' + L ]
v/A bea complex torus; later in this section we sha))
Let T e ; ‘ [ ¥ . : x r
that it is an abelian manifold. We saw 1n 85 that to any
to assume L 1 r
need esponds 2 Riemann forni. We shall say that two
1" i

divisor on T cOr

T are algebralC

ally equivalent if the corresponding Riemap
arly this is an equivalence relation which is com.

divisors on

forms are the same, cle

action of divisors, and it is weaker than
patible
linear equivalence.

and the definition is an ad hoc one choserl
it would be more natural though less convenient to start from

1 to simplify the development of

the theory,;
a different definition and prove the present on
The underlying idea is to consider two divisors as equivalent if

e as a theorem.

one can be continuously transformed into the other within the set of all
divisors. A Riemann form E with respect to A 1is determined by a
matrix with integer elements; so the set of all possible Riemann forms
with respect to A naturally has the discrete topology, and therefore two
divisors which are equivalent in the sense of this paragraph must have ;
the same Riemann form. Conversely if two divisors g ' and a , are |
linearly equivalent then there are a divisor a ; and a meromorphic func-
tion f on T such that a, . a, 1s the divisor defined by f = 0 and-:

an + az by f= « Thus the divisor
{divisor defined by f=c) - g
0

describes a continuous system as ¢ varies, and the system contains both

W e m—— ¢ s remm R —

a, and @.. This result can be extended to algebraic equivalence by
means of Lemma 35 below, at least in the case when T 1is an abelian

o mmr , p—

manifold; and the general case follows from this by means of Theorem
23 or the remarks after Theorem 28, '

on A such that a is linearly equivalent |
the suffix denoteg translation by x,
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Proof. By the argument leading up to Lemma 20, there is a

meromorphic theta-function 6(z) 45sociated with a (that is. whos
: e

divisor is the pull-back of a to V) with a functional equation of the form

0(z + X) = 0(z)exp {2mif(A) }

some homomorphism f: A -

associated with b, and suppose it has functional equation
f)l(z i o= ﬁl(z}EXp{E‘ﬂi[L{z, A+ I

where the conventions and notation are those of §5. Write
V(2z) = 0, (2)exp {27iR(2) ) /0. (z - x)

where R(z) is C-linear; then y(z) is a theta-function associated with

(b - hx)’ and it satisfies the functional equation
W(z + X) = Y(z)exp {2m[L(x, A) + R ).

So to prove the Lemma we need only show that we can choose x and R

so that
f(A) = L(x, A) + R(A) for all A. (48)

The argument above Lemma 20 shows that we can take L(z, w)=-3iH(z, w),
and H is non-singular by hypothesis. In this case L(x, w) is a C-
antilinear function of w, and can be made equal to any assigned C-anti-
linear function by suitable choice of x. Again, f is the restriction to

A of an R-linear function on V, which can be written
f(z) = 3 {f(z) + if(iz) } + 3 {£(z) - if(iz) };

here the first term on the right is C-antilinear and the second one is
C-linear. Thus (48) can be satisfied by suitable choice of x and R, and
this proves the Lemma. It is not claimed (nor even true in general) that

X is unique, for f(\) is really only determined mod 27i and hence its

extension f(z) is not unique.
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n manifold A, let G, GI1 and GE denote respec-

s, of divisors nlget:.-ruic;‘tlly equivalent to
thus G - G'l 2 Gﬂ'

For any abelia

tively the groups of all divisor

zero, and of divisors linearly equivalent to zero;

! 1

The group G/G , which is called the Neron-severl
a

naturally isomorphic to the Hermitian Riemann forms

ye difference of two positiv

2

at most n

group of A, 18

group of those
which can be written as tl e semi-definite Rie-

this is a free abelian group on
on number-them*etiuul properties of A. This

mann forms; generators, the

precise number depending

group will not be further studied in this book. We now turn to the group

there corresponds an essentially unique

Ga/Gi.' To a divisor a in Gq
and the functional equation

normalized meromorphic theta-function 0(z),

of 6(z) has the form

6(z + A) = 0(z)exp {27if(A) |

where { : A—=~R/Z isa homomorphism., Thus x(A) = exp {27i{(d) | is

a character on A, uniquely determined by @ ; and x(2) is trivial if and

only if a isin G,. Conversely the construction of §- shows that every

character x can be obtained from
a - this is the step in the argument that would

a meromorphic theta-function and

therefore from a divisor

fail if A were merely a complex torus. We have therefore constructed

a natural isomorphism of commutative groups

Ga”‘GI = Char A . (49)

But Char A = {R/Z)2n is a real torus. Moreover, let b be a fixed

positive non-degenerate divisor; then by Lemma 35 the map which takes

x in A totheclassof (b-1b x) is an epimorphism A = GR;’GL, and the

proof of Lemma 35 implies that the composition of this map with (49) is
continuous. It is therefore natural to hope that we can give Char A a
complex structure in such a way as to make it an abelian manifold and to
make the map A = Char A just described an isogeny.

For this purpose denote by V the space of C-antilinear maps

V = C - that is, the space of R-linear maps ¢ such that g(iz) = -ig(z);

thus V is a C-vector space of dimension n, as V is. Write

gitz) = Img(z); then g isan R-linear map V=R and
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B

rir —_— e r "‘ ri.- +r =
(z) 511“-"] lbl(f’—]. Conversely if g
1

this formula defines a C-antilinear 1s any R-linear map V=R
“t map g;

of R-vector spaces 80 there is an isomorphism

V = {R-linear maps V=R
(50)

Denote by A the lattice in V
which corres

, , - er this i -
{o the dual of A; thus A is a lattice in Vv N somorphism
sis of those g in

The isomorphis
phism (50) induce o
Th 1 ¥ 1 5 d ma -+
which takes g in V to :r‘g’ W - p N=Chari;
g Xp12mig () ]; and the

Thus we have defined an isomorphism of

v such that Lrl(h} o 4

L

oy

kernel of this is precisely A
real tori

L] iy

V/A = Char A,
(51)

Henceforth we shall write V/A = A, which is at any rate a
; com-

plex torus since

iy

V is a C-vector space. Let b, as above, be a fixed

positive non-degenerate divisor on A; and write
6 A=A (52)

for the map A —* Gn./Gl — Char A = A, where the first arrow takes x
in A totheclassof (b-Db :-;) and the other two arrows are the isomor-

phisms (49) and (51).

depends on b but it is not necessary to make this dependence clear in

From now on, ¢ will always denote this map; o)

the notation since we shall only consider one b at a time,

Theorem 36. With the notation and hypotheses above, ¢ is an

iy

iIsogeny and A 1s an abelian manifold.

