The work of Kolyvagin on the arithmetic of elliptic curves

Karl Rubin*
Department of Mathematics, Columbia University
New York, NY 10027 USA

This paper gives a complete proof of a recent theorem of Kolyvagin [3, 4] on Mordell-Weil groups and Tate-Shafarevich groups of elliptic curves. Let E be an elliptic curve defined over \mathbb{Q} , and assume that E is modular: for some integer N there is a nonconstant map defined over \mathbb{Q}

$$\pi: X_0(N) \to E$$

which we may assume sends the cusp ∞ to 0. Here $X_0(N)$ is the usual modular curve over Q (see for example [8]) which over C is obtained by compactifying the quotient $\mathfrak{H}/\Gamma_0(N)$ of the complex upper half-plane $\mathfrak H$ by the group

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbf{Z}) : c \equiv 0 \pmod{N} \right\}.$$

The points of $X_0(N)$ correspond to pairs (A, C) where A is a (generalized) elliptic curve and C is a cyclic subgroup of A of order N. Fix an imaginary quadratic field K in which all primes dividing N split, and an ideal π of K such that $\mathcal{O}_K/\pi \cong \mathbb{Z}/N\mathbb{Z}$. Write H for the Hilbert class field of K and x_H for the point in $X_0(N)(C)$ corresponding to the pair

$$(C/\mathcal{O}_K, \mathfrak{n}^{-1}/\mathcal{O}_K).$$

Fix an embedding of \overline{Q} into C; then the theory of complex multiplication shows that $x_H \in X_0(N)(H)$. Define $y_H = \pi(x_H) \in E(H)$, $y_K = Tr_{H/K}(y_H) \in E(K)$, and $y = y_K - y_K^{\tau} \in E(K)$, where τ denotes complex conjugation on K.

Let $\coprod_{E/Q}$ denote the Tate-Shafarevich group of E over Q.

Theorem. (Kolyvagin [3, 4]) Suppose E and y are as above. If y has infinite order in E(K) then E(Q) and $\coprod_{E/O}$ are finite.

^{*}supported by grants from the NSF, the DFG, the SERC, the Max-Planck-Institut für Mathematik and the Ohio State University

- Remarks. 1. The proof of this theorem given below is organized differently from Kolyvagin's proof, and somewhat simplified, but the important ideas are all due to Kolyvagin and contained in [3, 4].
- 2. It is not difficult to show, using the Hecke operator w_N , that y has infinite order if and only if both y_K has infinite order and the sign in the functional equation of the L-function L(E, s) is +1.
- 3. The proof will give an annihilator of $\coprod_{E/Q}$ which, via the theorem of Gross and Zagier [2], gives evidence for the Birch and Swinnerton-Dyer conjecture.
- 4. Observe that Kolyvagin's theorem makes no mention of the L-function of E. To relate his result to the Birch and Swinnerton-Dyer conjecture one needs the following:

Theorem. (Gross and Zagier [2]) With E and y as above, y has infinite order in E(K) if and only if $L(E, 1) \neq 0$ and $L'(E, \chi_K, 1) \neq 0$, where χ_K is the quadratic character attached to K.

Analytic Conjecture. If E is a modular elliptic curve and the sign in the functional equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K, in which all primes dividing N split, such that $L'(E, \chi_K, 1) \neq 0$.

This analytic conjecture, as yet unproved, together with the theorems of Kolyvagin and Gross and Zagier, would imply:

(*) For any modular elliptic curve E, if $L(E, 1) \neq 0$ then E(Q) and $\coprod_{E/Q}$ are finite.

Assertion (*) is known for elliptic curves with complex multiplication, by theorems of Coates and Wiles [1] (for E(Q)) and Rubin [6] (for $\coprod_{E/Q}$).

Acknowledgements. I would like to thank John Coates and Bryan Birch for helpful discussions, and the Mathematisches Institut (Erlangen), the Department of Pure Mathematics and Mathematical Statistics (Cambridge) and the Max-Planck-Institut für Mathematik (Bonn) for their hospitality.

