CHAPTER 1V

Abelian Varieties over C

MICHAEL ROSEN

(Notes by F. O. McGuinness, Fordham University)

§0. Introduction

These lecture notes present, in outline, the theory of abelian varieties over the
complex numbers. They focus mainly on the analytic side of the subject. In
the first section we prove some basic results on complex tori. The second
section is devoted to a discussion of isogenies. The third section (the longest)
describes the necessary and sufficient conditions that a complex torus must
satisfy in order to be isomorphic to an abelian variety. In the fourth section
we describe the construction of the dual abehan varicty and the concluding
two sections discuss polarizations and the moduli space of principally pola-
rized abelian varieties. Proofs for the most part arc omitted or only sketched.
Details can be found in [SW] or [L-A] (sec the list of references at the end
of this chapter). For the algebraic—geometric study of abelian varietics over
arbitrary fields, the reader is referred to [M _AV] and to the articles of J. .
Milne in this volume.

The author would lLke to extend a special note of thanks to F. O.
McGuinness who reworked the original sketchy notes Into cuhcfi:_nl manu-
script and made a number of very useful improvements, additions, and
clarifications.

§1. Complex Tori

An abelian variety A is a complete and connected ulgchruu; group 1d«.l':rn:*d
over the field of complex numbers. Thus A comes equipped with a muitip ILJ}
tion m: A x A — A and an inverse map i: A — A which are morphisms O
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varieties and satisfy the usual group axioms. The complex points () thep,
a connected, compact, complex Lie group. We will begin by consideryy,,
properties of such objects. Let T be an arbitrary connected, compue( com.
plex Lie group. Then:

(1) T is a commutative group
To see why this is so, let V denote the tangent space to T at the idey,,
element e. Consider the adjoint representation of T on V- ‘

Ad: T — AU[{:( V)

(Ad(1) is the differential of the conjugation map u — tut™" on T)) The coord.
nate functions with respect to a basis of ¥V are holomorphic on the compy
complex manifold T and so must be constants. Thus Ad(t) = Ad(e) = [ [o;
all te T. It is now easy to check that the exponential map, exp: V — 7T, myp,
V onto a subgroup of the center of T. Since T 1s connected, exp(V) generutes
T, and so Tis commutative.

(2) T is a complex torus

A more refined analysis shows exp 1s a surjective homomorphism (rom |
to T with kernel A a discrete subgroup. Recall that a discrete subgroup of 4
real vector space with compact quotient is called a lattice. Thus, T =~ I'A 1
a complex torus. See [M-AV] for the proof.

From now on we will write the group law on T additively and denote the
identity element by 0.

(3) Holomorphic 1-forms

The representation of T as a complex torus can be achieved n uan
other way. Let Q be the vector space of holomorphic 1-forms on 7. Define
H\(T, Z) » Q* = Hom¢(Q, C) by 7 = (w+ [,w) where [ w is the integral
of  around the integral 1-cycle 7.

This map is injective and the image A is a lattice in Q* Now delinc

T"—rﬁ*/h by pr— (@ — [§w). Note that [fw is well-defined modulo A. This
yields an isomorphism

T =~ Q*/A.

(4) Mappings between complex tori

suppose T, and T, are complex tori and ¢: T, — T, is a holomorphic map
!f #(0) =0 then ¢ is a homomorphism. This is impli_cd by (3) above since ¢
induces a linear map Q¥ — Q* which takes A, to A,. In general, ¢ 15 ¢
homomorphism followed by a translation. If we write 7 — V,/A; then every
holomorphic homomorphism from T,t0 T, is inducedjby ;; C linear map

ﬁ:ﬂm % 1o I{I such that ¢(A,) = A,. We continue to call this map ¢. 1hi
yields two faithful representations:

pc: Hom(T,, T,) - Home(V,, V),
pz: Hom(T, T;) —» Hom;(A,, A,),

called the complex representation and the rational representation respees

I . o — -
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ively. The fact that ;{{ 1s faithful s;huws immediately that Hom(7
ﬁnilﬂl}' gencralt:d, tﬂrhmr}-.frr.:u, ;1hr.:l¥u n grc::up of rank < 4(dim )

The case T, ="jr'"I = T 1s of particular interest, Hom(T, T) = End(T) is 4
[ing which we will dls::_us;s further below. Hurc We present another way of
looking al c-ndﬂl'l‘lﬂfphlﬁm'ﬁ of Cl““P!‘-’i-‘* torl. Suppose A is a lattice in an
cvcn-dimf:nsmnul real vector space V. The real torus VA will be 3 complex
worus if V has the 5lrur.:lturu of a complex vector space. A complex structure
on V is given by an B-lincar map J: V — Vsuch that J2 = —1d (set ip = Jv).
Any Z-linear map ¢: A — A ‘duﬁnus an I:‘:-m:ndnnmrphi:-.;m of V=R®,;A
and therefore an undumurpl?nsm of V/A. The map ¢ is an endomorphism
of the complex torus V/A 11[ u.nd‘ Dn‘ly if. ¢ J = Jog¢. Thus, End(T) =
(g€ Endz(A)l¢oJ = J ¢} Continuing in this direction leads to the definition
of the Hodge group, a certain @-ulgn..:hrmc subgroup of GI(V) whose com-
plex points contain J. However, we will not pursuc this.

1],'l- 'r:.!] ]5 d
(dim Ty).

(5) The image and kernel of a morphism.

Ifg: T, —» T 15 a morphism of complex tori then im ¢ is a subtorus of T,
while ker ¢ is a closed subgroup of T, whose connected component is a
subtorus of finite index in ker ¢. Both these facts are easily established.

§2. Isogenies of Complex Torl

A morphism ¢: Ty — T; is an isogeny if it is a surjective homomorphism with
finite kernel. The order of the kernel is called the degree of ¢, deg(d).

ExampLE. Let & be the identity map on T, a complex torus. Let m > 0 be an
integer. The map md: T — Tis an isogeny of degree m*“ where u‘= (iHET. To
see this, write T = V/A. Then ker(mo) = (1/m)A/A = A/mA = (Z/mZ)™.

If¢,: T, » T5,and ¢,: T, — Ty arc isogenies, then sO 18 ¢2° ¢, and degrees
i dox (4, °41) = o84, deglpa) T+ _ 7 if there is an isogeny ¢:
We say that T, and T, arc isogenous, Iy ~ I, \f lh:.n..lln. ' b
T, = T,. The next proposition shows that isogeny is an equivalente el .

Proposition. Let d = dim T, = dim T5. 1/ . T, — T, is an isogeny -:'qf'.:h*g,{rcu n;
. " = o -1 gy fog =mo, an
there is a unique isogeny : T, — T, of degree m24~1 such that y o4 |
poy = md,. Y is called the dual 1sogeny (0 .

' 1 makes the following
ProoF. Since ker ¢ < ker(md,), a map V¥ exists which makes the fc g

diagram commutative:

T tightforward.
One checks that W is the desired 1sogeny: Uniqueness 15 strdig
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Since Y o ¢ = md,; one sees (poyy — mdy)o¢ = 0. It follows that g0 _
because ¢ is onto. Finally, taking the degree of both sides of o _

yields deg y = m**™".