Let H and E be the Hermitian and alternating Riemann
the proof of Lemma 35 we

Proof.

forms associated with b . Inthe notation of
can take Lz, w) = - 5iH(z, w); and (48) then requires R(z) = 2iH(z, X)

and f(z) = E(x, z). The isomorphism (50) involves g, ={ and s0O
finally g(z) = H(x, z). This makes the map V>V anderlying ¢ explicit

and shows that it is C-linear; 4 priori it was only R-linear. We already

know that ¢ is onto, and A and A have the same dimension; SO 9 is
an isogeny, and since A is an abelian manifold so 18 A. This proves
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the Theorem. It also shows that ¢ really depends not on b but only on

H or E - thatis, on the algebraic equivalence class of b.

reason, it is often written ¢ in the literature.
we shall call ;i the dual of A. To make this termumluf__w accep-

we have to show that there is a natu

For this

ral identification of A with A,

]

table,
For this purpose we identify z in V Wl ith the C-antilinear map on \Y

g(z), where g runs through the elements of V. 1t is
yatible with the structure of V

defined by z(g) =
asy to check that this definition 1s com}

a C-vector space; and since the imaginary part of z(g) 1s -gl(z}

-~

in the notation above, the dual of A is A,

I et us temporarily denote the underlying pairing V % Vv —=+C by

2 X g =~g(z) =4z, 8/,

where the subscript will be omitted whenever possible., Given any element

of Hom(A, B) or End(A), we shall use the same symbol also for the

underlying map of vector Spaces. Thus to any « 1in Hom(A, B) corres-

ponds a C-linear map «&: VA — VB

t - i :
a VB = VA defined as usual by

; and thus also its transpose
({]Z g) = (Z tﬂg:’
! B : Pﬁ-

It is easy to check
ta : B—+A

for all z 1in VA and g in “J and tﬂr is C-linear.

that tcr maps AB into hA; so it induces a homomorphism

which is called the transpose of a. Moreover, all the standard formalism

works as one would hope, including the fact that ttu — o« when we identify

&

A with A.
Let H be a given positive definite Hermitian Riemann form for A,

and let ¢ be the isogeny (52) determined by H. We define the Rosati

anti-automorphism on Endn(A} by

a—=a =¢ tcr¢_ (33)

H(az, w) =

is the adjoint of a with respect to H. Moreover

H(z, a'w) for any z and W in V; in

Lemma 37.

other words <«

a" = @, so that (53) is an involution, and :;J = ¢.
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M —— T = —————T

Proof, T
his is a strau:,htfnrward calculati
ation,

the proof of Theorem 36 that (z, gy) H(
= Hlw, z); so

It was shown in

H{a'w,

ol e -1
2} = H(¢ tﬂghw’ 2=ty

apw) = (az, ¢$w) = H(w, az)

and on taking complex conjugates the £11 st assertion f
1on follows,

: Hence also
=A{w, ¢z) = ( oW, z) whence

a" = a. Again H(z, w)

{z, ¢w) = H(w, z) = (z,
T | ‘Pw} by taking complex conjugates: and
cives ¢ = ¢ which completes the proof of the Le s
mma.,

It would be nice if we
could obtain from
H a dual Riemann f
orm

'

g on V with respect to A, in such a way that f{ is the s
ame as H

but this seems to be impossible, The obvious candidat 1d
e would be

H(, g) = Hp f, ¢7'g),
(54)

but this is in general not a Riemann form because its imaginary part is

not integer-valued on A X A, However, a suitable multiple of H isa

Riemann form, and we can maintain duality by introducing the idea of a

polarization. A polarization P on an abelian manifold is a set P of

positive non-degenerate divisors such that

1 riv v . -
| (i) given any divisors a and a in P, there are non-zero
integers n, and n, such that n.a, is algebraically equivalent to
n a ; and
2 2
(ii) P is maximal subject to (i).

In analytic language, a polarization is just a positive definite Hermitian
Riemann form H together with those of its multiples which are Riemann

forms. The meaning of a map of polarized abelian manifolds is obvious,

and if A = B is a map of abelian manifolds and B 1s polarized, there

is an induced polarization on A,

For practical purposes one can afford to think of a polarization of

Indeed by Theorem 29

A as equivalent to a projective embedding of A.
If a, and

ective embeddings of A.
en by Lemma 35 the prnjective embed-
So the various projective
e another

a polarization induces a set of pro]
a, are algebraically equivalent, th
ranslation.
ation are all related to on
ifold and Veronese mappings

{ A deter-

dings they generate differ only by at

embeddings induced by a given polariz

by means of translations on the abelian mal
rojective embedding O

on the ambient space. Cconversely any P
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mines a polarization.
It is easy to verify that the Rosati anti-
H, and not on H itself.

automorphism (53) depends

Moreover,

oy

he polarization defined bY
) determines

and ¢ 1S

-

- : -1
A=A iIs multiple of ¢ .

only on t
if A 1S pﬂlarized then (54
the standard properties of duals;
varieties, and the analogous map

if a isin Endﬂ(ﬁ.] then straightforw

a dual 1}{}1;11‘i::’.:1tinn on A, with all
2 map of polarized abelian
Again,

ard calculation rives

t(ﬂrr} — QH¢I-I = (tnr]*.

identify V and {f, it follows from the proof of

1f we use ¢ o
dual of A with respect to the alternating

Theorem 36 that A is the

Riemann form E; thus the degree of ©
is principally pum_rizecl if we can

is equal to the square of the

e

pfaffian of E. We shall say that A

choose H in the polarization SO that ¢ 1s an isomorphism; by the

s saying that by choosing a suitable

in the form (_EI! ID). Not every

remarks above, this is the same 4a

base for A we can put the matrix of E

abelian manifold admits a principal polarization; but by considering the

ISJ) for E we easily see that any polarized

_ 0
matrix representation (_p
In the more

abelian manifold is isogenous to a principally polarized one.

advanced theory, principally polarized abelian manifolds have a number

of important properties which have not been proved and may not even be
true for arbitrary abelian manifolds; seé for example Maass 7] passim.
We defined the Jacobian of a compact connected Riemann surface
S - or, which comes to the same thing, of an algebraic curve defined
over C - in §1, just after the statement of Theorem 7. One reason why

principal polarizations are important is the following result.