Notation. For any abelian group A, A_n will denote the n-torsion in A and $A_{n\infty} = \bigcup_i A_{n^i}$. If A is a module for the appropriate Galois group, we will write $H^i(L/F, A)$ for $H^i(Gal(L/F), A)$, $H^i(F, A)$ for $H^i(\overline{F/F}, A)$, and $H^i(F, E)$ for $H^i(F, E(\overline{F}))$.

Tools of the proof.

Fix a prime number p and a positive integer n. For any completion \mathbf{Q}_{v} of \mathbf{Q} we have the diagram

and we define the Selmer group $S^{(p^n)}$ and the p^n -torsion in the Tate-Shafarevich group, \coprod_{p^n} , by

$$S^{(p^n)} = \bigcap_{v} \operatorname{res}_{v}^{-1}(\operatorname{image} E(\mathbf{Q}_{v})),$$

$$0 \to E(\mathbf{Q})/p^n E(\mathbf{Q}) \to S^{(p^n)} \to \coprod_{p^n} \to 0.$$

To prove Kolyvagin's theorem it will suffice to show that $S^{(p)} = 0$ for almost all p, and that for other p the order of $S^{(p^n)}$ is annihilated by a power of p which is independent of n.

For $s \in S^{(p^n)}$ write s_v for the inverse image of $res_v(s)$ in $E(Q_v)/p^nE(Q_v)$. Our main tool for bounding $S^{(p^n)}$ is the following, which is proved using the local Tate pairings.

Proposition 1. Suppose ℓ is a prime such that $E(Q_{\ell})_{p^n} \cong \mathbb{Z}/p^n\mathbb{Z}$, $k \ge 0$ is an integer, and $c_{\ell} \in H^1(\mathbb{Q}, \mathbb{E})_{p^n}$ satisfies

- (i) for all $v \neq \ell$, $res_v(c_{\ell}) = 0$,
- (ii) res_k(c_k) has order p^{n-k}.

Then for every $s \in S^{(p^n)}$, $p^k s_k = 0$.

Proof. For any place v of Q let \langle , \rangle_v denote the local Tate pairing $\langle , \rangle_v : E(Q_v)/p^n E(Q_v) \times H^1(Q_v, E)_{p^n} \to \mathbb{Z}/p^n \mathbb{Z}$.

For any $s \in S^{(p^n)}$ and $c \in H^1(Q, E)_{p^n}$, let c' be any lift of c to $H^1(Q, E_{p^n})$ in (1) and define an element b(s, c) in the Brauer group of Q by the cup product

$$b(s, c) = s \cup c' \in H^2(Q, E_{p^n} \otimes E_{p^n}) \cong H^2(Q, \mu_{p^n}) = Br(Q)_{p^n}.$$

Here the map $E_{p^n} \otimes E_{p^n} \to \mu_{p^n}$ is given by the Weil pairing. By the definition of the Tate

pairing ([5] §I.3, especially remark 3.5) we have

$$\langle s_v, res_v(c) \rangle_v = inv_v(b(s, c)).$$

Thus

$$\sum_{v} \langle s_{v}, res_{v}(c) \rangle_{v} = \sum_{v} inv_{v}(b(s, c)) = 0.$$

Applying this reciprocity law with a class c_{ℓ} as in the statement of the proposition we conclude that $\langle s_{\ell}, res_{\ell}(c_{\ell}) \rangle_{\ell} = 0$. But

$$E(Q_{\ell})/p^n E(Q_{\ell}) \cong E(Q_{\ell})_{p^{\infty}}/p^n E(Q_{\ell})_{p^{\infty}} \cong Z/p^n Z,$$

so if $\operatorname{res}_{\ell}(c_{\ell})$ has order p^{n-k} the nondegeneracy of the Tate pairing shows that $p^k s_{\ell} = 0$. //

It remains now to construct such a cohomology class c_{ℓ} for sufficiently many ℓ , with k bounded and usually 0. Kolyvagin constructs such a c_{ℓ} using Heegner points. Write τ for the complex conjugation on \overline{Q} induced by our embedding of \overline{Q} into C, and $[\tau]$ for its conjugacy class in $Gal(\overline{Q}/Q)$. If A is a $Gal(\overline{Q}/Q)$ -module with $A_2 = A/2A = 0$, the action of τ gives a decomposition $A = A^+ \oplus A^-$. From now on, for simplicity we will assume that $p \neq 2$, and if $K = Q(\sqrt{-3})$ we also assume $p \neq 3$. Write D_K for the discriminant of K.

