CHAPTER VI]

Jacobian Varieties

J.S. MILNE

This chapter contains a detailed treatment of Jacobian varieties. Sections 2,
5, and 6 prove the basic properties of Jacobian varieties starting from the
definition in Section 1, while the construction of the Jacobian 1s carried out
in Sections 3 and 4. The remaining sections are largely independent ol one
another.

The conventions are the same as those listed at the start of Chapter V,
“Abelian Varieties” (see also those at the start of Section S of that chapter).

S1.. Definitions

Recall that for a scheme S, Pic(S) denotes the group H IS, ¢§) of isomor-
phism classes of invertible sheaves on S, and that S Pic(S)1s @ functor from
the category of schemes over k to that of abelian groups. L

Let C be a complete nonsingular curve over k. The degrec ”ff.“j”;”f’i
D=3 mPonCis¥ n,[k(P): k]. Since every invertible sheal £ on €15 0 l...lL
form #(D) for some divisor D, and D is uniquely dctcrmmed up to IE;.-ir
®Quivalence, we can define deg(¥) = deg(D) Then deg(#") = degins) =
"+ deg(D), and the Riemann—Roch theorem says thal

2(C, ZL")=n" deg(Z)+ 1 — ¥

This gi n e w(C. M) is written
gives a more canonical description of deg( ): W hL‘L{{i*ﬂw l]_’iL?U[C] for
'~ @ Polynomial in n, deg(.%) is the leading coeflicient. W¢

® ¥ S T - ‘1: {J UI] {:_ll
the 8T0up of isomorphism classes of invertible shed "-:.b ;ﬂ ti;gf; - tible sheal
E i & DC ¢
L T be a connected scheme over K, and let 4.2(b)] shows that

0 ' .
3 C X T (by Whi{:h we mean C xhp{:c{.ﬁ.] ? }' Tth [14‘
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‘,nd therefore deg(Z), 18 independent of t; morcover, (b Constp,

Gy Qe : se change relative to maps 7' _, 1
K of &, is invariant under ba g PS T' = T, Noy,

: tfor i MI" onCx T, (4*-#) is isomorphic to O¢, and, in Particyly,
has degree 0. Let |
PO(T) = (£ €Pic(C x T)|deg(£,) = 0all t}/q* Pic(T)

S : ¢ e ' It

B e may think of P(T) as being the group of families of invertible sheayy
- Hgof _ 0 parametrizcd by 7, modulo the trivial fu:ml]u:s. Note thyy PO i
* ; - _. 1:1' from schemes over k to abelian groups. It 1s this functor that the

~ Jacobian attempts to represent.
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1.1. There is an abelian variety J over k and a morphism of functors
" PE"* J such that iz PA(T)— J(T) is an isomorphism whenever (1) |
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Let k' be a finite Galois extension of k such that C(k') is nonempty, and lej
" G be the Galois group of k' over k. Then for every scheme T over k, C(T ) i5
nonempty, and so 1(T;.): P(Ti) = J(T,:) 1s an isomorphism. As

J(T) £ Mor,(T, J) = Mory(Ty, Jy)¢ = J(T,.)C.

we see that J represents the functor T+ P2(T,)% and this implies that
the pair (J,?) is uniquely determined up to a unique isomorphism by the
| condition in the theorem. The variety J is called the Jacobian variety of C
2 ‘Note that for any field K = k in which C has a rational point,  delines an
e isomorphism Pic®(C) 3 J(k').

s When C has a k-rational point, the definition takes on a more atlractive
form. A pointed k-scheme is a connected k-scheme S together with an clement
se S(k). Abelian varieties will always be regarded as being pointed by the zero
element. A divisorial correspondence between two pointed schemes (5. 5) and
(T, 1) over k is an invertible sheal % on S x T such thal £|S x {1} and
Z|{s} x T are both trivial.

. ST
Theorem 1.2. Let P be a k-rational point on C. Then there is d ;h;uu::f
: o

' ﬁﬂrrﬁpondence M* between (C, P) and J such that, for every divisoridi t

~ spondence & between (C, P) and a pointed k-scheme (T, 1), rh.m-u oxis(s a unigue
MM @: T — J such that (t) = 0 and (1 x )*.#M" = 2

B
.