Theorem 38, Let S be a compact connected Riemann surface;

then its Jacobian is an abelian manifold which has a principal polarization.

Proof. We use the notation of §1, and in particular of Theorem
8, so that g is the genus of S and I o g B s " isa
1'.' ’ g! 1! w2 g
normalized base for H (S, Z). The map that takes w to (6.5 s cg),
in the notation of Theorem 8(ii), has trivial kernel by (8). So it is an

isomorphism, by comparing dimensions, and we can choose a base
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il SRR e e TR

g e g

W, g u s v e for the differentials of the

- _ first kind o .
the period of e with respect to r n S such that ¢

18 = :
: Vif p= v ando utherwisr:

with regpe
P M -E:DLE'[ t[} '
pv’ then it follows fro o and let ¢ be the
Again, let z m Theorem 8(i) that ¢ is sym
' .1 LR ?.r-g 1]'[:.' 'ﬂ.I'I}" CGIHPIEK nun’lhEr e
in Theorem 8(i) s not all zero,

Denote by C;_w the period of w

matrix of the c
metric.

and write w = 272 w
H M , then it follows from (8) that

ImZXz 7z e¢' >0
TN T y

whence Im € is positive definite
Now take the elen
‘ 1ents of A co :
rresp
ponding to 1"1, ..

I‘*Ii I"!‘ ..’1-‘I

Tk LA e a base for A, and the first g of them as a base .

. | T | for
the C-vector space V - which was called ©Q* in the notatio of §1
. n :
Let H Dbe the positive definite Hermitian form on V X V whos t
! e matrix

. w

of A 1S {1 U]; so H 1s a Riemann form and corresponds to a principal

polarization, This proves the Theorem

9. Representations of Endu(A)

In what follows, Mm(F‘J will denote the ring of m X m matrices
with elements in F, where m> 0 is an integer and F is any ring.
There are two representations of End(A) and EndD(A) which are impor-
tant in the analytic theory, and a third which can be described in the ana-
lytic theory but only becomes important in the geometric theory. Any

element of EndU(A) induces an endomorphism of the underlying vector

space V = C“; so there is a representation
End (A) = End(C") = M (C)
Again, any element of End(A)

which is called the complex representation.

induces an endomorphism of A, so that there 1s a re

presentation

End(A) = End(A) = End(z") =M, (2);

and by tensoring with Q this induces
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Endﬂ{ﬂ.} - End(A ®Q) =

Either of these is calle
complex and the rat
Now let

by analogy wit

characteristic of the underlying

End(A) induces a homomorphism on the

-
(that is, on the kernel of { 0);

d the rational rep_:jgsentntion.

ional represen

! be a fixed rational prime;

h the geometric theory,

End(an} = M?_n(Q}'

Obviously both the

o ——

tation are faithful,
the letter {
is reserved for the

is used here

in which p

For each T > 0, any clement of

-division points of A

field.
group of 1

and this gives a representation

‘J .
End(A) — End((Z /1 r)..n} = MEH{Z /1 5y,

The sequence of representati
compatible, and taking the limit

2n

End(A) = End(Z;") = My (Z;

ons corresponding to increasing I arc
we obtain & representation
I (55)

and once again tensoring with Q induces

End (A) = End@ ") = M, Q)

Either of these is called the ! -adic representation,

The group of i

division points can be identified

statement above corresponds to
TN = TN

given by multiplication by (.
representation (55) is just the 1i

under the homomorphisms (56).

with ¢ TA/A, and the compatibility

the homomorphism

(56)

Thus the ZI -module which determines the

mit of the groups of ¥ _division points

This is the Tate module Ti . which is

a free Zl—mndule of rank 2n; explicitly it can be described as the set

of all infinite vectors (al, a,, .
for each r > 0, and addition and multiplication

of A and '{ar-l-l:ﬂ'r

are defined component-wise.

: C rrciioni ,
..) where a_ 18 an | -division point

The group of 1T _division points is also

ijsomorphic to A/l rﬁ, and the homomorphism (56) is then replaced by

the natural homomorphism A/l
module isomorphic to A ®Z ]
theory is concerned, the l-adic
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.I.
2 1}1 -+ A/l rh; this makes the Tate
and it follows that, so far as the analytic

representation is equivalent to the rational

I.Uprusenmtiun and need not concern
us furthe

Once a coordinate s

can be written as an n X 1 colump m
plex elem
e ents, 1If
omplex torus V/A g completely

atrix wi
X who
the elements of the chosen base foy B¢ colummn

we also choose a base for A

described by means of the
N § correspond to
» We shall denote this matrix by

coordinate sysg
ystem in vy corresponds to '
on the left by an element of GL(n, C) multiplying U

y. Varying the

) Chﬂ,ﬂ rin r >
ponds to multiplying it on the right by ap elein Etth? base of A corres-

;

us, it is convenient at the same time to make use of th
e existence of a

A is so chosen that the alternating Riemann form E associated
associated with

the polarization has the form

0 D

(HD [}] where D = ttiiﬂcg([:l]Lr ceu, d)
n

and the du are positive integers. As in the proof of Theorem 24, the
last n elements of the chosen base for A are linearly independent over
C: so we can choose any convenient multiples of them as a base for V

we therefore suppose that the base for V is chosen so that U can be

written
U= (S D) where S=L + iM;

here S 1is in MH{C) and L, M are in Mn[R). The condition that H
defined by (37) should be Hermitian and positive definite is just that

E(ix, y) should be symmetric and positive definite; to express this,

write

§

+ix = (L +iM D)(;)

K:}il 5
2

are real n x 1 column matrices and X, X, are in the

real vector space generated by A .q, «re0 %2n’
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..1 -1 ) .
g = . s LNE Xl
£1 = Xy ‘Ez D 1 2
ady know that M 1is non-singular because the columns of U are
re :

we al o
ith a simil

e find
m, and Uy ¥

t t -1t -1

tto-1, oty +x MT(L-LM y,.
E(ix, y) = :’-IltM y, + x,M ¥, T % ( 2
This is symmetric and positive definite if and only if L and M are both
symmetric and M is positive definite. The set of matrices S= L + iM

the Siegel upper half-space; it is one

satisfying these conditions is called

of the natural generalizations of the classical upper half-plane.