Lemma 2. Suppose ℓ is a prime not dividing pD_KN , r > 0, and $Frob_{\ell}(K(E_pr)/Q) = [\tau]$. Then if \tilde{E} denotes the reduction of E modulo ℓ and $a_{\ell} = \ell + 1 - \#[\tilde{E}(F_{\ell})]$,

- (i) $p^r | a_{\ell}$ and $p^r | \ell+1$,
- (ii) 2 remains prime in K,

$$(\mathrm{iii}) \ \mathrm{E}(\mathrm{Q}_{\boldsymbol{\lambda}})_{p^r} \cong \widetilde{\mathrm{E}}(\mathrm{F}_{\boldsymbol{\lambda}})_{p^r} \cong \mathrm{Z}/p^r\mathrm{Z}, \ (\mathrm{E}(\mathrm{K}_{\boldsymbol{\lambda}})_{p^r})^{\scriptscriptstyle \mathsf{T}} \cong (\widetilde{\mathrm{E}}(\mathrm{F}_{\boldsymbol{\lambda}^2})_{p^r})^{\scriptscriptstyle \mathsf{T}} \cong \mathrm{Z}/p^r\mathrm{Z}.$$

Proof. The characteristic polynomial of Frobenius acting on E_{p^r} is $T^2 - a_{\ell}T + \ell$, and the characteristic polynomial of τ acting on $E_{p^r} = E(C)_{p^r}$ is $T^2 - 1$. Comparing these polynomials modulo p^r proves (i). The second assertion holds because $\operatorname{Frob}_{\ell}(K/\mathbb{Q}) \neq 1$, and the third because $E(\mathbb{Q}_{\ell})_{p^r} \cong (E_{p^r})^+ \cong E(\mathbb{R})_{p^r}$ and $E(K_{\ell})_{p^r} \cong (E_{p^r})^+ \oplus (E_{p^r})^-$.

Suppose ℓ is a rational prime which remains prime in K and $\ell \nmid N$. Let \mathcal{O}_{ℓ} be the order of conductor ℓ in \mathcal{O}_{K} , and x_{ℓ} the point in $X_{0}(N)(C)$ corresponding to the pair $(C/\mathcal{O}_{\ell}, (\mathfrak{n} \cap \mathcal{O}_{\ell})^{-1}/\mathcal{O}_{\ell})$.

The theory of complex multiplication shows that $x_{\ell} \in X_0(N)(K[\ell])$ where $K[\ell]$ denotes the ring class field of K modulo ℓ , the abelian extension of K corresponding to

the subgroup $K^{\times}C^{\times}\prod_{q}(\mathcal{O}_{\ell}\otimes \mathbb{Z}_{q})^{\times}$ of the ideles of K. It follows easily that $K[\ell]$ is a cyclic extension of H of degree $(\ell+1)/u_{K}$ where $u_{K} = \#(\mathcal{O}_{K}^{\times})/2$, $K[\ell]/H$ is totally ramified at ℓ and unramified everywhere else, and τ acts on $Gal(K[\ell]/K)$ by -1. Define $y_{\ell} = \pi(x_{\ell}) \in E(K[\ell])$. The only facts about Heegner points which we will need (other than their natural fields of definition) are contained in the following proposition.

Proposition 3. i) $u_K Tr_{K(2)/H}(y_2) = a_2 y_H$.

ii) For any prime λ of K[L] above L, $\tilde{y}_{L} = \tilde{y}_{H}^{Frob} \in \tilde{E}(F_{L^{2}})$, where \tilde{z}_{L} denotes reduction modulo λ .

