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This paper gives a complete proof of a recent theorem of Kolyvagin [3, 4] on
Mordell-Weil groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic
curve defined over Q, and assume that E is modular: for some integer N thereis a
nonconstant map defined over Q

JL XU(N) — E

which we may assume sends the cusp o to 0. Here Xo(N) is the usual modular curve
over Q (see for example [8]) which over C 1s obtained by compactifying the quotient

/T (N) of the complex upper half-plane T by the group

[y(N) = {[ 23 e SL,(Z) : ¢ =0 (modulo N)}.

The points of Xo(N) correspond to pairs (A, C) where A is a (generalized) elliptic
curve and C is a cyclic subgroup of A of order N. Fix an imaginary quadratic field K

in which all primes dividing N split, and an ideal ®% of K such that Oy/% =Z/NZ.

Write H for the Hilbert class field of K and xy for the point in X(IN)(C)
corresponding to the pair

(C/@K, I'L'U(PK).
Fix an embedding of Q into C: then the theory of complex multiplication shows that
XH € XO(N)(H) Define TH= n('(H) € E(H): JK = TrHjK(YH) € E(K): and

y =Yk -YK' € E(K), where T denotes complex conjugation on K.

Let lllg,y denote the Tate-Shafarevich group of E over Q.

Theorf:m.q(Kolyvagin [3,4]) Suppose E and y are as above. If vy has infinite
order in E(K) then E(Q) and LLIE,Q are finite.
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Remarks. 1. The proof of this theorem given below is organized differently from

Kolyvagin's proof, and somewhat simplified, but the important ideas are all due to
Kolyvagin and contained in [3, 4].

7. It is not difficult to show, using the Hecke Operator wy, that y has infinite order if

and only if both yg has infinite order and the sign in the functional equation of the L-
function L(E,s) 18 +1. _

3 The proof will give an annihilator of U_IE,Q which, via the theorem of Gross and
Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.

4. Observe that Kolyvagin's theorem makes no mention of the L-function of E. To
relate his result to the Birch and Swinnerton-Dyer conjecture one needs the following:

Theorem. (Gross and Zagier [2]) With E and y as above, y has infinite order in

E(K) if and only if L(E, 1) #0 and L’(E, x, 1) 20, where X is the quadratic
character attached to K.

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional
equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K,

in which all primes dividing N split, such that L' (E, Xk, 1) #0.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and
Gross and Zagier, would imply:

(*) For any modular elliptic curve E, if L(E, 1) #0 then E(Q) and llg,q are
finite.

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of
Coates and Wiles [1] (for E(Q)) and Rubin [6] (for Mg qQ)-
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onin A and

. : 111 denote the n-torsi _
Notation. For any abelian group A, fg W we will write H'(L/F, A)

Ao = LiJAni. If A isa module for the appropriate Galois group,

’ i |\ i for H'(F, E(F)).
for H'(Gal(L/F), A), H'(F, A) for H!(F/F, A), and H (F,E) for H(F
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Tools of the proof.

Fix a prime number p and a positive integer n. For any completion Q, of Q we have
the diagram

0 - EQ/WPEQ - H{(QEp —» H(QEp - 0

(1) L | res, l res,

r]
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0 - EQVPEQ,) - H@Q,Epn —» HI(Q,E)px - 0

and we define the Selmer group S®) and the p -torsion in the Tate-Shafarevich group,
I _n, by
P

S(Pn) = ‘:) resv'l(image E(Q.)), :

0 - E(Q)/PEQ) — seY I_Upn — 0. Z
To prove Kolyvagin's theorem it will suffice to show that S® = 0 for almost all p, and [

n
that for other p the order of S® is annihilated by a power of p which is independent
of n.

i |
For se S®) write Sy for the inverse image of res,(s) in E(Q,)/p"E(Q,). Our !
|
I

. » n .
main tool for bounding S® is the following, which is proved using the local Tate
pairings.

., w !
Proposition 1. Suppose 2 is a prime such that E(Q ,r.) n=Z/p'Z, k>0 isan %
integer, and C, € H1(Q, E)n sarisfies

(1) forall v# A, resy(c ) =0,
(11) res (c,) has order pﬂ'k

Then for every s e S(Pn), pksl = (.

.
e I e .

Proof.  For any place v of Q let ( , ), denote the local Tate pairing

(5 W E(Qu/p EQ,) xHI(Q,,E) n - Z/p"Z.