Given U, we can easily recover the images of the complex and
}

the rational representations of End(A) and EndD(A). For let « be in

End(A) and let y and p be its complex and rational repres entations

respectively; then U = Up.

M2 (Z) are such that yU = Up then each of them defines an element
n
a in End(A). For EndU(A) we need only replace M?_n(Z) by MEH(Q}.

Conversely if y 1n MH{C) and p in

Lemma 39. The rational representation of EndD(A} is equiva-

lent to the sum of the complex representation and its complex conjugate.

Proof. The matrix (%) is non-singular because in the notation

above its determinant is equal to det(2iM)det(D) which is non-zero. Now

let @ be in Endﬂ(A) and have rational and complex representations p
and y respectively; thus yU = Up and so yU = Up. These can be put
together to give

and since (%) is non-singular this proves the Lemma.

Lemma 40, Suppose that a # 0 is in Endﬂ(A) and a' is its

image under the Rosati anti-automorphism; then Tr(aa') > 0 where

the trace is that derived from the rational representation.

Proof. By Lemma 27, o' is adjoint to a with respect to the

;mlitive definite Hermitian form H; so by a standard theorem of elemen-

tary algebra the trace of the Complex represent
1t 1 s5en
Etl'iﬂtly IJDSHIVD. (IndEEd i

9 and the trace o S
Glji) [ the complex representation

olement o of EndD(A) 1s called the rational characteristic polynomial

of «; if we denote it by f&

then it hasg degree 2n and f (

! & - D )
cause the rational representation is faithfyl There is an{‘r | t -
: Important

We can extend the definit;
efinition of d
from End(A) to Endﬂ(A) by means of egree

alternative way of describing f .
o

deg(ra) = r*"deg(a) (57)

for any « in End(A) and r in Q. Now we have

f&(r) = deg(rd - «)

forany r in Q and a in End (A), where 0 is the identity; for when
ré - a is in End(A) this merely states that the degree of an endomor-
phism is the determinant of its rational representation, which is obvious,
and the general case follows from (57).

Using our results on the structure of U, we can now construct a
classifying space for the set of abelian manifolds with a given polarization-
that is, with a given matrix D. We have seen that to every point S of
the Siegel half-space corresponds an abelian manifold with the given
polarization, and that every such abelian manifold can be obtained in this

way. However, a given abelian manifold corresponds to more than one

e for A which takes the matrix

rm. So if Z denotes the Siegel

), the classifying

S because there is more than one bas

representation of E into canonical fo

upper half space and G the stabilizer of E in GL(2n, Z
is /G where the action of G on ¥ is still

to remain compatible with the classi-
y., Let O

Space we are looking for

to be described. However, in order
cal notation in the case n=1 we proceed somewhat differentl

be in GL(2n, Z); we wish o to operate on 2 and therefor
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as U~ Utu and we then have to mul-
ion ¢

' ine its operat
left, so we define 1 e
- f the left by a guitably chosen olement of G (
tiply this on
renormalize it. Write
: (58)
ﬂ L]
g=1{, 5
t d to renormalize W€ have to multiply

point of the Siegel space is

transpose and write the transformation as

g = (aS + FD)(¥S * 6D)” ' D,

) *] 15 a
Of course it would have been much more sensible to write U

on X n matrix ab initio, but in this matter we are the prisoners of

history. 0 D
It remains to consider the action of 0 On E=(p 0)
E - oElo. So we define

and with

the conventions we have adopted this is clearly
G, the symplectic group associated with D, to be the 0 1n GL(2n, Z)

such that
E = oE 0. (59)
This is equivalent to YE lo= E . and in the special case D=1, which
=1 .
corresponds to the classical symplectic group, E = = -E and so this

condition becomes tUE{I — E. Using the partitioning (58) the condition

(59) reduces to
t t t 3 .
aD6-FDy=D and aD 3, YD 6 symmetric.

For this classification to be useful we need to show that G acts
discontinuously on Z - that is, that if N is a compact subset of
there are only finitely many ¢ in G such that N n oN is not empty.

Butif 8§ isin N n oN the corresponding Hermitian form H(z, z) 18

12

t
its value at any o 1 Where )

€pends Dnl‘y on N 50
17 ey A

| on is the given base for A,
This means t} S |
finite set, and hence the same ig true of o e 1n a fixed

In partj .
a polarized abelian manifold only admits 2 f1n; Particular 1t follows that

nite group of automorphismg.

» 1118 not known whether /G

€X manifold,
trouble can occur at fixed points of elements of G

is bounded indcpendently of o,

In contrast with the case n =

qaturally has the structure of a compl .
seems likely that

Already in the casge

n=1, /G is not compact;
have shown for all

but Baily and Bore] [1]

n how it can be compactified in a satisfactory way

though with m
greater difficulty than in the case n =1, ’ uch

10. The structure of Endn(A)

We saw at the end of §7 that to determine the structure of End (A}

for an arbitrary abelian manifold A it suffices to be able to do so when

A is simple; moreover, if A is simple then Endﬂ(ﬁ) is a division
algebra. In this section we investigate the possibilities for End (A)
for given n = dim A. For the reader's convenience we begin by sum-
marizing without proofs some standard results on division algebras and
more generally on finite dimensional simple algebras; for proofs see
Deuring [3]| or Weil [18], Chapter IX. We know that EndD(A) is finite
dimensional over Q because the rational representation is faithful,
Until further notice, let K be a field and F an algebra whose
centre is K and which is finite dimensional over K; we also assume
that F is simple over K - that is, F has no two-sided ideal other than
{0} and F itself. For any field L D K we write F, = F ®  L; then
FL is a simple algebra with centre L and it is finite dimensional over
L. The first major structure theorem is that any such F is isomorphic

to a complete matrix ring HH(D] where D is a division algebra; and
morphism. Moreover, with

e of D, the dimension of

F determines n uniquely and D up to is0

the obvious identification of K with the centr

D over K is a perfect square mz; and every maximal subfield of D

F is
has degree m over K. We say that a field L D K splits F if -
_ tation
lsomorphic to M (L) for some r, which must be 3 RS hich is
above: then L SplltS F if and only if there is a subfield of L W