M) |

”Ir'ﬁlI

_ Let the dual isogeny ¥ be denoted by ¢. Then ¢ = m?*¥ 24 and JT‘T,
P, of,. |
We now begin our study of End(7T). We define Endo(T) = End(7) & |
Endy(T) 1s a finite-dimensional Q-algebra and End(T) can be cmmidﬁ@i 1
an order in it. We note that ¢e End(7) is an 1sogeny if and only if j

invertible in Endy(T).
A complex torus T is called simple il it contains no proper comple,

subtorus. We say T is of semisimple type (this 1s not standard terminolopy)
it is isogenous to a product of simple complex tori. If T is simple then (he
usual Schur's lemma argument shows that Endy(7T) 1s a division algebry

Proposition. If T is of semisimple type, then End(T) is a semisimple Q-algebr,

Proor. Write T ~ T{" x T3 x -+ x T~ where the T, arc simple und

pairwise non-isogenous. Then, Endy(T)~ M, (D,) ® - ® M, (D,) where
D; = End,(T)) 1s a finite-dimensional division algebra over Q. M
To study End,(T) further we recall the complex representation
pc: Endy(T) — Endg V
and the rational representation pg = p; ® Q

pq: Endy(T) — Endg(A ®» Q).
Proposition. po ® C ~ pc ® pc.

See [SW, Lemma 39, p. 70], for the (simple) proof.

Let ¢ € End(T). We define the characteristic polynomial, char(¢, x) of ¢ ©
be det(pz(¢) — xI). Note that char(¢, x)e Z[x] is a monic pﬂiyn.mnn'ul of de-
gree 2d where d = dim T. We can easily extend this definition to ¢ & End,(7)

define de:(";)'ﬂ:(ind('r), Then det(pz(y)) = deg(y) (if W is not an isogeny ¢

P * . : | |
iml:(;r;rpz(¢)l A""‘" A 15 l""’l lf ﬂnd Unly l.f dEt(pz([p)} ?"_- 0 ThUh, lf |F|"; 15 dll

—

det(pz(¥)) = [A: pz(W)A] = [pz(Y)* A : A] = deg(¥)) =
Using the lemma we can give an intrinsic characterization of char(¢: ¥/

n. For all but ﬁ"nﬂ}' many integers n, ¢ — nd is an 1504ei: The

T LT g e = T e
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sristi * al char(g, x) is the uni _
hﬂrﬂcurfﬁﬂc pﬂf_} nomid s S e unigue .l'?”f' m i
;EI; ehar(¢, n) = deg(¢ — nd). ynomial such that for all
prooF. ¢ — nd is an 1sogeny if and only if det(p;(9) — nd) # 0. Thus if n is
not a root of char(¢, x), "b__ no is an isogeny. In this case, by the lemma
char(¢, n) = det(pz(¢) — no) = deg(¢p — no). : ’

We note that this proposition makes sense in characteristic p and can be
ased to define the characteristic polynomial in the abstract theory.

We conclude this section by making a few remarks about the l-adic repre-
sentations. For ne Z define T[n] = ker(nd). As we have seen, T'[n] is isomor-
phic to (Z/nZ)**. If ¢ € End(T) then ¢(T[n]) < T(n]. For a prime number |
consider the inverse system {T{™]Im > 1} where [o: T™17 = T[™] are
the transition maps. An cndomorphism ¢ induces a map of this inverse
system and thus acts on proj lim T[I"™] = T(T), the l-adic Tate module. Let
W(T) = Ti(T) ®¢, Q,. Then we have a representation

pa,: Endy(T) — Endg (V(T))

It is easy to check that T(T)~ A ® Z, both as a Z; and as an End(T)
module. Thus the [-adic representations are all equivalent to the rational
representation. In working over C they provide no new information. How-
ever, when working with abelian varicties over arbitrary fields the [-adic
representations can always be defined whereas an analogue of the rational
representation need not exist.

§3. Abelian Varieties

We will be using some standard terminology from the theory of complex
analytic manifolds. We assume known the definitions of holomorphic dI'ld
meromorphic functions on such manifolds, as well as the definitions of divi-
sors, positive divisors, etc. See [SW, §3], for a concisc discussion. Another
good reference is [SHAF, Chap. VIII].

Let .#(T) be the ficld of meromorphic functions on the complex torus T
Since T is compact the only holomorphic functions are constants. How big
I #(T)? How can one construct elements of .#(T)? We quolc a general
theorem of Siegel. See [SI-IIg}F] for a proof.

lhoren'h LE[ M bg (l {-‘ﬂ”u:"ﬂfh f.'{]'””ff{'“-jd- {'{}”]!]h*_\: HH””:_“{!I! I':;')( d””f‘:”‘:;f‘:,;l iil

~ T d the
Then .4 (M) has transcendence degree over C at most d. If d is attaine
H#(M) is a finitely generated field over L.

algebraic variety X,

If M = = | n a non-singular
X(C), the complex points 0 Thus. in this case,

then M(M) ~ C(X), the field of rational functions on X.
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M(M) is a finitely generated field of transcc‘ndcnce- degree d = dim X Tp
shows that if the complex torus T is an abelian variety J#(T) is “bjg » | ;
on we will give an example of a torus T with #(T) = C. This ncver happey
when T has dimension 1. Let E = C/A be a one-dimensional comp|e l”Tu&
Then #(E) is generated by the Weierstrass elliptic function 2(z, A) i |:H
derivative 2'(z, A). These functions are connected by the well-known equ

?’(Z, A)Z g 45?(21 A)?l tay gl'w(z& A) — {3,

Aley

dliop

where g, and g, are constants satisfying g3 — 27¢g3 # 0. The map
E-[1,2(z,A), ?(z, A)]

extends to an imbedding of E into P? as a non-singular cubic plane cyry,
Thus one-dimensional complex tori are one-dimensional abelian varietjes
elliptic curves.

In higher dimensions the situation is more complicated. There are nop.
trivial conditions on a complex torus in order that it correspond to ap
abelian variety. To explain these conditions we need to review some liner
algebra.

Suppose V is a finite-dimensional complex vector space. A map

H:VxV-C
is 2 Hermitian form on V if:
(1) for fixed veV,
u— H(u, v)
18 a linear map V — C;
(1) for fixed ueV,
vi— H(u, v)

i1s an antilinear map V - C;

(1) H(u, v) = H(v, u) for all u, v in V.

(Of course, (i) + (iii) = (ii)).

If H is a Hermitian form, then we will always write S for the real part ! g
and E for the imaginary part.

- Thus H(u H) =S(u U)+ iE(u ﬂ) u ~ew pedl
9, ’ ’ ,0), u, veV, and S, E: V x V = [& arc
bilinear. We also see that:

S(u, v) = E(iu, v),
S(iu, iv) = S(u,v),  E(iu, iv) = E(u, v),

S is symmetric (S(u, v) = S(v, u)),

WLy = o ' y o vl - - * Fur ﬂ
R s il E is a real, antisymmetric bilinear form on V satisiy!t
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E(iu, iv) = E(, v), then H(u, v) = E(iu, v) + iE(
cet of Hermitian forms on V form

subtraction.

u, v)1s a Hermitian form. The
4 group under pointwise addition and

Definition. Supposc T = V/A 1s a complex torus. A Riemann formon T is a
Hermitian form H on V such that E = Im H is integer valued on A, e
E(A,, A)eZ, forall 2y, A, e A If H(u, u) > Oforall ue V we say His a p{}jﬁffi‘u{;
Riemann form. 1f H 1s positive definite, i.e. H(u, u) > 0 for all ue Vou # 0, we
say H 1s a non-degenerate Riemann formon T, |

One sometimes calls H a Hermitian Riemann formon T, and E = Im H an
alternating Riemann form on T.