Forany s e @ and ¢ € HI(Q, E) n, let ¢’ be any lift of ¢ to HI(Q, E o) in (1) 1
and define an element b(s, ¢) in the Brauer group of Q by the cup product

b(s,c) = suc” € H2(Q,E n®E n) = H2(Q, Hyn) = Br(Q)n.
Here the map E n®E n — Hon 1S given by the Weil pairing. By the definition of the Tate
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pairing ([5] 81.3, especially remark 3.5) we have

(Sv: I'CS,,(C)),, - inv,,(b(s, c)).
Thus

z(sv,rcsv(c)),, = Zinvv(b(s, c)) = 0.

Applying this reciprocity law with a class ¢ ¢ as in the statement of the proposition we
conclude that (s, res ,(c,)), = 0. But

E(Q)/pEQ,) = E(Q;)pmfp“EtQ,,)pm =Z/p°Z,

so if resy(c,) has order p™k the nondegeneracy of the Tate pairing shows that pks 2=0.//

[t remains now to construct such a cohomology class ¢  for sufficiently many 2,
with k bounded and usually 0. Kolyvagin constructs such a ¢, using Heegner points.

Write t for the complex conjugation on Q induced by our embedding of Q into C,
and [t] for its conjugacy class in Gal(Q/Q). If A isa Gal(Q/Q)-module with A,y=

A/2A =0, the action of T gives a decomposition A = A*® A". From now on, for

simplicity we will assume that p# 2, and if K = Q(¥-3) we also assume p#3. Write
Dy for the discriminant of K.

Lemma 2. Suppose 2 is aprime not dividing pD¢N, r> 0, and Frob i(K(Epr)/Q) =
(t]. Then if E denotes the reduction of E modulo 2 and a,= 2+ 1-#[E(F,)],

i) p'la, and p'|A+1,

(11) 2 remains prime in K,

(it)) E(Qyr=E(F ) r=Z/p'Z, (E(Kpyn) = (E(F 2),1) =Z/p'Z.

Proof. The characteristic polynomial of Frobenius acting on Er 1s T2-a,T+ £, and
the characteristic polynomial of T acting on Epr = E(C)pr is T2 - 1. Comparing these
polynomials modulo p' proves (i). The second assertion holds because Frob 4(K/Q) # 1,
and the third because E(Q ) r = (Epr)+ =E(R),r and E(K p)yr= (Epf)+ ® E,r) . /!

prime which remains prime in K and 2{N. Let @, be the
and x, the pointin X{N)(C) corresponding to the pair

(C10 ,, (uﬂ 01)'”01)-

The theory of complex multiplication shows that X € XO(N)(I‘T-U]) where K[Z] T
denotes the ring class field of K modulo £, the abelian extension of K corresponding

Suppose £ is a rational

order of conductor £ in Ok,
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the subgroup K*C* I1(®,®Z,)* of the ideles of K. It follows easily that K[£] isa
q

gree (2+1)/ug where ug = #(0%)2, K[L)/H is totally

cyclic extension of H of de
Gal(K[£]/K) by -1.

ramified at £ and unramified everywhere else, and T acts on
Define y,=n(x,) € E(K[£]). The only facts about Heegner points which we will need 43
(other than their natural fields of definition) are contained in the following proposition. [

:

Proposition 3. 1) uKTer!,H(yJ) = a,YH- 3
ii) For any prime A of K[2] above £, ¥, = S?Hpmbe E(F 22), where ~ denotes i

reduction modulo A.

Proof. Fix an elliptic curve A defined over H, with complex multiplication by {,
so that (A, A,) represents xy. Without loss of generality we may assume that A has

good reduction at all primes above £. The point x, can be represented by (A”, Ay)
where A"=A/C, is the quotient of A by a subgroup of order £. Let & denote the

collection of the £+1 subgroups of A of order 2. The Galois group Gal(K[2]/H) acts
transitively on G/Aut(E), which has order(p+1)/ug = [K[£]:H]. Thus, writing T » for
the Hecke correspondence on Xy(N), HTM N /o)

Tyxp) = D, (A/C,(AIC)y) = ug 2, (x,)°
Ce5 ce Gal(K[ 2)/H)

Projecting to E via m proves the first assertion, since 1° T ¢ = a,n. For the second,
consider the isogeny

¢ (A, Ag) = (A7 Ap)
of degree £. Since £ remains primein K, both A and A have supersingular
reduction at A, so the reduced isogeny
:(AAp) - (A, Ap
must be, up to an automorphism, Frobenius (19] I1.2.12). This proves that X
P

Xo(N )EF 22). By ihe universal property of the Néron model, 7t reduces to a morphism T
from X,(N) to E, and applying T completes the proof. /1

= iHFI'ﬂb 1n

Remark. One can avoid usin g the universal property of the Néron model by requiring

?nstcad thalf £ not belong to a certain finite set of primes. This restriction does not
interfere with the proof of Kolyvagin's theorem.