R ; Py e nniguely
Regard .#" as an element of Pic(C x J); then the pair (J, M")1S “mfl hal
7 1.2). Note L

ach element of Pic®(C) is represented by exactly one sheafl ./ ,. 1;/ JEJ f
e map @: T — J sends t € T(k) to the unique a such that ./, = - w that

nheorem 1.1 will be proved in Section 4. Here we merely shc

ol e T :':li’.. e
i 1,'.r t: },"l"-?.i : !

determined up to a unique isomorphism by the condition in {

e
13, Theorem 1.1 implies Theorem 1.2.

‘.

and which maps to zero in J(T); we have (0 show tha

T J'..'P}ﬁ..:-:,..._

i L= ™ .."u
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X ; _ Acsume there is a k-rational point P op C. Tha
BN C < T T has a scction s — |, ", 0% any k

p st = (£~ Z|{P} x T): Pic(C x T)— pig(T) g,
mm uently, Pic(C x T) = Im(¢*) & Ker(s*), and s
ified with

P'(T] == {.TE PIC{C X T)Mug[_‘jf"} = 0all ¢, HJHP:

-SChe S
), wh ]'.lLlTlE T, 3 #&.e; |
Y *1h 1||""']_]l‘i:h IndUEES ¥ ety

'Ch lhut .t,‘..*-"_]. {f:‘ - id I '.{."'j'.'_:i':.._}

30 (- :
."[[r} cdan b'(.' 1(1;:“_ s -‘-'t»;'"

x Tis trivial}, et
Now assume (1.1). AS. C(T) 1s nonempty for al| k-schemes T J renrece sl x 3
¥ 0 , et h o » J Tepresents
he functor P2 = P’'. This means that there is an clement g of P'(J) (corre- .
sponding to id:J —J unf.icr 1) such that , for every k-scheme Tand L€ P(T)
there is @ unique mr::rphlsm ¢: T —J such that (1 x p)* 4 » ¢ i pur'ti::-’
ular, for each invertible sheafl .‘I{" on C of degree 0, there is a unique ae J(k)
such that #, = . Alter replacing .# with (1 x 1,)* # for sultable ae J (k)
we can assume that .#, 1s trivial, and therefore that .# is a divisorial mrrc-!
spondence between (C, P) and J. It is clear that .# has the universal property

required by (1.2). -

Exercise 1.4. Let (J, MT) be a pair having the universal property in (1.2)
relative to some point P on C. Show that J is the Jacobian of C.

We next make some remarks concerning the relation between PZ and J in
the case that C does not have a k-rational point.

Remark 1.5. For all k-schemes T, «(T): P2(T) — J(T) s injective. The proof of
this is based on two observations. Firstly, because C is a complete variety
H%(C, @;) = k, and this holds universally: for any k-scheme T, the canonical
map Or = g, Oc . r is an isomorphism. Secondly, for any morphismg: X — T
of schemes such that 0 > g, 0y, the functor .# +—q*.# from the category
of locally free @,-modules of finite-type to the cuicgur}’pf lm:gl]y free (-
modules of finite-type is fully faithful, and the essential image 1S formed of
those modules # on X such that ¢, # is locally ree and the ::unonn:u-i map
9*(gF) » F is an isomorphism. (The proof is similar to that of [14, J.IJ-J‘_
Now let % be an invertible sheaf on C x T that has degree 0 on the fibres
{ & ~ g*H for some
invertible sheaf .# on T, Let k' be a finite extension of k suchr{hat ?Ew:-;
N-rational point, and let .%’ be the inverse image of & on(C X ‘r E;E‘t'}, }{,
Maps to zero in J(T;.), and so (by definition of J) we must h;u: ;‘ r-;ﬂi {;m:
for some invertible sheaf .#' on T,.. Therefore q?_‘f” E locally I[;:i;1u B:ﬂ "
f}n Ty_, and the canonical map ¢*(q, @) &' s an isomorpihisiil ¥
'S the inverse image of ¢,.% under T'— T (s¢¢ (14,4 i
MMW (cf. (1.8) below) shows that the prﬂpﬂl‘“*—} |
%entence descend to .#: therefore & =~ g*.# with /= 4z~ | 1o B
, the cokerne g
o rk 1.6. It is then sometimes pgssib]c to compule the co L';?,. a:“‘
lpa@)”'f (k). There is always an exact sequence ;