Theorem A. A complex torus T is the manifold of complex points on an abelian
variety if and only if T possesses a non-degenerate Riemann form.

The proof will be sketched later. The idea is to construct theta functions
using the non-degenerate Riemann form on T and use these to construct a
projective embedding ol T.

We will now discuss some naturally occurring Riemann forms. If dim T = |
we have T = C/A where A = 74, + Z/, with Im(4,/4,) > 0. Regard C as
a two-dimensional vector space over &, and define E(z, w) by the equation
zAw= E(z, wWi; A A,. Then E(z, w) 1s a Riemann form on T. E(iz, iw) =
E(z, w) follows from the fact that multiplication by i 1s area preserving. Every
other Riemann form on Tis an integral multiple of E. Thus, the Riemann
form does not usually occur explicitly in the theory of elliptic functions.

Here is another class of complex tori for which 1t 1s possible to explicitly
write down a Riemann form. Suppose K is a CM field, 1.c. a totally imaginary
quadratic extension of a totally real number field, K~ Examples are pro-
vided by imaginary quadratic number ficlds, and cyclotomic fields. Set
[K:Q]=2d,and let ® = {¢,,..., ¢ be asubsel of distinct cmnp.]ex imbed-
dings K < C such that if ¢ € ®, .;{.{;::11, where ¢ is the complex can_lug;}tc em-
bedding. ® provides an isomorphism, which we continue to call @, UH.'. ®Rgq R
with C? which takes o ® 1 to (¢, (), ¢2(2). .., d(2)). Let o/ be an quegral
ideal in K. It can be shown that ®(=/) 18 a lattice in C“ Set A = C jt’D{u:sfi].
We proceed to find a Riemann form on . A simplicfilculu:l;m}:ihm%;
we can find an algebraic integer (€K such that K = K {g]q_ *‘:E GEZ”’ dcifl't?le

I totally positive, and Im ¢;(&) > 0 for j = 1, ..., d For z |
y k£ J A < o . . : 1

E(z w) = Y19_ @(E)z:w; — z;W)) E(z, w) 1S R-bilinear, anti-symmetric, ind

’ N ratric and positive defin .alculation shows that for «,

E(iz, w) is symmetric and positive definite. A calculk |

ia] automorphism of

BEK, E(®(a), ®(f)) = t(ap) where o — dis the RONTHIEE o ues on
K/K* and ¢ is the trace from K to @. Thus, E(z, w) takes l.nlc,grfi' " rh @
®(o), and is a non-degenerate Riemann form on .s-l.. The ring Gulillsigur. ﬂn;i
of K imbeds in End(«/) via the map which associates (O I[.'}.‘ :l?tuq[if}n p
matrix whose iith coefficient is ¢(w). Thus, K o Endg(A). In this situke »

1S sai - ; . corresponding abelian
18 said to admit complex multiplication by K and the corresponcitis
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variety is said to be of CM type (K, ®). The assumption that .o/ is an inteyr,
deal is unnecessarily restrictive. It suffices to assume that ./ is a Z-latice |,
K. For this and much more on abelian varieties of CM type sce [L- CM iy
[SHIM]. +

Returning to the general theory we make the following convenient defip,.
tion. A complex torus is an abelian manifold if it possesses a non-degencrye
Riemann form.

Restricting the Riemann form shows that a subtorus of an abcelian muny
fold is again an abelian manifold. One can show that a quotient of an abeliyy
manifold is also an abelian manifold. This is a corollary of the followinyg

important result.

Theorem (Poincaré¢ Reducibility Theorem). Suppose A 1s an abelian manifold
and A, = A an abelian submanifold. Then there is an abelian submanifold -,
such that A, n A is finite and A is isogenous 1o A % Az

Proof. Sketch. Write A = V/A with Riemann form H. Then A, =1 A
where ¥, € V is a complex subspace and A, = V,nA. Set V, =V, th
orthogonal complement of ¥, with respect to H,and set A, = Vo, n A Ttcan
be shown that A, is a lattice in V; and so 4, = V,/A, is an abelian submani-
fold of A. Moreover, A, + A, is of finite index in A. The map A, > -,
given by (a,, a;) = a, + a 1s an isogeny. See [SW, Theorem 34, Cor. 3] or
[L-A, p. 117] for more details. C

Corollary. An abelian manifold A is of semisimple type and so Endg(A) iy ¢
semisimple Q-algebra (see the second proposition in Section 2).

We will now discuss some analytic results which will lead to the introduc-
tion of theta functions. We will explain Poincaré’s basic result (Theorem B
Fhat every periodic divisor is generated by a theta function, and then the
u}lpnrtanl theorem of Frobenius (Theorem C) which computes the dimen-
sion ::Jf a certain vector space of theta functions. Then, finally, we will be i
position to state the Lefschetz Embedding Theorem (Theorem D) of which
Theorem A is an immediate consequence.

Suppose V is a d-dimensional vector space over C and A 1s a lattice in b
Put T = V/A and let n: ¥ - Tbe the projection map. A function / on ' "
pfriﬂdif: with respect to A if f(z + ) = f(z)forall ze V, Ae A. Such a function
gives rise to a function on T, and conversely if g is a function on T then
i =gomisa periodic function on V. A Cartier divisor D on V is given by d
family {(Uus_f;)} where the U, form an open covering of V, f, is merome rphic
on U,, not identically zero, and f,/f, is holomorphic on U, ~ U, for all % p
The divisor is called positive if the function f, are holomorphic. If aeV the
translate of D by a, D,, is given by {(U, + a, f,(z — a)}. If D, = D for qll €N

- we say D is a periodic divisor. Note that the divisor of a periodic meromor:

phic function is a periodic divisor. Let %(V) and %(T) be the grov¥ ol
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givisors On V and T respectively. Then 7 induces g homomorphism
n*. L(T)— «(V).

The image of n* consists of the periodic divisors,
Divisors on Vare easier 10 analyze than those on T, For example, we h
L 7 w il | - : | u“lt:
the following facts:

(1) Supposc ge . #(V) has trivial divisor. Then ¢ is a nowhere vanishing
holomorphic function and we can write shing

q(2) = e(h(z)),

where h(z) is holomorphic and e(z) = exp(2niz), i = J-1

(2) (Cousin’s Theorem). Every divisor on V is principal, 1.e. we can set all
f’ = j] a single function meromorphic on V. In cohomological terms this
says H'(V, 0*) = (0) where (* is the sheal of nowhere vamishing holo-
morphic functions on V.