Proof. Fix an elliptic curve A defined over H, with complex multiplication by \mathcal{O}_K , so that (A, A_n) represents x_H . Without loss of generality we may assume that A has good reduction at all primes above ℓ . The point x_ℓ can be represented by (A', A'_n) where $A' = A/C_\ell$ is the quotient of A by a subgroup of order ℓ . Let \mathcal{E} denote the collection of the $\ell+1$ subgroups of A of order ℓ . The Galois group $Gal(K[\ell]/H)$ acts transitively on G/Aut(E), which has order $(p+1)/u_K = [K[\ell]:H]$. Thus, writing T_ℓ for the Hecke correspondence on $X_0(N)$,

$$T_{\ell}(x_{H}) = \sum_{C \in \mathcal{C}} (A/C, (A/C)_{\mathfrak{n}}) = u_{K} \sum_{\sigma \in Gal(K[\ell]/H)} (x_{\ell})^{\sigma}.$$

Projecting to E via π proves the first assertion, since $\pi \circ T_{\ell} = a_{\ell}\pi$. For the second, consider the isogeny

$$\varphi:(A,A_{\mathfrak{n}})\to (A',A'_{\mathfrak{n}})$$

of degree ℓ . Since ℓ remains prime in K, both A and A' have supersingular reduction at λ , so the reduced isogeny

$$\tilde{\varphi}: (\tilde{A}, \tilde{A}_{\mathfrak{n}}) \to (\tilde{A}', \tilde{A}'_{\mathfrak{n}})$$

must be, up to an automorphism, Frobenius ([9] II.2.12). This proves that $\tilde{x}_p = \tilde{x}_H^{Frob}$ in $\tilde{X}_0(N)(F_{\ell^2})$. By the universal property of the Néron model, π reduces to a morphism $\tilde{\pi}$ from $\tilde{X}_0(N)$ to \tilde{E} , and applying $\tilde{\pi}$ completes the proof.

Remark. One can avoid using the universal property of the Néron model by requiring instead that ℓ not belong to a certain finite set of primes. This restriction does not interfere with the proof of Kolyvagin's theorem.

Suppose ℓ is a prime not dividing pD_KN , r > 0, and $Frob_{\ell}(K(E_pr)/Q) = [\tau]$. By Lemma 2, $p^r \mid a_{\ell}$ and $p^r \mid u_K[K[\ell]:H]$, so there is a (unique) extension H' of H of

degree p in K[l]. Let \$\phi\$ denote any lift of any Frob (H/Q) to Gal(H'/Q) and define $z_1 = u_K Tr_{K[\ell]/H} (y_{\ell} - y_{\ell}^{\phi}) - (a_{\ell}/p^r)(y_{H} - y_{H}^{\phi}) \in E(H').$

Corollary 4. Suppose $2 pD_K N$ and $Frob_2(K(E_pr)/Q) = [\tau]$, and let z_1 be as above.

- (i) $Tr_{H'/H}(z_1) = 0$.
- (ii) For any $\sigma \in Gal(H/K)$, let $\overline{\sigma}$ denote any lift of σ to Gal(H'/K). Then modulo any λ of H' above ℓ ,

$$\sum_{\sigma \in Gal(H/K)} \widetilde{z_1^{\sigma}} = -((\ell+1+a_{\ell})/p^r)\widetilde{y}.$$

11

This follows without difficulty from Proposition 3. Proof.

For each place v of Q let $m_v = \#[H^1(Q_v^{unr}/Q_v, E(Q_v^{unr}))]$. By [5] Proposition I.3.8, each m_v is finite and all but finitely many are zero, so $m(p) = \sup\{ord_p(m_v) : all v\}$ of Q} is a well-defined integer, equal to zero for almost all p.