0 — P2(k) — J (k) = Br(kh

2a]), and elementary
¢ in the last

=
y
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g Vi . , J'. We conclude ' b o R Y
where Br(k) is the Brauer group of k. When k is a finite extension of g | Jescent datum on B J{':}_ . _rf"g" “-51 that J" has a model J over k g, ¢
Br(k) = Q/Z, and it is known (see [11, p. 130]) that the image of J“{rp- M_mt the map ti'] k) = .L-} 1::“ ~Cquivariant for ) k-schemes .;fr k i i{
Br(k) is P~'Z/Z, where P (the period of C) is the greatest common divispr 1”[ p‘np_u[gr, l'nr_all T,'f ere Ih; ‘nmp P2( F? - ff‘é!(’f‘h_}u x K)6 = Ik LT -_In
the degrees of the k-rational divisor classes on C. ¥ (hat the map 15 Hﬂulftﬂmm[;{] 11111;*:‘!1;:11 (...{ I') 15 nonempty, we have 1 O see
(hat in this case PE(T) — Pc(T,)" is an isomorphism. [ et se C(T) 1?1 show
: . > can identifly P2(T,.) with the « . 2=~ then (cf.
: Sree &tale site over - ool of (1.3)), we can idenlily Fe(dy.) with the set of g
Remark 1.7. Regard ¢ as 2 prﬂshﬂc‘}f on the large ctale site over C; (e, the uer (¥, «) where & 18 an invertible sheaf on ¢ 'f"hu.mmphﬁm classes
precise relation between J and P¢ 1S that J represents the sheaf aSS0Ciateq o[pliﬁo I;d B D isomorphism 0. 5 (1 W :ﬁfg v Whose fibres are of
' ‘ a s : T 7L 8)" L. Such pairs are rios
with Pg (see [6, §51). o ve no automorphisms—and so each such pair *P 11n, r-l'bldm_
they ha Hat G f pair lixed under G has a
Finally, we show that it suffices to prove (1.1) after an extension of (e bise cammcal descent datum, and therelore arises from an invertible sheal on
field. For the sake of reference, we first state a result from descent theory | cxT -
‘. K’ be a finite Galois extension of a field k with Galois group G, and let be .

a variety over k'. A descent datum for V relative to k'/k is a collection of
isomorphisms ¢,: gV — V. one for each o€ G, such that ¢, = ¢, 010, (or 4
o and 7. There is an obvious notion of a morphism of varieties preserving (he
descent data. Note that for a variety V over k, V. has a canonical descen,
datum. If ¥ is a variety over kK and V' = V., then a descent datum op
an O,-module .# is a family of isomorphisms ¢,:o.#/ — ./ such tha
@y = 9.0 TP, for all ¢ and 7.

§2. The Canonical Maps from C to its
Jacobian Variety

Throughout this section, C will be a complete nonsingular curve, and J will
be its Jacobian variety (assumed to exist).

Proposition 2.1. The tangent space to J at O is canonically isomorphic to

Proposition 1.8. Let k'/k be a finite Galois extension with Galois group G. HUE 2% consequently, the dimension of J is equal to the genus of C.

(a) The map sending a variety V over k to V,. endowed with its canonical de-

scent datum defines an equivalence between the category of quasi-projective Proor. The tangent space T;,(J) is equal to the kerncl of J(k[e]) — J(k), where

- anvae(: : el al
- 40y o€G, 0. ePP(gJ'), and so there is a unique map ¢, 0J — J such thd

. i-:|E
T

-,

.;_f-ﬁ‘ck'mn J' represents ng_, and so there is a universal .# in /

- PEEHAL 9,200, = @, and so the ¢, are isomorphisms a!

L #}P’]‘J =a.# (in Pe(aJ"). One checks directly that ¢, = ¢:° "%

varieties over k and that of quasi-projective varieties over k' endowed witl
a descent datum.