Suppose D' is a divisor on T and n*(D') = D is the corresponding periodic
divisor on V. By Cousin’s theorem, D = (f).Since D, = Dforall Ze A, wesee
fz+4)= U,(z)f(z) for all Ze A wherc U,(z) is a nowhere vanishing holo-
morphic function. Thus, by (1), U,(z) = e(h,(z)) where h;(z)1s holomorphic.
Setting A = A, + A, We find the following consistency condition

hi +a,(2) = h, (z + 42) + hy,(2) mod Z.

We wish to choose h,(z) to be as simple as possible. The simplest choice
leading to a fruitful theory 1s

ho(z) = Liz, 4) + J(2)

where L(z, 2) is linear in z, and J(/) 1s d constant.

Defimition. Let L: V x A — C and J: A — € be maps with L(z, 4) linear In
z for all Je A. A holomorphic (resp. meromorphic) thetd jiuu-rfn!n for A of
type (L, J) is a holomorphic (resp. —eromorphic) function 6 on ¥ such that
0(z + 2) = e(L(z, 4) + J(A))0(2) forall ze V, €A,

Theorem B (Poincar¢). For every Jivisor D' on T, IJ’I: !Jru,*ri'{.m"f;‘ ;:"u;;{:r:
n*(D") = D is the divisor of a meromorphic theta ﬁuu'rfnn, n [Q] f_[f . If DL
a positive (holomorphic) divisor, then 0 is a holomorphic theta function.

Note that Theorem B is a sharp form of C-:::u:‘.iln's lhunn.:m 1‘131 i};; ‘*P‘;‘:::;]f
case of periodic divisors. The early prumfs were qllflﬂ *30111!31(';1“:‘”-““: [L]lﬂ e
usually quoted today is due o A. Weil (“Theoremes fondamentatl

théﬂl‘ie d | o ” . 4 ” ' . '
c 3 >l . ;”“”{” - » * ! .
s fonctions théta”, 5¢ o what extent 015 determined by D

A A question which naturally arises 1S has trivial divisor if and only if
: at: 11 iS ‘ ‘ ‘L
Nl easy exercise shows that a theta function = -) is linear, and ¢ 1S

0(z) = e(q(z) + I(z) + ¢) where g(z)1s a quudru[ic: form, (2
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a constant. We call such theta functions trivial theta functions. Then:
group of theta functions

trivial theta functions

AT =

Suppose 0 is a theta funcction of type (L, J). We now show how 10 gy,

ciate a Hermitian form to 0. . - |
The consistency conditions explained earlier impose the following resiy,.

tions on L and J:

(@) J(A + p) — J(A) — J(w) = L(A4 ) mod Z;

(b) L(% p) = L(p, £) mod Z;
() Lz, A+ p) = L(z, 4) + L(z, p).

Note that (b) follows from (a). Condition (¢) implies that L(z, /) can be
extended to an R-bilinear function on V. Define E(z, w) = L(z, w) — L{w, -
Then, E is an anti-symmetric R-bilinear function on V x V' which assumey
integer values on A x A, by (b). This last condition implies E is real valued
on ¥V x V. Moreover, we have the following result,

Lemma. E(iz, iw) = E(z, w).
Proor. E(iz, iw) = L(iz, iw) — L(iw, iz) = i(L(z, iw) — L(w, iz)) and E(z, w)

L(z,w) — L(w,z) = —i(L(iz, w) — L(iw, z)). Thus E(iz, iw) — E(z, w)
i(E(iz, w) — E(iw, z)) must be zero since itis in R N i R. '

1

1

Define H(z, w) = E(iz, w) + iE(z,w). Then H is a Riemann form on
T = V/A, called the Riemann form associated to 0.

Suppose 0(z) = e(q(z) + I(z) + ¢) is a trivial theta function. Let B(z. w) =
Q(z'i-.w)_q(z)“' q(w). B(z,w) is C-bilinear and symmetric. A short cal
culation shows that 0(z + 4) = e(B(z, 4) + q(4) + I(1))0(z). Thus E(= /)=
B(z, ):]"'BU-. z) =0 and the Riemann form associated with a trivial thet
function is zero. Thus there is a homomorphism from the divisor group (/]
1o the group of Hermitian forms on T given by:

D' — 7*(D') = (0) - H.
g ’»Wem refine this further.

-

-~
-‘I
-

Suppose D = n*(D') is q positive divisor. 1f D = (0), th¢" 0

P
i
o

r

is an enti : - qrive, 1€
e ‘m Junction and the corresponding Riemann form H is positive: !
A12,2) 20 forall ze v,
s . -
See QW B 1, o e gy U
0 P24, Lemma 31] for the proof. If H is positive definite w¢ 5.

= l-::";'.'fi : : . il . T 1;“
e eete ¢ and that the Eﬂrrespnndmg divisor on T 1S “””;h_ Il "
| -y W

- ‘-'"“.-l=‘ i

n this sense are ample in the sense of algebraic geomell

'
i

. I'lll
toar

e ]
R 5 o
e

11 IT

=== DLy a given theta function by a trivial theta Tun

a: =

= e mme e —

= = ———
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without changing the corresponding divisor it i natural to look

for a
form. normal

Proposition. Let 0 be a theta function and H (he
Then there is a theta function 0, unigue
that é/ﬂ is a trivial theta function, and

xo o I - R
O(z + 4) = e(-i- H (:-: + 5 x.) + K(}.})H{:),

assoctated Riemann form.

up to a multiplicatipe constant, such

e

where K(2) is real valued and

K(4, + 4;) — K(4,) — K(4,) = 4E(4,, /) mod Z.

0 is called the normalized theta Junction associated to 0. Set U(2) = e(K(4)).
Then  satisfies (4, + 4,) = (4, )W (s,)e(3E(4y, 2,)). W is called the asso-
ciated quadratic character of 0. Note that |\y(4)] = 1.

If Th(L, J) denotes the vector space of theta functions of type (L, J) and
Thyeem(H, ¥) the space of normalized theta functions with associated Riemann
form H and quadratic character ¢, then one can find a trivial theta function
fy such that multiplication by €, gives an isomorphism

Th(L, J) = Th,_._(H, V).

See [L-A, Chap. VI, §2] for this and the proof of the above proposition.