Proposition 5. Suppose $l \nmid pD_KN$ and $Frob_l(K(E_pr)/Q) = [\tau]$, where r = n + m(p). Then there is an element $c_{\ell} \in H^1(Q, E)_{D^n}$ such that

- i) $res_v(c_{\ell}) = 0$ for all $v \neq \ell$,
- ii) the order of $res_{\ell}(c_{\ell})$ in $H^{1}(Q_{\ell}, E)_{p^{n}}$ is equal to the order of y in $E(K_{\ell})/p^{n}E(K_{\ell}).$

Proof. First suppose $p\nmid [H:K]$. Then there is a (unique) extension K' of K of degree p' in K[L], totally ramified at L and unramified at all other primes, and H' = HK'. Define

$$z = Tr_{H'/K}(z_1) \in E(K').$$

By Corollary 4, $Tr_{K'/K}(z) = 0$. Fixing a generator σ of Gal(K'/K) gives rise to a group isomorphism (which is not \tau-equivariant, see below)

$$\{\alpha \in E(K') : Tr_{K'/K}(\alpha) = 0\}/(\sigma-1)E(K') \cong H^1(K'/K, E(K')).$$

Define

$$c' \in H^1(K'/K, E(K')) \subset H^1(K, E)_{p^r}$$

to be the image of z under this isomorphism.

Since τ commutes with $\mathrm{Tr}_{K[\mathcal{X}]/K''}$, $z^{\tau}=-z$. Since τ also acts by -1 on $\mathrm{Gal}(K'/K)$, we conclude that $c_{\ell}^{\tau} = c_{\ell}^{\tau}$. Thus $c_{\ell}^{\tau} \in (H^{1}(K, E)_{p}r)^{+}$. But for p > 2 the restriction map

gives an isomorphism $H^1(Q, E)_{p^r} \cong (H^1(K, E)_{p^r})^+$, so $c_{\ell} \in H^1(Q, E)_{p^r}$. Finally, define $c_{\ell} = p^{m(p)} c_{\ell} \in H^1(Q, E)_{p^n}$.

For $v \neq \ell$, since K'/K is unramified at v,

$$res_v(c_l) = p^{m(p)} res_v(c_l) \in p^{m(p)} H^1(Q_v^{unr}/Q_v, E(Q_v^{unr}))_p r = 0$$

by definition of m(p).

To complete the proof of the proposition we must determine the order of $\operatorname{res}_{\ell}(c_{\ell})$ in $\operatorname{H}^{1}(Q_{\ell}, E)_{p^{n}}$. Write I_{ℓ} for the inertia subgroup of $\operatorname{Gal}(\overline{Q}_{\ell}/Q_{\ell})$, and consider the maps

$$H^1(Q_{\boldsymbol{\ell}},E)_{p^n} \to H^1(I_{\boldsymbol{\ell}},E(\overline{Q}_{\boldsymbol{\ell}}))_{p^n} \to H^1(I_{\boldsymbol{\ell}},\widetilde{E}(\overline{F}_{\boldsymbol{\ell}}))_{p^n} \to Hom(Gal(K'/K),\widetilde{E}_{p^n}).$$

The first map is injective because its kernel, $H^1(Q_{\ell}^{unr}/Q_{\ell}, E(Q_{\ell}^{unr}))_p n$, is 0 since E has good reduction at ℓ . The second map is an isomorphism because the kernel of reduction modulo ℓ is a pro- ℓ group. The third map is an isomorphism because I_{ℓ} acts trivially on $\widetilde{E}(\overline{F}_{\ell})$ and $K'Q_{\ell}^{unr}$ is the unique abelian extension of Q_{ℓ}^{unr} of exponent p^r . It is easy to see that the image of c_{ℓ} under this sequence of injections is the homomorphism which sends the chosen generator σ of Gal(K'/K) to $p^{m(p)}\widetilde{z}$. Thus the order of $res_{\ell}(c_{\ell})$ in $H^1(Q_{\ell}, E)_{p^n}$ is the same as the order of $p^{m(p)}\widetilde{z}$ in $\widetilde{E}(F_{\ell^2})$.