Supp()smar A 1s a prime not dividing PDgN, r> 0, and Frobl(K(Epr)/Q) = [t]. By
r
Lemma 2, p Ia,t and p IUK[K[i]:}ﬂ, SO there is a (unique) extension H” of H of
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degree p in K[£]. Let ¢ denote any lift of any Frob 2(HAQ) to Gal(H’/Q) and define
Z) = “KTTK[I];H(M“}’ ..!tb) = (H,z/pr)(yH-yH‘?) = E(HJ).

Corollary 4. Suppose 24 pPDyN and Frob I(K(Epr)/Q) = 1], and let z, be as
above.
(i) Tryguz) =0

(11) Forany O € Gﬂl(H/K): let E denote any [I:ft of G to Gal(H;/K) Then modulo
any A of H™ above £,

S r

2 2y = - ((A+1+a)ip)y
ce Gal(H/K)

Proof. This follows without difficulty from Proposition 3. /1

For each place v of Q let m, = #[H!(Q,™/Q,, E(Q,"™))]. By [5] Proposition
[.3.8, each m, 1s finite and all but finitely many are zero, so m(p) = sup{ord,(m,) : all v
of Q} is a well-defined integer, equal to zero for almost all p.

Proposition 5.  Suppose 24 pDxN and Frob ‘z(K(EpI')/Q) = [t], where r =n + m(p).
Then there is an element ¢, € HY(Q, E)n such that

1) res,(cy)=0 forall v#2,

i) the order of tes(c,) in HI(Q,, E)pn is equal to the order of y in

E(K »)/p E(K ).

Proof.  First suppose p{[H:K). Then there is a (unique) extension K” of K of degree
p' in K[2], totally ramified at £ and unramified at all other primes, and H" = HK".
Define

Z s TrH,‘,K{zl) e E(K").
By Corollary 4, Tty fK(z) = (. Fixing a generator O of Gal(K’/K) gives rise to a group

isomorphism (which is not T-equivariant, see below)
{ooe E(K") : Try. (@) = 0}/(o-1)E(K") = HI(K /K, E(K)).

Define
¢, € HIK/K,E(K)) < H!(K, E),r

to be the image of z under this isomorphism.

| ' ‘ = - ' Iso acts by -1 on Gal(K/K),
Since T commutes with 'IrK[ /K zt=-z. Since T & y

, . . t for p > 2 the restriction map
we conclude that ¢, =C),. Thus C) € (HI(K, E)pf) . Bu P
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# l .
gives an isomorphism H1(Q, E)pr = (H1 (K, E)Pr)+, so cpe H (Q, E)pr. Finally, define

Cp= pm(P)C} € HI(Q, E)Pn.
For v # £, since K7/K is unramified at v,
resy(c 2) = p"Pres,(c) € P PHI(Q,"/Qu, EQy™))pr = 0

by definition of m(p). | |
To complete the proof of the proposition we must determine the order of res y(c,) in

HI(Q,, E)pn. Write 1, for the inertia subgroup of Gal(Q ,/Q;), and consider the maps
H!(Q,, E)yn = HI(1y, E@Q)yn = HI(Ly, E(F),n — Hom(Gal(K/K), Epn).

The first map is injective because its kernel, HI(Q , "/Q », E(Q 1”‘“))13:1, is O since E
has good reduction at £. The second map is an isomorphism because the kernel of
reduction modulo £ is a pro-£ group. The third map is an isomorphism because I, acts
trivially on E(F,) and K'Q,"™ is the unique abelian extension of Q ;"™ of exponent

p. Itis easy to see that the image of c, under this sequence of injections is the
homomorphism which sends the chosen generator ¢ of Gal(K“/K) to pm(p)f. Thus the

order of res,(c,) in HI(Q,, E)pn 1S the same as the order of pm(p)"z" 1n E(F 42)-
Corollary 4 shows that

pm(P)E e ((,E+1+ai)/pn)§-

Up to a factor of 2, #[E(Fiz)‘] = #[E(sz)]/#[E(Fi)] = £+1+a,. By Lemma 2,
(E(sz)pm)' s cyclic, so we conclude that (£+1+a,)/p” maps E(F;z)Vp“E(F;z)'

et

isomorphically to (E(F,Ez)pn)'. Therefore the order of pm(p)f in E(F ;) is the same as

th; order of y in E(K,)/p E(K,) = E(sz)/an(F£z). This completes the proof when
p1 [H:K].