73



yic to a maximal subfield of D. Every automorphism of F

-] . i
® ¥ - * D:‘[ e lljlrﬂl‘tii]
ig of the form X — ¢ xc for som le

K -isomorpl
over K is inner - that is,

t ¢ in F. :
elemen over its centre

: 2
Now let D be a division algebra of dimension m

e characteristic polynomial of «,

let « be any element of D. Th
cctor space D acting by multi-

K and

regarded as an endomorphism of thut:r! K-v
] 5 4

plication on the left, is a perfect m ~ power,

is called the reduced characteristic polynomial of «. Another

‘ ———d-.-———-—l-— e e S e ——

the minimal polynomial for

vhose degree is 1n,

its mth root, which has

and

The

dEE‘,TEE m,

way to define it is to take

er of the minimal polynomial
d characteristic polynomial,

o over K

choose that pow

second and last coefficients of the reduce
with the standard sign changes, are called the reduc ed trace and the

If k is a subfield of K with [K: k] finite,

reduced norm of « oOver K.
we can define the reduced trace and the reduced norm of « over k by
and they enjoy all the standard properties

means of the usual tower rules;

of traces and norms.

Suppose that F and G are simple algebras w
G is a simple algebra with

ith centre K, both

being finite dimensional over K; then F @K
centre K, and the division algebra underlying it depends only on the

division algebras underlying F and G. In this way we obtain a law of

composition on the division algebras with centre K and finite dimensional

over K. Under this law, these division algebras form a commutative
group, called the Brauer group of K. The identity element of this group
is K itself; the inverse of D is the division algebra which has the same

elements as D but whose law of composition is defined by tzl1 X dz --dzdl.

We write Br(K) for the Brauer group of K.
If K is an algebraic number field or a local field we can describe

explicitly its Brauer group and the homomorphism Br(K) = Br(L) obtained

by mapping the class of F, a simple algebra over K, to the class of Fy.
We start with local fields; Br(C) is trivial because there are no alge-
braic extensions of C, and Br(R) has order 2, the non-trivial element
corresponding to the classical quaternions. Thus each of Br(C) and
Br(R) has a unique embedding into Q/Z, which we shall use shortly. If
K is an algebraic number field and ® a finite prime of K, then there is
a canonical identification Br(Ky) *Q/Z. Now let K be an algebraic

14

N A

e . e ——

qumber field and F a simple algebrya yi

inite set of primes ® i, g For all byt 4

» the alpeby-
1€ algebra Splits over K

FL‘r‘ =30 KI}{ Kﬁr}, where the prime ® @' SO Writing

May be fin; .
that takes F to IIFG} induces e finite or Infinj

a lmmumnrphism Br(K)
act Sequence

te, the map
This can be embedded in an ey i BP{K@}*

0~ Br{K) = & Br(Ky) » Q7 ¢

where the penultimate map 1is given by addition ip Q,/Z
/& together with th
e

' Moreover if 1, 5 K is another g1
1S 4 prime lying above ¢
these identifications the map Bl‘{f{@) = Br(L,)
‘Lq : K@}I. It follows that if F :

can determine whether

canonical identifications above
gebraic

in K, then with

‘ IS just multiplication by
1S a simple algebra with centre K

L splits F by eXamining .

qumber field and q in L

the factorization in L

of @ certain finite set of primes in K
, the set dependin
gonly on F, 1In

| Br(K) has order r then there are
extensions of K of degree r which split F, but none of low

particular, 1if the image of F ip

er degree;

hence if D 1is the division algebra underlying F, the maximal subfield
y 1elds

of D over K have degree r andso D has dimension r2

(This result need not be true if K

over K.
1s not an algebraic number field, ) The
particular case of this which we need is

Let K be an algebraic number field and let D be
i D

admits an anti-automorphism which leaves K elementwise fixed, then

Lemma 41.

a division algebra with centre K and finite dimensional over K

— e s

either D =K or D is a quaternion algebra over K.

Proof. The anti-automorphism can be regarded as an isomor-

phism between D and its inverse in the Brauer group; so the image of

D in Br(K) has order 1 or 2. By the remarks above, this means that

D has dimension 1 or 4 over K, and this proves the Lemma.

We now return to considering the structure of EndD{A), where A
is a simple abelian manifold. Write D = End (A) sothat D isa division

algebra, and denote by K the centre of D; and choose once for all a

polarization of A and its associated Rosati anti-automorphism, which

Is an involution by Lemma 37, Clearly this induces an involution on K;
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first kind if this involution on K is trivial,
5
je LAESH no

A is of th . ~
that e Shﬂll write KD for the fi:.'{Ed

Wwe Shﬂll sa}r .
erwlse,

and of the second kind oth
Clearly K= KD

field of the involution.

in the gecond caseé.

is totally real;
.
d the involution induced on K is complex

Lemma 42. K

then K is totally complex an

——

conjugacy.

Proof. Let a beany element O

visor of zero, the minimal polynomial for a over Q 1is irreducible
f !

no di

and both its reduced characteristic polynom
ith respect to the rational repre-

ial (in the sense of this sec-

tion) and its characteristic polynomial w
tation described in §9 are powers of this minimal polynomial. Thus
sen

the corresponding traces are positive multiples of on
40 implies

aa')> 0 if a#0; (60)

Trp Q!
if a isin K or Kn this also applies to the trace for K/Q or Kﬂ;Q
respectively.

Suppose first that K is not totally real and let o, be a complex
infinite prime of Ku - that is, a complex embedding K,;, —+ C. We can
find a in K suchthat o a is large and has argument near :i.;z, while
all its conjugates except E;E' are small. Thus Tr(aa')= Tr(a") < 0
because its dominant term is ZRE(UI E]')E < 0, and this contradicts (60).

So Kn is totally real.