Corollary 4 shows that

$$p^{m(p)}\widetilde{z} = -((\ell+1+a_{\ell})/p^n)\widetilde{y}.$$

Up to a factor of 2, $\#[\widetilde{E}(F_{\ell^2})^-] = \#[\widetilde{E}(F_{\ell^2})]/\#[\widetilde{E}(F_{\ell})] = \ell + 1 + a_{\ell}$. By Lemma 2, $(\widetilde{E}(F_{\ell^2})_p^\infty)^-$ is cyclic, so we conclude that $(\ell + 1 + a_{\ell})/p^n$ maps $\widetilde{E}(F_{\ell^2})^-/p^n\widetilde{E}(F_{\ell^2})^-$ isomorphically to $(\widetilde{E}(F_{\ell^2})_p^n)^-$. Therefore the order of $p^{m(p)}\widetilde{z}$ in $\widetilde{E}(F_{\ell^2})$ is the same as the order of y in $E(K_{\ell})/p^nE(K_{\ell}) \cong \widetilde{E}(F_{\ell^2})/p^n\widetilde{E}(F_{\ell^2})$. This completes the proof when $p \nmid [H:K]$.

If $p \mid [H:K]$, there may not exist a field K' as above. In that case, use the point z_1 to define $c'_{1,\ell} \in H^1(H, E)_{p^r}$. Then define c'_{ℓ} to be the corestriction of $c'_{1,\ell}$ to $H^1(K, E)$ and proceed as above.

 $\begin{aligned} &\text{Corollary 6.} \quad \textit{Suppose } \text{ $l \nmid pD_K N$, and } \text{ $Frob_{\it l}(K(E_{p^{n+m(p)}})/Q) = [\tau]$. $\textit{If } k \geq 0$ and} \\ &p^{n-k-1}y \not\in p^n E(K_{\it l}), \text{ then for all } s \in S^{(p^n)}, \text{ } p^k s_{\it l} = 0. \end{aligned}$

Proof. This follows immediately from Propositions 1 and 4.

For any $t \in H^1(K, E_{p^n})$, write \hat{t} for the image of t under the restriction map (2) $H^1(K, E_{p^n}) \to Hom(Gal(\overline{K}/K(E_{p^{n+m(p)}})), E_{p^n})^{Gal(K(E_{p^{n+m(p)}})/K)}$. Lemma 7. Suppose $t \in H^1(K, E_{p^n})^{\pm}$ and the image of $\hat{\tau}$ is cyclic. Then the order of t is at most p^{a+b} , where p^a is the order of the largest Q-rational cyclic subgroup of E_{p^∞} and p^b is the exponent of $H^1(K(E_{p^{n+m(p)}})/K, E_{p^n})$.

Proof. Since \hat{t} is $Gal(K(E_{p^{n+m(p)}})/K)$ -equivariant, its image is $Gal(\overline{K}/K)$ -invariant. Since τ acts on \hat{t} by ± 1 , the image is in fact rational over Q. Thus if the image is cyclic, the order of \hat{t} is at most p^a . The kernel of the restriction map (2) is $H^1(K(E_{p^{n+m(p)}})/K, E_{p^n})$, so t has order at most p^{a+b} .

Proof of Kolyvagin's theorem.

As above, we fix a prime p not dividing $\#[\mathcal{O}_K^{\times}]$. Suppose y has infinite order in E(K), and let k = k(p) be the largest integer such that $y \in p^k E(K) + E(K)_{tors}$. Fix any integer $n \ge k + 1$. First assume that

(3) E has no p-isogeny defined over Q,

(4)
$$H^1(K(E_{p^{n+m(p)}})/K, E_{p^n}) = 0,$$

both of which hold for all but a finite number of p by Serre's theorem [7] or the theory of complex multiplication. Under these assumptions we will show that $p^kS^{(p^n)} = 0$.

Write r = n + m(p). Fix $s \in S^{(p^n)}$, and as in Lemma 7 write \hat{s} for the restriction of S to $Gal(\overline{Q}/K(E_{p^r}))$ and write \hat{y} for the restriction of the image of y under the injection

$$E(K)^{-}/p^{n}E(K)^{-} \rightarrow H^{1}(K, E_{p^{n}})^{-}.$$

Fix a finite extension F of $K(E_{p^r})$, Galois over Q, so that both \hat{s} and \hat{y} factor through $G = Gal(F/K(E_{p^r}))$.