(b) Let V be a variety over k, and let V' = V,.. The map sending an (',.-module
M to M =0y ® M endowed with its canonical descent datum defines

an equivalence between the category of coherent ©y-modules and that of

coherent Oy .-modules endowed with a descent datum. Moreover, if /13
locally free, then so also is M.

ProoF. See [17, V. 20] or [19, §17]. (For the final statement, note that being

locally free is equivalent to being flat, and that V' is faithfully flat over V)
]

Proposition 1.9. Let k' be a finite separable extension of k; if (1.1) is true /0! G
then it is true for C.

Proor. After possibly enlarging k', we can assume that it is Galois 0¥ k

~ (with Galois group G, say) and that C(K) is nonempty. Let J' be the Jacobiah

20(J'), kO

- 11

[k .
¢ LiL
el B il

id define

k[¢] is the ring in which &* = 0 (see [8, 11, Ex. 2.8]) Analogously, we define
the tangent space T, (P¢) to P¢ at 0 to be the kernel of P2(k[¢]) — P¢(k). From
the definition of J, we obtain a map of k-linear vector spaces T,(P2) = ToJ)
which is an isomorphism if C(k) # ®. Since the vector spaces and the map
commute with base change, it follows that the map 1s always an isomorphism.
It C = Ciieps then, by definition, PZ(k[e]) 15 equal to the ETLT'UPHU[ -
vertible sheaves on C, whose restrictions to the closed 511h5ci1cn1:i( ;L‘.s‘f C,
have degree zero. It follows that Ty(P2) is equal to the kernel of H*(C,, € .{',1] -
H'(C, ). The scheme C, has the same underlying lDPDlﬂElfi_” space "‘Ef
:;it U, = 0c ®; k[e] = Oc ® Ot Therefore we :‘:;m |dcni}?;[é_]‘“e‘{_-“':h]'-i
¢, on C, with the sheaf O @ (cé On C. and m. | —Pl {+ -
H(C, 0¢) @ H'(C, O.¢). Tt follows that the map «m cl.‘-[.’{i”-] -i ) thé
Oc= 02, induces an isomorphism H'(C, C¢) = To(Pg) This Sompei= (]
proof.

- (pt — (P} x C)
Let PeC(k), and let .#" be the invertible sheal .‘3‘1 (A :ﬁ: i}f :;i-;;uncllri}ﬂ gl
“ﬂCx . s i1 ;l,NL‘?[:‘:E'IHl—i ) S Tl
e ,C, where A denotes the diagona N rnl x il @*|C x {P)
LZ2%|C x {0} =~ 2(Q — P). In particular, < 1 - Earween (G B and
iamboth trivial, and so . is a divisorial uL}rrCifPL““JE""'LJ.; C=+J such that
tﬁf Therefore, according to (1.2) there is a uniqte "-mp"r“d. with Pic’(C),
FB)=0 and (1 x f7)«.u" ~ &*. When J(K) is 1CHTE
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1

e

J»fk) becomes identified with the map 01— 2(Q) ® #(p) 1 (,, .
"divisors, the map sending Q to the lincar equivalence class [ ”i

) Note that the map Y. o013 11g/"(0) = [¥.160] from the .,
P s of degree zero on C to J(k) induced by f" is simply (e My
SRR w 1. In particular, it is independent of P, is surjective, and i Ler!:

. B #Mﬂ s of the principal divisors.

‘-’M “ron its definition (or from the above descriptions UI' Its action on (he
} )ltﬂ clear that if P’ is a second point on C, then [ is the COmMposiye
# with the translation map {p-py, and that il P is defined over u Gy,
_extension k' of k, then af " = f“* for all o € Gal(k'/k).

:; o [!'Chﬂf genus zero, then (2.1) shows that J = 0. From now on we agym,

that C has genus g > 0.

: _,_' oposition 2.2. The map (f7)*: I'(J, Q}) = I'(C, Q¢) is an isomorphism.

PMF As for any group variety, the canonical map h,: I'(J, Q}) — 7, ()"
h an isomorphism [18, I11, 5.2]. Also there is a well-known duality between
F(C,,ﬂc) and H'(C, @). We leave it as an exercise to the reader (unforty-
i ._ ~ nately rather complicated) that the following diagram commutes:

ry, Qs rec b

k;.l..ﬂ ,l,-':H
T,(J)" 3 H\(C, Oc) (dual of isomorphism in (2.1)).