At this point it is easy to show that every f€./#(T) can be represented as a
quotient of holomorphic theta functions of the same type. One can write
(f)= Dy — D, where D, and D, are positive divisors. 7*(D) = (0.) h‘}’
Poincaré’s theorem, Theorem B. Now, 7*( /)0, has divisor n*(D,) and s0 1s
a holomorphic theta function, 0, of the same type as 0. Thus 7% = to/0 .
as asserted. Conversely, the quotient of two theta functions of the same type
?5 a periodic meromorphic function. This leads to the problem ofcqnstruct-l
Ing all holomorphic theta functions of a given type. This 1s :“:‘:D"]p“:;hﬂd, b},
a theorem of Frobenius. Before stating this theorem it is necessary to review
the definition of the Pfaffian of an alternating form. | L

Let x;, 1 <i<j<2d be d(2d — 1) clements ulgc‘c;rqw;:]l‘l])['r:d} g
ov ; o mema e . aptisymmetric matrny A = -4’
Thee:'e?s. aSleltnilﬁ . _llij dn'(ﬂjl {;}n%ld‘ffrd:z?c: I:!“:;blfch that det X = Pf(x)” and

que polynomial Pf(x) ol deg
Pf(x) takes the value | on
0 f,,)
(—JJ 0/

24 matrix with cucﬂ'u:r'ic:nlﬁ In 211-1}’
when g 15 substituted I"Drr lﬁ
| [ree Z-module of rank :J

i,/ .\ is a basis ol A, sel
(Jiyy Agyenes A2u)

pendent

lf & 2(9.-1-) IS an antisymmetric 2d X
gng we define Pf(G) to be the value of PI(X)
a;ff) is called the Pfaffian of G. Lct A be
Pf E an alternating form on A. Il =

(E) = P(E(4, 2;)). This is well defined up to sigh.
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Lemma. Let A be a free 7-module of rank 2d and E a non-degenerate gy,
nating form on A. Then there is a basis {Ay, A2, s Asg) of !‘}_xurh I
E(4, ) = 0forl <ij< d. EQusts 2a+)) = Uﬁ}_rll -_=i_li,j <, f“"l-ff E(2,, s
¢,0; for | <i,j<d where e,|e,l...|eq are positive integers. Finally, P[([) -

€€z €a
This lemma is due to Frobenius. A basis with the given properties is called

a symplectic basis for A. If & is the diagonal matrix with diagonal entrie,
€1, €2y €4 then (E(4;, 4;)) has the form

(% 9)

Theorem C (Fmbenius). Suppose (L, J ) is a type, H the associated Riemany
form, E = Im H. Assume H is positive definite. The vector space of holomor-

phic theta functions of type (L, J) over C has dimension PI(E).

Proor. Sketch. Choose a symplectic basis for A with respect to E. Tt 1s casy
to check that 4, As, ..., A are a basis for V over C. Let z,, 25, ..., 2, be the
coordinate functions on V with respect 1o this basis. By multiplying by a
suitable trivial theta function, the space that we are examining 1s isomorphic
to the space of holomorphic 0 on V satislying the equations

0(z + 4;) = 0(2), L= < d,
B(E -+ }‘J‘H) = E(EIZ + C;}G[E), | =) “'1

for some fixed constants ¢y, C, ..., ¢q. The first set of thesc equations show
that we can expand 0 as a Fourier series

0(z) = Y a(n)e(n: z).

nedd

The second set of equations imposes recurrence relations on the set of

coefficients a(n) which show that all the a(n) can be expressed 10 teri o

those a(n) with 0 < m; < e; — 1 where n = (n,, n, ..., ny). This gives an uppet
bound of e,¢;...¢; = PI(E) on the dimension of the given space of thetd
functions. To get equality one must show that for a collection of a(n) sal’

o fﬂﬂt a h?lomorphic: function. We omit the proof but note thal here h
s issumption that H is positive definite comes into play.
raised

:_'- B ﬁnd C allow us to answer all the questions pre viously

= We_ﬁrst discuss a form of the Riemann—Roch theorem
i > & positive divisor on T and define, as usual
B Z(D) = {fe #(T)|(f) + D = 0}.

"her theta function 0, such that 7*(D) = ()

#(0,) to be the space of all holomorphic theta functions with
25 0. Then 0 — 0/0, gives an 1somorphism of %(0,) with &

gives the

Theorem: SHPPME.D”’ D, U D, are positive divisors on T and 1]
ample. Then there 1s a polynomial P of degree d such that wat D

Deline
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the same type

dimension of this space. (D). Theorem C

o IS

dimg j}f"(z erj) = P(rg,ry, ..., Fii)

J=0

whenever r; = 0 for all jand r, > 0.

PrOOF. Set :fr"'[Dj) = (0,) and let H; be the Hermitian form corresponding to
0, Then Y=o 1;H, corresponds to | |7 07 and is positive definite if r, > 0 for
| <j<mandry > 0. Then we have J

dime £ Y "fﬁj) = dim¢ L0507 ... ;)
j=0

="Pl(rsEs + Fi Ept ¥ 4 byl

which is a polynomial in the r; of the type described in the theorem. O

Corollary. If D is an ample divisor on T, then dime Z(rD) = r¢ dimg Z(D) for
r> 0.

Suppose T is a complex torus of dimension d which possesses an ample
divisor. The above theorem can be used to prove Siegel's theorem (see the
beginning of this section) for T. We prove the first part as follows. Suppose
fl_rfzn very fo€M(T) with m > d, where d = dim T. There exists an ample
divisor D such that (f;) + D = Ofor 1 </ =m. Set 7*(D) = (0) and 6 = /0o

i ; _ = - m

The 6, are holomorphic theta functions of the same type as 0. Forr = EF_‘ ')
!’hﬂm are (1) monomials gregf ... 05 as the J \.-'urdy mrﬁcr HGIII-[]{?LE:E‘HIIH:
integers. These are all in .Z(0) which has dimension? Pf(E) where leb the
alternating form corresponding to (. Since m = d we have ("n') > 7 P_r{f;;
ﬁ]:r large r. The corresponding monomials are then linearly d"-‘t’f;ﬂ“d”;[ ‘lr“
this g - - : _the transcendence degree

fls gives an algebraic relation among the J;. Th‘ua» the transcende E
Of #(T) over C is < d. See [L-A, Chap. VI, §6] for t ’
equality holds, .#(T) is finitely gencrated over &- - complex 1OFUS

_ Let A be an abelian manifold. Recall that this means Als a FunérgﬁcniUS'
With a non-degenerate Riemann form H, .e. H is posive d_::nn:;e. O H
theorem. Th SR TN ierence of a theta function 0 on .
. , Theorem C, implies the existenct &8 < 2. { induced by 0.
'ls correspondi it [ et D be the divisor o< 1n

ponding Hermitian form. L€

e pr{mf th

) Jian manifold
?emm D (Lefschetz Embedding Theorem): = ’ h{;; l.rmq:;f}::“;’[m) con-
si’;d D the divisor on A constructed i1 the above ﬂjmﬂ'b 1 ; pN(C).

ered as a linear system on A gives d projective embedding :
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e See [L-A] or [SW] for the proof. The map 1S obtained as [ollow
K7 AN A~ 3 basis of Z(07). Then te A4 poe.
. YD)~ L(0°). Let 0y, 0,,0,, ..., Oy be aba Boes (o
[0o(0), 0,(2), ..., BN(I)]EPH(@). Since all the 0, are of the same type, the Mip
is well defined. One must show it is delined everywhere, 1s 11, and thy the
image is a non-singular subvariety of PN(C). |

Let E = Im H be the alternating Riemann form corresponding to [, Ty,
N =dim Z(0°) — 1 = 3¢ Pf(E) — 1| where d = dim¢ A. One can also )0,
that the degree of the embedding is d! 3¢ PI(E).

Suppose d = 1. Then N = 2 and the degree of the embedding is 3 if we
the Riemann form constructed earlier on C/A = A; A embeds as a nop.
singular plane cubic. Thus, the Lelschetz Embedding Theorem can be coy.
sidered as a vast generalization of the work of Weierstrass on clliptic (upc.
tions. We remark in passing that the theta function that arises in this contey
is the Weierstrass o-function, a(z), whose induced divisor on C/A is just the
zero element.