Now suppose that A is of the second kind and let B
infinite prime of K. Let o be the prime of KD underlying o and let
is also totally real., We

be a real

uz be the other extension of ¢ fo K: thus UE
can find @ in K so that 0. @ is large and positive, o a is large and
negative, and all the other conjugates of & are small.
~ because its dominant term is 'éi[u::r1 {I](Uzﬂ), and this contradicts (60). S0
in this case K is totally complex; and since complex conjugacy induces
an involution on K with fixed field Kﬂ, it must be the Rosati involution

on K. This completes the proof of the Lemma.

in the first case and [K : K. =3

f D= EndD[A). Since D containg

e another and Lemma

Thus Tr(aa')< 0

i g e e S S =L

i .

Recall that any quaternion algebr

A D wi
cal involution given by With centre K has a canoni-

o e 5 ot )

foK(x] ol 5

wh(jl*{} the trace is the I‘EdUEEd one: t]‘lE U].Em ¢
ents

| . 0 .
involution are precisely those in Py ['D fixed by thig
= -1nv

Olution of p 1S compounded
ore has the form

non-zero ¢ Lo 3
| o | O € In D. Thisg ig certainly an antj-
qutomorphism; it is an involution if and only if it

S square {

of this and a K-automorphism of D, and theref

« = ¢ x*c for some

- 1 s the ident;
and a little algebra shows that thig happens if ang e oS e identity,
. & c c*
with every X In D. Thus c* = xe with in K, and applyj f:mm”tes
{ . ] L n
canonical involution to this we see that ) — 5 BE L i F[ g the
- L. In the {irst case

¢ is in K and the involution is the Canonical one; in the second
, ond case

B s
Tr(c) =0 and ¢~ 1is in K,

With the notation above, we can give a complete account of the

possibilities when A is of the first kind,

Theorem 43.  Suppose that A is of the first kind, so that K = K

is totally real; then one of the three following cases holds:
(1) D = K.

(I1) D 1s a quaternion algebra over K such that every com-

0

ponent of D ®Q R is isomorphic to ME[R}; and there is an element c

; 2 ..
in D such that ¢* = -¢, ¢ is in K and totally negative, and the Rosati

anti-automorphism is given by a' = c_ln*c.

(III) D 1is a quaternion algebra over K such that every com-

ponent of D ®Q R 1is isomorphic to the classical quaternions; and

o' = o¥%,

Proof. ILemma 41 applied to the Rosati anti-automorphism shows

that either D = K or D is a quaternion algebra over K; and in the
latter case the discussion above shows that the anti-automorphism must

be of one of two kinds., To prove the Theorem we need only show that

these two kinds of automorphism correspond to cases II and I1I, Note

that D ® R is the direct sum of r = [K : Q] components, corresponding

tothe r embeddings of K into R; each component is a simple algebra
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of dimension 4 over R, and must therefore be isomorphic either to

M (R) or tothe classical quaternlons.
; D induce corresponding involutions on each component; and we can

on S

show that Tr{aa') =

b is in K andis large for one p

Moreover our two involutions

0 for each component by replacing & by ba,

articular embedding of K into
where
R and small for

Suppose first that «a'

all the other embeddings.
— g* Itis easy!to check that Tr(xx*) is

ative for the classical quaternions, when it is equal to 2 Norm(x),
- M (R), when it is equal to 2 Det(x);
; ns and we are in case III.

non-neg
but not fo

D®R isi

Now suppose that there exists C
c, ], k for D over K such that c, j,

so every component of

somorphic to the classical quatermo
in D such that ¢* =-c and

o' = ¢ Ta*c. Choose a base i

k all anti-commute and their squares are 1n K; then if

a=a +ca_ +ja +Kka with the a, in K, calculation shows that
R 2 3 4

2 7 BLE
(aa') = 2(;11 -ca, + a

+ kzag).
D/K 4

. 2
onent of this is non-negative if and only if c¢
and the latter cannot happen if

Each comp is totally nega-

tive and jz and kE are totally positive;

D ® R has a component isomorphic to the classical quaternions. So we

are in case II and this completes the proof of the Theorem.

For completeness we list, as case IV, what happens when A is

of the second kind. One can obtain further information about the structure

of D in this case (see for example [8], pp. 196-200) but this involves
using much deeper results about the structure of algebras,

(IV) D is a division algebra whose centre K is a totally com-

plex quadratic extension of a totally real field I{n; and the restriction

of the Rosati anti-automorphism to K is complex conjugacy.

———

Albert has shown that any division algebra of type I, II or III can

be isomorphic to Endn(A] for a suitable A, and for type IV he has given

necessary and sufficient conditions for this to be possible, However, the

only easily answered question that one can ask is what constraints are
imposed on n = dim A by fixing Endﬂ(A). To consider this, write
=[K:Q], e, =[K :Q] and d’ = [D : K],
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Lemma 44, 1In cage |

1 2 e Ei__i_‘fidﬁﬂ n
ivides n. In case IV, e —=%8 I,
cl'_'_ x ! L{]d mmﬂ 3

e

In cases |1 and I, 2e

Proof. Since D acts on A Q= Q2I‘.I the |
v the latter can be re
garded

. 2n is divisible by [D: Q| = ed’;
- Now consider case I, and let F |

Riemann {

or "

| P N M associated with the give ,

tion of A, For any endomorphism ¢ of A h n polariza-
we have

as a vector space over D and therefor
¢
this deals with cases 11, TII and

denote the alternating

we are in case I, and it follows from Lemma 37 th t @' = a because
Its determinant ig det(d(a))

denotes t -
| _ he rational representation; and sj
the determinant of any alternating » and since

defines an alternating Riemann form on A

times that of E, where &

Riemann form ig a square, so is

det(P(e)). Apply this result to mé
- @, where & is the identi
Entlty endo-

morphism; it follows that
det(P(md - a)) = det(ml] - ¢ (a))

is a square for every integer m. Since this is a polynomial in m of
degree 2n, it must be the square of some polynomial f(m) with integer
coefficients; and since {° is the characteristic polynomial of a faithful
representation of a, this implies f(a) = 0. Moreover {° and hence

also I 1s a power of the minimal polynomial for @ over Q. This implies
that [Q(a) : Q| divides n; choosing a so that it generates K over Q

we find that e divides n, and this completes the proof of the Lemma.
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Appendix: Geometric theory

apter III can be stated in purely geo-

results in Ch
given there are analytic, The

Many of the

metric language, €vel though the proofs

object of this appendix is 10 state how far they C
metric theorems, by outlining without proofs some of the geometric
The language used will be that of classical

an be regarded as geo-

theory of abelian varieties.
algebraic geometry; for an account 1n scheme-theoretic language see
1 '

Mumford [8].
Let V be a variety, not necessarily complete, non-singular or

irreducible. V is called a group variety if there is given a group law

on the points of V such that the structure maps VXX V=V and V=V

which respectively take u X v to uv and v to v

in the sense of algebraic geometry. We say that a field k is a field of

are regular maps

definition for V considered as-a group variety if V, the two structure
maps and the identity element of the group are all defined over k. In
this case V must be non-singular, the irreducible component of V
which contains the identity element is a normal subgroup of V and there-
by a group variety defined over k, and the other irreducible components
of V are cosets of this subgroup; for this reason we could without much
loss have required V to be irreducible, and some writers do so.