If p I [H:K], there may not exist a field K* as above. In that case, use the point z,
to define cj , € H!

(H, E);r. Then define ¢ to be the corestriction of ¢{ , to H!(K, E)
and proceed as above. |

//
Corollary 6.  Suppose /E*pDKN, and Frobi(KCEpmm(p))/Q) =[t]. If k=20 and
pEly e p"E(K ), then forall se SO, ok, _ 0
Proof. This follows immediately from Propositions 1 and 4. I

For an ! ite t |
y te HI (K, E n), write t for the image of t under the restriction map

2 l (W
(2) H!(K, En) — Hom(Gdl(KKK(Epmm(p))), E o) 4K nem(p)/K)
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+ . ~
Lemma 7. Suppose te HI(K, En)™ and the image of t is cyclic. Then the order of

a+b .
¢ isarmost p ., where P is the order of the largest Q-rational cyclic subgroup of
E -~ and ptI is the exponent of Hl(K(Epn +mp))/K, Epn).

Proof. Since tis Gal(K(Epn+m(p))/K)-cquivaﬁant, its image is Gal(K/K)-invariant.

Since T actson t by I, the image is in fact rational over Q. Thus if the image is
cyclic, the order of t is at most p. The kernel of the restriction map (2) is

H‘(K(Epmm(p))/Kv E n), so t has order at most " I

Proof of Kolyvagin's theorem.

As above, we fix a prime p not dividing #[@x]. Suppose y has infinite order in E(K),
and let k = k(p) be the largest integer such that y € pkE(K) + E(K),rs. Fix any integer

n>k + 1. First assume that

(3) E has no p-isogeny defined over Q,

(4) H! (K(Epmm(p))/K, Epn) =1
both of which hold for all but a finite number of p by Serre's theorem [7] or the theory of

n
complex multiplication. Under these assumptions we will show that ka(P ) = 0.

Write r=n+m(p). Fix s € S(Pn), and as in Lemma 7 write § for the restriction of

S 10 Gﬂl(Q/K(Epr)) and write y for the restriction of the image of y under the injection
E(K)/p"E(K)” — H!(K,En).
Fix a finite extension F of K(Er), Galois over Q, so that both s and y factor through
G = Gal(F/K(E,1)).
Choose any ye G, and choose any prime £, not dividing pDgN, such that
Frob ,(F/Q) = [yt]. Then Frob 4(K(E,r/Q) = [t], and Frod J(E/KE D) € [(Yr)?] so
K6, -0 o pFS(yn?) =0, and prely e pEEKy & p y(0H) =0

Since §*=5, and y* = -y,
s((y0)?)
S(yoR) = Y@ + Y@y = DY)

ve G, either pkg(‘r) € (Epﬂ)' or

() + Styr) = (1+0)s(Y)

By Corollary 6, we conclude that for every
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A : k-1~ -1
p“'k'l'f(y) € (Epn)+. Therefore G = (p'S )‘1((Epn) yU (" y) ((Ejn)"). Buta group
. k~ -
cannot be the union of two proper subgroups, so either p s(G) © (E;n) or
pn-k-l?(G) C (E.n)*. By Lemma 7 (using assumptions (3) and (4)) we conclude that either
P

p<s =0 in s or p™ly =0 in E(K)/p"E(K). Since the latter is impossible by our

k n
definition of k, we have shown that p s -0,
Since k =0 for almost all p, this proves Kolyvagin's theorem except for the finite
number of p-parts which we have ruled out above. Without assumptions (3) and (4),

using Lemma 7 the proof above gives a somewhat weaker annihilator of S(Pn), but still
one which is independent of n (again using [7] or the theory of complex multiplication to
show that the exponent of H! (K(Epnm(p))/K, Epn) is bounded independent of n). Also,

with a little more care, one obtains a suitable annihilator when p | #[0?(]. This completes
the proof. /]
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