Theorem D is, of course, a very explicit form of Theorem A. Conversely,
if A is an abelian variety over C then A has a projective embedding
The pull-back of a hyperplane section is an ample divisor D on A und i
a*(D) = (0) then the Hermitian form corresponding to ¢ 1S a non-degenerate
Riemann form on A(C), i.e. A(C) is an abelian manifold. Thus the existence of
a non-degenerate Riemann form is a necessary and sullicient condition fora
complex torus to be the manifold of complex points on an abelian varicty!

§4. The Neron—Severi Group and the Picard Group

In this section we assume A = V/A is an abelian manifold. We define sone
groups of divisors on A.

- 2 = group of all divisors on A.
2, = group of divisors on A whose corresponding Riemann form 1s U
9, = group of principal divisors.

- Thedivisors in 2, are said to be algebraically equivalent to zero, thos '
2, are said to be linearly equivalent to zero. We have &, < &, < 7. Delin (he
Nmmsmﬂ group to be NS(A4) = 2/2,, the Picard Group to be Pic(-A) =
e ’;ﬁ{ﬂﬁm Pic®(A) = 2,/%,. Then we have the exact sequence

_‘ et (0) = Pic®(A4) — Pic(A4) —» NS(A) — (0).

()

NS(A) I$ a torsion free finitely generated abelian group (and 3
ée abelian group) of rank < d(2d — 1) where d = dim A.

e : -. .* J
Fo o g

Jnany form H associated to a divisor is complcu,l} de

EE SR R o m——

e T
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mined by E = Im H restricted to A. These form 4 o
subgroup of the .2d x 2d antisymmetric matrices with Integer coefficie
The latter group 1s free abelian of rank d(24 — ). Thus NS(A) inie .‘lgunts.
(ree abelian group of rank d(2d — 1), jects into 2
O

Whend = 1, NS(A) = Z, the isomorphism being given by D

we will next show that Pic®(4) can be given the
manifold, A, the dual abelian manifold of A.

Suppose [D] is the clusrf n F‘ic”@;—l} of a divisor D. Then D corresponds
to a normalized theta function 0 which only depends on the class of p. Since
the Riemann form associated to 0 is trivial we have (- + 2) = e(K(7))0(z)
where K(A)eR and satishies K(4, +7,) = K(4,) + K(/5)mod Z. Then
1p(4) = e(K(2)) 1s a character of A. Note that y,, is the trivial character if and
only if O€ M (A). Dcngling the Pontryagin dual of A by A we get a mono-
morphism Pic®(4) c A by [D] — z,,. Since A = 7** we have A x (R/Z)* is a
real torus of dimension 2d. To give Pic”(A) the structure of an abelian mani-
fold we will show Pic®(4) < A is an isomorphism, that A has the structure of
a complex torus, and finally that the resulting complex torus has a non-
degenerate Riemann form.

Suppose X is an ample divisor on A, § the corresponding theta function,
H the corresponding Riemann form, and E = Im H. For re }" we set 0,(z) =
0(z — t). The divisor corresponding to 0, is X,, the translation of X by !
(actually, by the image of ¢ in A). A calculation shows that the normalized
theta function associated to 0 /0 has multiplier e(— E(1, 7)) [n the ﬁrst pl;:u::r:
this shows X, — X is algebraically equivalent to zero. Sccun__t'jl}’m_ since ‘E_“*
non-degenerate, every character of A is of the form 4 — e(— E(t, £)) for sult-
able te V. This proves

— deg(D).
structure of an abelian

over, every

Proposition. Pic?(A) — A given by D — yp1s an isomorphism. More
De 2, is linearly equivalent to X, — X for suitable € A.

. 4 — Pic®(A) given by
Corollary. If X is an ample divisor on A, the map Py (lj E}:LJ[P;[EJ;
Ox(t) = [X, — X is surjective with finite kernel of order det(£) =

v the theorem. The kernel 18

htforward to sce this 1S

]

ProoF oF CoroLLARY. The Surjﬂﬂli"’iw s givcﬂ b "
precisely {te V|E(t, \)e Z, for all Ae}/A. !lllﬁ b”,‘-lﬁ” -
aﬁnilﬂ gruup ﬂf ﬂrdﬂr Pr(E)l (USG q S}rﬂ]plﬂﬂ“l: Dasis 10T /At

" Fah ] "-. 'I.[' [t'lc
}':J? P ~ ‘a\ Wit Lﬂ[]hldL

To put the structure of a complex o 0
Explicitly,

Space V* of antilinear functionals on V- '
[ E b j .
. 1V We have a non-

V* . e » SAMme F o a []).
IS @ complex vector space of the san iven by (& (> =1m g(t)

: srxw PR E
degenerate R-bilinear pairing ¢ , >} * x|
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" Define A* by A* = {Ee V*I(E e, for all Ae A}. Itis not hard (o see (i
A‘ is a lattice in V*. The following lemma follows from the definition. ang

the non-degeneracy of the pairing {, 4).

Lemma. For £ V* define 3:(2) = e(—<¢, 2)). Then ¢ = . gives an isop,,.
phism ﬁ'om V*/A* to A.

This gives A the structure of a complex torus.
If H is the given Riemann form on A, then ¢ — H(t, *) is an isomorphi,
of ¥ with ¥* as complex vector spaces. Under this isomorphism onc check
~ that A goes to A*. Thus we have an epimorphism ¢,: V/A — V*/A* 1y,
~ various maps we have defined are tied together by the following commutar

~ diagram
A= VA2 yr/Ar
T ét’l tl‘: B2 x.;

Pico(4) = A

e A el
L
L

.':_i :{: 'E .I F'I; :

It remains to exhibit a Riemann form on V*/A*. The map V— V* (which
- Wwe also denote by ¢y) given by t - H(t,*) is an isomorphism as we haie
i

Iready pointed out. Define

L
I-I
I+
)

1--

yr
. N
o

i H*(, n) = H(gy ©), i ()

"1 certainly a Hermitian form on V* but E* = Im H* need not be integer

> F
s b

‘valued on A*. Using the above commutative diagram we see the kernel of

i .;"-l' et L
N T
"..' "::_ L‘I r' i
o

P ¥/A = V*/A* is finite implying ¢;;' (A*)/A is finite. Thus an appropristc
integer multiple of H* is a Riemann form on V*/A*. By “transport of struc-

¥ ..._lr. gl
Finfrentras
1re *
it K

¢ 1I;'(A] becomes an abelian manifold, A called the dual abelian manit-

i M

o
L
!

| _;_.-ﬁtlon A+ A is a genuine duality. If p: A — B is a morphism ol
., lds, then p: B— A is the morphism of abelian manifolds 11-
4 Oy pulling back divisors. One can show A4 is canonically isomorphic tv

% PO

L TR
I I " -‘l::
Sl

or ~’-u,r 1. Mk -~ 2
; divisor X on A4, #x: A— A is an isogeny with kernc! of
)T where E s the alternating Riemann form corresponding 10 4

f‘ topic of dual abelian manifolds we briefly discuss the

S IIX 15 an ample divisor on A the isogeny ¢, € Hom(, A) ;’{
]'J Hﬂmo(!‘l, /I). LEt ¢;1 EH{}mﬂ(/‘i A) be 1ts jni.’{:l'SL‘.-

e — 4 be the dual morphism. Then p — p extends to ¢ mitp
_ For peEnd,(A) define p' = ¢gylopody The map

Volution. i e ., Rosall
: F.;:; [plﬂpz)’ = p'znpi'l and p.u - p, Cﬂ.lied [hL RL

JL Suppress the dependence on X in the notd! IT ”‘1:]'
~ 4P on the semisimple Q-algebra Endy(A) Pt

=)
Behy,

All this follows from

-

1
-
-

e it o P B B S ———
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_ ition. Let X be an ample divisor on A, and H the
fofm Then H(p'z, W) = H(z, pw) for all z, we y i,

pﬂﬂﬂt o H.

rc‘.nrrespmrdfny Riemann
P 1s the adjoing of p with

The proof, which is not hard, follows from ¢
definitions.