An abelian variety over C should be so defined that it is just the
geometric realization of an abelian manifold; in particular it should be
complete and irreducible, and the group law should be commutative. It
turns out that the first of these properties implies the last, so an abelian

variety is defined to be any complete irreducible group variety.

Theorem 45,
mutative,

(ii)

(i) The group law on an abelian variety is com-

Any abelian variety defined over C is also an abelian

manifold: a ;
; nd conversely any Projective embedding of an abelian mani-
old which ig non-singular

18 an abelian varieﬁ.
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The completeness of an abeljap variety A also implies th
les that

t any
Yy V. to A must be well-behaved in various wa

map from any varie
yS:

Theorem 46. (i) Let 1 -

VA B -
€ a rational map of ;
' | a Vv
to an abelian variety; then f is regul L ariety

(ii) Let f:Vxw

ar at every simple point of V.

—
| | A be a rational map of a product to an
abelian variety; then there are rational maps f

, V™A and f,: W=A

h that (v X =
such that f(v X w) £ (v) + f,(w) for every simple point v X w on

V X W,

(iii) Let G be a group variety and f - G = A a rational map

which takes the identity element of G to the identity element of A: th
f is a homomorphism., et

The last part is a generalized analogue of Theorem 32. One im-
portant consequence is that any map from the projective line to an abelian
variety must be constant; for the projective line can be given a group
structure corresponding to the additive group of the underlying field after
removing one point, and a different group structure corresponding to the
multiplicative group of the field after removing two points, and no non-
constant map can be a homomorphism for both these group structures,
Again, it follows that the group law on A is uniquely determined by a

knowledge of the underlying variety and the identity element.

Theorem 47 (Chow). Let A be an abelian variety defined over

k and let B be an abelian subvariety of A; then B is defined over

some finite separable algebraic extension of k.

The main importance of this result is that it shows that there are
no continuous families of abelian subvarieties of A - a result which is
trivial in the analytic theory.

We can no longer use the definition of isogeny in §7; instead we
say that a homomorphism f : Al -*AE is an isogeny if its kernel is

finite, it is onto, and dim A =dim A,. As before, any two of these

Properties imply the third. The degree of { as an isogeny i1s its degree

45 a map; this need not be the same as the order of the kernel because

of inseparability. With these conventions Lemma 33 remains true, and

1 /
SO 1sogeny is still an equivalence relation. Moreover the Poincare
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bility Theorem 34 and Corollaries 2 and 3 of it remajn
ucibility

rmanifold’ throughout,
acteristic 0 or character-

Complete Irred of course). Again, the

true (with variety' for

2n, s s
| has degree n - and in char

% | +
map mo sti el is still isomorphic to

its ker!
ristic p there is an integer v depen-

prﬁ is isomorphic to (Z/‘DTZ]U;

p prime to m,

istic p with
acte

(Z;—'mz,‘dgn. However 1in char
yon A such that the kernel of
an take any value in this range.

ar equivalence in algebraic geo-

ding onl
fies 0=v=n but ¢
finition of line
alytic definition given in §6; on the other

r satis
The standard de

metry corresponds to the an

the definition of algebraic equlv
However it can be shown that two divi-

alence of two divisors on a torus

hand,
given in §6 was purely ad hoc.

n an abelian variety defined over C are algebraically equivalent

s50rs O

in the standard geometric sense if and only
abelian manifold are algebraically equivalent in the

if the corresponding divisors

on the associated

sense of §8 - indeed a proof of this is outlined in §8. A positive divisor

on A is said to be non-degenerate if it is ample - that is, if some mul-

tiple of it induces a non-singular projective embedding of A; this cor-
responds to the definition in §6 in view of Theorem 29 and the remarks

which follow its proof. With these new definitions Lemma 35 still holds;

moreover we have the so-called Theorem of the Square:

Theorem 48. Let b be any divisor on an abelian variety A and

X, v any point A _ ] : i .
y any points on Then (b hx hy + h:-:+:f} is linearly equivalent

to zero,

In the analytic theory this was too trivial to be worth stating; but
in the geometric theory it is a difficult and important result, With the
help of it, we can again give Ga;'Gz the structure of an abelian variety
(which we again call A); and for any non-degenerate divisor b on A

we can again define an isogeny ¢ : A = ;'l by mapping x on A to the

-,

point on A correspondin
g to the class of - : iq :
ﬁ(h hx)' Moreover if A is

def; .
efined over a field k then we can take A to be defined over k. All

that part ‘
part of the formalism of &g which does not involve the Riemann form

remains valid. The Néron- i '
Severi group G/G_ is finitely generated, as

indeed it i .
a: A - Bsif{:‘ - EEGHR 4 homomorphism of abelian varieties
- in :
uces a homomorphism o+ - G(B) = G(A) on the groups of
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i e P il il i ininia il