::;.l. l-- E
i -4-.- - s i
: *'?F‘v {

2.3. The map [ is a closed immersion (that is, its image f"(C) is
fr is an isomorphism from C onto f*(C)); in particular, ["(C) is

®LAF
"'.—‘."'.‘.*-‘:-'r ib el ‘-.
-

¥

B - F 1

l. "'-r

Immm to prove this in the case that k is algebraically closed.

5 J.Atf V — W be a map of varieties over an algebraically closed
3 nf": ~assume that V is complete. If the map V(k) - W(k) defined by
i -Mfﬂf a" dﬂ-‘-ﬂﬂd pOIHIS Q ﬂf V the map on tangenl Spaces

L

Tl W}k injective, then f is a closed immersion.
Y 'T '

of is the same as that of the “if” part of [8, I1, 7.3]. (Bricfly, th¢
'- eC because V is complete, and the condition on the tangen!
Nakayama s lemma) shows that the maps ;o — (¢ "
ective.) (]

)

E> dlC :{

fuf’ If f(Q) = f(Q') for some Q and Q' inf}(?;
od _”f'_*-* 1C Q' — P are linearly equivalent. This implies H
] ,m nt to zero, which is impossible if Q # Q' because

» thal
-'T“F ﬂ}’a [ is injective, and it remains to sho¥
e A I i

-_

|l-l-
I "
ek T
)
w :.
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" ‘ JEns spaces .(dfF!” fo(C) — Tro(J) are Injective, B

n S 'tiy a translation, it suffices 1o do (hjs ; in the case lhECdI.IS{: fe

H ] f)‘,. TF(C)-* T (J] 1S LILdrl} {{J rl1}f_* r[C O E{l Q P

e canonical map, and it remains (g how tha }) =+ TH){C)".

rhe kernel of h¢ is {wel(C, Q") w(P) = 0} = I(C o i—IiL IS surjec-
- f'r .ﬂ'[P)} The Riemann-Roch theorem shows tha’::‘ :L?:CTJ:

sion g — 1, and so Ker(h r 1 a
"1s con Pletc i o) # T(C, Q )2 he s surjective, and

# a
i 1o mumc that k = C and sketch the relation betwen the ab-
| ﬂgmcal definitions of the Jacobian. In this case, I'(C(C). 0

snotes the sheal of holomorphic differentials in the sense of

2 | ym) 1S a cnmplﬂx vector space of dimension g, and one shows
b :r_'“_'f.:'_‘,h or ab{:lldn l“tCEI'JIH lhnll lhl... map UH[LJHJ (1) Embtdh

il

f.! ‘as a lattice into the dual space I'(C(C),Q')*. Therefore
| ,15 ),ﬂ‘)"’fH (C(C), Z) is a complex torus, and the pairing

H,(C(C), Z) x H,(C(C),Z)~Z

o

Pﬂlncaré duality gives a nondegenerate Riemann form on J**
herelo J* is an abelian variety over C. For each P there is a canonical
ne —}J"' sending a point Q to the element n.pn.:.:,nlr..d by (w |, w),
s s any path from P to Q. Define e: T'(C(C), Q')" — J(C) to be the
ion inthc diagram:

['(C(C), Q') = J(C)
f"""lt Tuxp
rJ, QY > T)

F(C(@) Q)Y is identified with T,(C), then (de), #[d,"”}p
lf? is a path from P to Q and [ = (0 f, ), then e(l) = [ {Q}
: ' The canonical surjection e: [(C(C), O — J(C) induces an
I J* — J carrying g into f”.

havﬁ to show that the kernel of ¢ is H(C(L), 7), but this follows

thcurcm and the Jacobi inversion theorem.

i thﬂ thm 1S a
5 _ be elements of C(b]

l':'

Tf he P, :
- *!' funﬂtmn on C(C) wnlh its poles at ! —
il'for any paths y, from P to P, and 7, ' from P to Q; there exists a7

Z'[ m_ZJ. m:Jm all w.