Choose any $\gamma \in G$, and choose any prime ℓ , not dividing pD_KN , such that $\operatorname{Frob}_{\ell}(F/Q) = [\gamma\tau]$. Then $\operatorname{Frob}_{\ell}(K(E_p r)/Q) = [\tau]$, and $\operatorname{Frob}_{\ell}(F/K(E_p r)) \in [(\gamma\tau)^2]$ so $p^k s_{\ell} = 0 \iff p^k \widehat{s}((\gamma\tau)^2) = 0$, and $p^{n-k-1}y \in p^n E(K_{\ell}) \iff p^{n-k-1}\widehat{y}((\gamma\tau)^2) = 0$.

Since $\hat{s}^{\tau} = \hat{s}$, and $\hat{y}^{\tau} = -\hat{y}$,

$$\widehat{s}((\gamma \tau)^2) = \widehat{s}(\gamma) + \widehat{s}(\tau \gamma \tau) = (1+\tau)\widehat{s}(\gamma)$$

$$\widehat{y}((\gamma \tau)^2) = \widehat{y}(\gamma) + \widehat{y}(\tau \gamma \tau) = (1-\tau)\widehat{y}(\gamma)$$

By Corollary 6, we conclude that for every $\gamma \in G$, either $p^k \widehat{s}(\gamma) \in (E_p^n)$ or

 $p^{n-k-1}\widehat{y}(\gamma) \in (E_{p^n})^+$. Therefore $G = (p^k\widehat{s})^{-1}((E_{p^n})^-) \cup (p^{n-k-1}\widehat{y})^{-1}((E_{p^n})^+)$. But a group cannot be the union of two proper subgroups, so either $p^k\widehat{s}(G) \subset (E_{p^n})^-$ or $p^{n-k-1}\widehat{y}(G) \subset (E_{p^n})^+$. By Lemma 7 (using assumptions (3) and (4)) we conclude that either $p^k s = 0$ in $S^{(p^n)}$ or $p^{n-k-1}y = 0$ in $E(K)/p^nE(K)$. Since the latter is impossible by our definition of k, we have shown that $p^kS^{(p^n)} = 0$.

Since k = 0 for almost all p, this proves Kolyvagin's theorem except for the finite number of p-parts which we have ruled out above. Without assumptions (3) and (4), using Lemma 7 the proof above gives a somewhat weaker annihilator of $S^{(p^n)}$, but still one which is independent of n (again using [7] or the theory of complex multiplication to show that the exponent of $H^1(K(E_{p^{n+m(p)}})/K, E_{p^n})$ is bounded independent of n). Also, with a little more care, one obtains a suitable annihilator when $p \mid \#[\mathcal{O}_K^{\times}]$. This completes the proof.

References.

- 1. Coates. J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. *Invent. Math.* 39, 223-251 (1977)
- 2. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. *Invent. Math.* 84, 225-320 (1986)
- 3. Kolyvagin, V.A.: Finiteness of E(Q) and $\coprod(E,Q)$ for a class of Weil curves. (Russian) To appear in Izv. Akad. Nauk SSSR Ser. Mat.
- 4. Kolyvagin, V.A.: On Mordell-Weil and Shafarevich-Tate groups of elliptic Weil curves. (Russian) preprint
- 5. Milne, J.S.: Arithmetic duality theorems. *Persp. in Math.* 1, Orlando: Academic Press (1986)
- 6. Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. *Invent. Math.* 89, 527-560 (1987)
- 7. Serre. J-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15, 259-331 (1972)
- 8. Shimura, G.: Introduction to the arithmetic theory of automorphic forms. *Pub. Math. Soc. Japan* 11, Princeton: Princeton University Press (1971)
- 9. Silverman, J.: The arithmetic of elliptic curves. Grad. Texts in Math. 106, New York: Springer (1986)