:B—~+ A, Moreover A ¢ :
an be identified Wi :
tln = o and tf.h L 8 A B :

t
it induces «

way that
by (53) is an involution,

and the Rosati anti—autumurphism defined

The definition of g polarization ig still valid in

the geometric context; and we now say that a polarization of A ;
18 prin-

cipal if we can choose a divisor § in th N
e € polarization so th
at the associ-

——

ated ¢ 1s an isomorphism,

The Jacobian of a curve T ig the group G_/G, realj
abelian variet Thi lization i b & pedas
abeli: Y. S realization is obtained by means of a geometri
| | | etric
construction which gives the Jacobian a natural projective embedd;
| ing, or
more precisely a natural polarization induced by the unique polarizati
ion
on I Theorem 38 can now be strengthened to say that this polarization
is principal. Not every abelian variety is isogenous to a J acobian, but
¥

the following result is almost asg useful,

Theorem 49. Given an abelian variety A there is an abelian

variety B (depending on A and not unique) such that A X B is iso-

genous to a Jacobian,

We now turn to the representations of Endﬂ(A). In characteristic
zero we can obtain a complex and a rational representation by embedding
K, the least field of definition of A, into the complex numbers and regar-
ding A as an abelian manifold. But even in this case the l-adic repre-
sentations have certain advantages over the rational representation,
although they are equivalent to it; for if k denotes the algebraic closure
of k then the Galois group Gal(k/k) acts non-trivially on the Tate
module TE and thus on the ¢-adic representation. The extra structure
thus obtained is useful, particularly in number-theoretic applications.

In characteristic p it is known that neither the complex nor the
rational representation can exist in general. Indeed for any p there is
acurve I' of genus 1, defined over the field of p2 elements, for which
E“dﬂfr) is that quaternion algebra over Q which splits at all primes
€xcept p and infinity; and this algebra has no faithful representation in
either Ml(C) or ME(Q). However for ! #p the l-adic representation
(55) is defined as in §9 and is faithful, Moreover, if we define v by the

Statement that there are p° p-division points on A (so that 0 =v =n)
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s a p-adic representation E:}d{A}mu(z )

P ' - p
faithful, though it certainly is so if

This however is not neé .
0 and A 1S simple.

g : istic p we

ard conventions, if a ijg

eristic polynomial of gp

‘ . t
tation, we cans | |
(A). In accordance with stand

t of End -
EAEmE hich is not an isogeny we write deg(a) = 0,

an endomorphism of A W

ot e e i
I
A ———

Lemma 50. Let |
There isapnlynmnial {(X) gf_dqglee 2n and “'”ﬂ

identity element.

coefficients in Z such that

f(m) = deg(md - @)

for every integer m. Moreover f(a)=10 1n End(A).

This can easily be extended to elements of EndU(A). In charac-

teristic 0, f(X) is clearly the characteristic polynomial of the rational

representation of a; so in characteristic p we define it to be the

rational characteristic polynomial of a and its second coefficient to be

the trace of a. (Its constant term is just deg(a) and needs no new

name. ) It turns out that this is also the characteristic polynomial of the
l-adic representation of @, for !#p; moreover we can replace Lemma
40 by Tr(aa')> 0 if o # 0, with the new definition of trace.

To what extend can we describe the alternating Riemann form E,

or at any rate the invariants dl, o dn of its matrix representation,

by pl.ll‘E]}' geometric means? The first step is to mimic the pairing
AXA=+Z induced by (50),

L]

Let m > 0 be an integer and v an m-
division point on A, andlet @ be g divisor on A corresponding to GJ
thus ma is linearly equivalent to zero and is therefore the divisor of
some function f, Moreover there is a function g on A such that

f(mx) = m
(mx) = {g(x) }™ for an on A. Now let u be an m-division point
on A; then g(x) and g(x + u)

have the same m'" o their
quotient is an mt" power and s

root of unity. 1t is €asy to check that this depends only

On u and v, g0 we write
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I me—— = e

as a definition of the m'! root of unity e (u, v)
m-’ "

Lemma 51. In the notation above, e
=y

is a bil m:
in characteristic 0, or in characterigtjc P w?:h hm -imnear orm;_and
I Ghloc o cl T ey
! 515

e — i —— T R

trivial kernel in each argument,

Now fix a prime ! #p and let M run through the powers of l

*or each r> 0 cl an i j '
For e clloose an 1somorphism {7'.ty roots of unity } =z %

in such a way that the diagrams

r+1

{ -th roots of unity } —» 7 ;1

' '

{Zr—th roots of unity | - z,fgr

commute, where the left-hand arrow is the Zth power map. Then the
limit of the functions €m ¢ompounded with the isomorphisms above is

a bilinear form

e:T,(A) X T, (A)»2Z

l l L

In characteristic 0 and with the natural choice of the iIsomorphisms above,
this can be identified with the form A X A =2 of (50).

Let b be a divisor on A and ¢ the associated map A -*3;
this induces a map TE (A) = 'I"g (fi} which we also denote by ¢. Then
EX nn—+e(k ¢71) is a bilinear form Tg (A) X Tz(A) -"*Z2 which is easily
shown to be alternating. In characteristic 0 it is just the I-adicization
Z(A} can then be identified with A ® Z,;

thus from it we can read off the powers of ! in the dy and by letting !¢

of E, bearing in mind that T
run through all primes we can even recover the dy. Moreover in charac-
teristic p these alternating forms give a partial substitute for the alter-
nating Riemann form E.

Finally we consider the structure of Endﬂ(A}. Once again we can
confine ourselves to the case when A is simple, so that we can use the
notation of §10, Since, with the revised definition of trace, we still have
Tr(aa') > 0 for a # 0, Theorem 43 and the classification of the possible
E“dﬂ(A) into four types both remain valid and the arguments that lead up

to them only require minor changes. However the proof of Lemma 44
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the existence of the rational TEpresentatig,, ang
}F on

that is needed in characterigtj, P 1
€aqg

only to the following weaker result.
52 Let A beaslmple Bhen v‘l‘l??L}L-ELE!!HE‘nctertstiu
Lemm Hndrc]“ be as in §10. Then in cases I and 111, m&:
P, Eﬂm e €, 'ﬁ‘ FF-F-_:md in case IV, e d divides n, —Vides
. in case 1I, 2€ divides n; 4 :
n, #—;;_ n =1 this is best possible; in particular case Iy fom

~ ery little is known.
occur, For n- 1 very
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normalized theta-function, 40

period of a differential, 2
Pfaffian, 44
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65

positive divisor, 5, 24

principal divisor, 5

principal polarization, 66, 83

ramification point, 7

rational representation of End(A),
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Riemann form, 38

Riemann surface, 1

Rosati anti-automorphism, 64

Siegel upper half-space, 70
simple abelian manifold, 58

symplectic group, 72
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