In the case of abelian varieties over finjte fields, the ¢
of the Rosati involution can be used to prove lhr.:'Rium
associated zeta function (see [M-AV. Chap. 1V, 321] for this). Anothe
app]ication i1s to classify the endomorphism rings nflubclian mar;if.cmid?m“trh%r*
theory was developed in the 1930s by A. A. Albert and others un(jt;r [hl;
rubric of “Riemann matrices.” For example, If D = End,(4) is a division
algebra, then the center of D is either totally real or else a CM ficld. [M —‘A‘J
Chap. IV, §21], gives the main results. |

arefully unwinding the

Xistence and positivity
ann hypothesis for the

§5. Polarizations and Polarized Abelian Manifolds

For many purposes, it is natural to consider not just an abelian manifold A,
but 4 together with the choice of a non-degenerate Riemann form. Roughly
speaking, a polarized abelian manifold is a pair (4, H) where H is a non-
degenerate Riemann form. We actually use a slightly different definition: say
two Riemann forms H,, H, are equivalent if there exists n,, ny € N such that
mH, = n,H. Then a polarized abelian manifold 1s an abelian manifold A
together with an equivalence class of Riemann forms on A that contains a
non-degenerate Riemann form. Such an equivalence class 1s called a {han_m-
geneous) polarization of A. We use the notation (A, ) for a polarized abehan
manifold, where  is the equivalence class of the Riemann form H.

Note that a non-degenerate Riemann form on A corresponds to
braic equivalence class of a non-degenerate positive divisor. Such ad _
ample on 4, and gives rise to a projective embedding of A Then a polarized
abelian manifold (A, A) corresponds to giving the abelian manifold A (o-
gether with an equivalence class of projective ¢m bcdding:;_uf.ai. 53k

A morphism of polarized abelian manifolds ¢: (.. Hy)=(Ag, 731 18 8
Morphism ¢ A, = A, such that p* H, € H;.

A justification for the introduction of the notion ol pol
the following result.

an alge-
IVISOT 18

qrization is given by

eor - o abeli nifold is finite.
em. The automorphism group of d polarized abelian mani/

- i T— 1S 4 non-
Proor, Let (4, A) be a polarized abelian ”“.l,mmm' 1';;1?: ::} I; H(x, »)
degenerate Riemann form. Suppose 0 € Aut(A, H), Thﬁl&cd [ﬂ““:] 1 linear map
;?inmjust an integer multiple of H). Here up of linear

» the universal cover of A. Thus @ belongs

we have
(o the compact £r0
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maps preserving H. On the other hand, a is determined by its restriction
| A, on which it preserves the Z-valued alternating form E = [y

~ the lattice . :
~ §o o belongs to a discrete group also. But the intersection of a compucy g
| M

~ with a discrete set is finite! ]

A special role is played by the principally-polarized abelian manifol s
These are the polarized abelian manifolds (4, f) for which there is /i e ]
with Pf(Im H) = 1. Thus with respect to a symplectic basis of A, E = Tm }/

given by the matrix
0. 1
—1 0/

- Examples of principally polarized (p.p.) abelian manifolds are given by the
~ Jacobian varieties of non-singular algebraic curves (or Riemann surfaces), I
T is a non-singular algebraic curve of genus g > 0, defined over €, then one

*m show that Pic®(I") = {divisors of degree 0 on '} /{linear equivalence| has

E‘E@the structure of an abelian variety J = Jac(I'), the Jacobian of I'. (The Abcl

Jmhl theorem, proved in [L-A, Chap. V] shows that Pic”(I') has the
- structure of a complex torus, while Riemann’s relations, proved i {L A,
- Chap. IV, §4], imply that Pic®(I") is an abelian manifold). Fix pye I'. Then the
- mapa:I'—J given by p—[p — p,] induces a map o~ T — J given
by e (py, P2y - s Py-1) = > 421 a(p;). Here 1) is the symmetric product
| % I with itself g — 1 times. The image of -1 in J is well determined up o

-.‘it

‘translation and is a non-degenerate divisor, the theta divisor 0. It can be

A

| * 1 that 0 determines a principal polarization on J.
Torelli’s theprem (see [G-H, p. 359] for a proof) says that the pair (J, 0

''''''

determines I' up to isomorphism. More precisely, if (J, 0) = (J, i), whete

The following proposition is often useful.

Al
i S

s iy

JL=i Uil

_ polarized abelian manifold is isogenous to d princtpd

HUFIZe "; 3 7.-.' .. iﬂﬂ man Uﬂ 1d .

B i o manifold of dimension d. As usbd
14, 1) be a polarized abelian manifold of dimension d. As UsHe
/A and E = Im H is integer valued on A. Let {4, 42, fagy DCH

” 14_ A. In Particular, E(Ap Ags)) =€ 1 <j < d. for some
efine a new lattice

i iy
Al
3 _.." L
d [ i
o - T

o AN
i

d 1 d
A=Y 17+ Y 1,..2
e jziej J jzl d+j

b

P =

o ] -',-.-r . ._..: I : : | : : Ll[][
O form on A, is integer valued, and has determil |
\ - ‘I':..w'r': .-- ; L] - f . [: -

T A=V/A— V/IN' = A is an isogeny and A’ is prif o

Y

== | R

abelhil

*:.L‘*-Jl, maﬂifﬂld, thﬂn ¢H: A —F f‘fj [hc dl,lﬂl

II# o
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manifﬂld- is an isogeny with kernel of order det f — Pi(E)?

Ais principally polarized, A =~ A. It follows that Jacobians ¢ In particular, if

are self-dual.

§6. The Space of Principally Polarized
Abelian Mantifolds

Ford = 1, let ./, be the set of iIsomorphism classes of principally polarized

abelian manifolds. We will indicate how ./, can be given the Sll"uclu;* n;
L] e L ¢
complcx analytic space. :
Consider the case d = 1. Every abelian manifold of dimension 1 is princi-
pally polarized, so the polarization 1s irrelevant. Let # = {teC|Im 1 > 0!
4 A T( . ‘ o /AL . o

the Poincare upper half plane. One has </, = SI,(Z)\ # given by

ClZw + Zw, =1 = w/w,

where Im(w, /@) > 0. The action of SI,(Z) on # 1s given by

a b at + b
( (B} = ———.
¢ d T + d

This material, which is fairly familiar, will be seen as a special case of our
further considerations.

If A = V/A is a principally polarized abelian variety we choose a C-basis
for ¥ and a symplectic basis for A. One then sces that A has a concrete
representation as (CY/<w,, ..., w,y), H) where @y, ..., @y aT¢ R-linearly
independent column vectors and H 1s a Riemann form whose imaginary part

. 0 & .
E has matrix (E(miij) — J where J :( ," 0), The d x 2d complex
matrix Q = (w,, w,, ..., Wyy) 1S called the period matrix.

Two questions arise.

(1) What conditions on Q express the condition that the ultcrnaullrng form
: = v imaeinary pi a non-
Eon (0, wy,...,wy4) gIVEDN by J is the imaginary part o
degenerate Riemann form?
(2) When do two period matrices © and {2 corres
pally polarized abelian manifolds’

pond (0 isomorphic princt-

i | aut stermines an
Some calculations (sece [L—A, Chap. VIIL §1]) show _thdl () determines al
-onditions hold.

4belian manifold if and only if the following two ¢
(Q' = transpost ol Q),
e definite).

(RT) QJQ! = 0

(>0 means posItIY

(RII) 2i(QJ'QY) ! > 0

th These conditions are known as Rieman

€ condition E(iz, iw) = E(z, W), and (RI1I)

b be positive definite. In fact, the matrix ©
asis of C4 i 2i(QJ ' Q')

(RI) 1 equivalent 10
to the condition that
¢ standard

n's relations.
is equivalent
( H with respect 10 th
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| If we write Q = (Q,, Q,) with Q,, Q, complex d x d matrices, the Rieman,,
relations take the form

(RI') Q,Q) —Q,Q; =0,
(RIT) 2i(Q,0Q4 — Q,0Q) > 0.

From these relations it is easy to show that both £, and Q, are inverip),.

| Let # be the set of complex matrices Q = (€,Q,) satisfying (RI)
and (RIT). Gl,(C) acts on # by multiplication on the left and Sp, (7) -
(M eGlyy(Z)MIM' = J} acts on # by multiplication on the right. One gee.

that
Ay = Gl(C)\R/Spy(Z).

The action of Gl,(C) gives an isomorphism of abelian varieties, while (he
action of Sp,4(Z) corresponds to a change of symplectic basis.

Thus Q = (anz) ~ (1, I) where 1 = Q?ﬁl. The conditions (RI') and
(RII) assert that 7 is symmetric and Im t is positive definite.

~ Definition. Let #; be the space of d x d complex matrices t which are sym-
- metric and Im  is positive definite. J is called the Siegel upper half space. li
- 18 a complex manifold of dimension d(d + 1)/2.

L A B
When is (t,I)~ (¢, )? Write M=(C D)' Then, (tr, [}M =

‘(’A + C, 1B+ D)~ ((tB + D)"'(tA + C), I). Thus, we must have
' v =(tB + D)'(t4 + C)

- M(C | D)m Sp24(Z).

Tﬁptltthlngs in somewhat more familiar form we note that Sp,,(~/) 3

variant under transpose and that t* = t. Thus, we let Sp,,(Z) act on #, by

i e |

i
K
“

o1 1
’&%ﬁ" 11V,
- Inva
: i Ji‘ ._'|.

. L

FEShE
o =1
1y P
T -

W =

="

i

I

4 ) -. J o g P : A B N
& j_}-;‘,_ﬁ le p)t = (A1 + B)(Ct + D)™
The final conclusion is
oy % Spo(D)\ X,

¥
-

» 2 Lhis more carefully we see o/, is parametrized by d d(d + I; |
Fh e X af

|

Hatylic space. In fact, this space can be given the structure

asi- ive variety.
,,% the familiar o/, ~ SI,(Z)\# which, V¥
"o Mthc complex plane. i of
"B4ES 1IN A similar manner the “space” of compleX P
e

T

Ml
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: i it turns out to depe 2
dimension d it depend on ( complex parameter

suspects that when d > 1 there are complex tori which are not jb;fhus one
eties since S AR
g2 Ei_(_._ti + 1) _d(d - 1)
o N i =1 when d>2

m—

This is indeed the case.
As an example, let d = 2 and set

O — (JI + | oo U)
7, o+i 0 1)
where «, f, 7, and o are real and algebraically independent over Q. Let
T be the torus C2/<{Q), where (Q) is the lattice generated by the {:Uh‘mms
of Q. We will show .#(T) = C. Suppose fe.#(T) is not a constant Then
(f) = Dy — D, where D, 1s a non-zero positive divisor on T As shown 1in
[SHAF, pp. 354-356], D, corresponds to an integral, non-zero, antisymme-
tric matrix A such that QAQ"' = 0. Writing this out shows there is a non-
trivial linear relation with coefficients in Z between 1, f1, 5, % + i, & + i, and
20 — Py + i(x + ) and so between 1, f3, 1, , d, 26 — fi7. This contradicts the
algebraic independence of «, f3, 7, and o.

Here is a heuristic argument that the generic abelian variety is simple. If A
is a principally polarized abelian variety of dimension d which is not simple
then A4 is isogenous to B x C where dim B = b and dim C = ¢ with 1 <b,
¢<d,and b + ¢ = d. The modulus of Bis in ./, a [b(b + 1)/2]-dimensional
space, and the modulus of C is in ./, a [¢(c + 1)/2]-dimensional space. Thus
the moduli of A4 with a factor of dimension b lie in a subspace of .o/, of
dimension

b(b + 1) 5 (d = b)(d —b+1)

2 2

T:he maximum of these dimensions for | < 1
glven by b = [d/2], namely [(d* + 2d + 1)/4] (here [x] means the
Integer < x). But,

[dl + 2d + I:, ” i{ff_-i*_]_) for all d > 1.

h < d is casily seen to be that
greatest

4 P,

: _ . ae 7 for its endomor-
Flnally, we show the generic abelian varicty A has __m]r“dinu oy
Phism ring. Let te.o/, and A be the abchan varicty correspt i

 End(A) if and only if
€0 multiplication by g e M,(C) gives an clement of End() il an PL }

4 B
- | T A ot M = ( )
i v matrix M € M,,(Z) such that g%, [) = (r, DM. Le c oD |
B+ D and gt = tA + C.
0and A =D = n‘l
must satisty

“l:ﬁ Mmust have (gt, g) = (14 + C, 1B + L)) 50 ;’;; r s
us‘ TB N ' o - » —_— “l] =5 ? o
Py —td — C =0 Let 7 J r. Otherwisc the 1

for . S |
Thez there is no condition :mpuscd on
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certain non-trivial quadratic polynomials with cn.r.:ﬁ'lciicntl:-; In Z. In Benery|
this cannot happen. For example, suppose [ with i < are algebraicy),
mdcpendent over @. Then a simple calculation shows that ‘IHT + Dt — g4
C = 0 can only happen when C = B=0and A = D = rif Ir.::_r SOmC e 7y
thc corresponding abelian variety the enqumurph:sm ring is precisely 7 o
course, when d = 1 we need only requirc that ¢ =y, not be quadry,

over Q.
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