t | be a linear mapping [(C(E), Q')

i
1

Then there exist ¢

.a..il.'l_.-“

'ull._ Pl i L

o
X
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points Py, ..., P, on C(C) and paths y, ..., y, f
llw) =Y [, oforall we'(C(C), Q"). 5 Tl

Let [eI'(C(C), Q')"; we may assume it is defined by g points p
Then ! maps to zero in J(C) if and only if the divisor ) P, — f; it 0
equivalent to zero, and Abel's theorem shows that this is equiv; 1; : hnhlr]
in H,(C(C), 2). SERe ¢ lymg
U

i such thy,

§3. The Symmetric Powers of a Curve

Poth in order to understand the structure of the Jacobian, and as an aid
its construction, we shall need to study the symmetric powers of C S
For any variety ¥, the symmetric group S, on r letters acts on the prodyc
of r copies V" of V by permuting the factors, and we want to define the Lit
symmetric power V™ of V to be the quotient S,\V". The next prupmlt:“
demonstrates the existence of ¥ and lists its main properties. !
A morphism ¢: V" — T is said to be symmetricit g oo = ¢ forallgin§

~ Prop tion 3.1. Let V be a variety over k. Then there is a variety V' and q
e ?Wtric morphism m: V" — V) having the following properties:

| ii) as a topological space, (V'", m) is the quotient of V" by §,,
& & } for any open affine subset U of V, U is an open affine subset of V" and
i T(U"’ Oyn) = I'(U', O,. )% (set of elements fixed by the action of S,).

i?je pair (V", n) has the following universal property:. every symmelric
@: V" — T factors uniquely through m.
mp 7 is finite, surjective, and separable.

Fla affine, say V = spec A, define V' to be spec((4 @~ & AY)

1 case, write ¥ as a union | ) U, of open affines, and construct V
togcther the U, See [16, 11, §7, p. 66 and I11, §11, p. 112] fﬂrtlg

W'; ) 1) is uniquely determined up to a unique Immnrphlsm;b}’
9f the proposition. It is called the rth s ymmetric power of V.

ﬂﬂsymﬂric power C of a nonsingular curve

me that k is algcbralcally closed. The mos! I
[ Q of a fixed PDI

plumﬂ (

- ‘.I' .-:‘- .

P

a singular point on C is the image O
*'* %\Where P is a closed point of C. The com
‘isomorphic to k[[X]], and so

KX 6 . ® KIIX)] = ~ kLK, o0 K1)

0

is nonsingular

|\Ll"r'
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~k[[X,,... S,
t@amc t[aE li‘l » Ar 11 where S, acts by permut;
 fund n corem on symmetric functions SHysngth[hE vari-
al, over

: ,rLi ymmetric polynomial can be expressed
----- jymmctrlc functions g, ..., g,. This lmpl:; tdh Polynomial in the

“ k[[Xl. X]]"-*k[[ﬂ'“”_!g‘r]]‘

ichi m'* ular, and so Q is nnnmn&,uiar

3 !:_ . a general point Q = n(P, P, .

H,; = timgs, and so on,

i
L ;,

i &gm kLLX,, .-, X, 105 ® k[[X,,..., X..1]% &

-
B T

P',...) with P occuring r' times, P’

Sl
F

AT mne argument shows to be regular.
=+ Ft ]

on C" do not force singul (r)

i’anfy the situation. Let (E? bir:i“f?;l?: s fD“D"'"mE omarks
elp group acting effectively on a
variety V, and suppose that the quotient variety W = G\V
¥V — W is ramified exactly at the fixed points of the action. A
rity th rem [5, X, 3.1] says W can be nonsingular only if the ramification
locus is empty or has pure codimension | in V. As the ramification locus of
me V“" has pure codimension dim(V), this implies that V' can be

ironly if V is a curve.

. be field containing k. If K is algebraically closed, then (3.1a) shows

5 K) = S\C(K), and so a point of C" with coordinates in K 1s an
red r-tuple of K-rational points. This is the same thing as an effective
W‘OI degree r on Cx. When K is perfect, the dnflsnrs on C can be

‘with those on Cg fixed under the action of Gal(K/K). Since the
can br., identified

ainder of this

Tk I T

Mﬁm of the points on C, we see again thal C"(K)
“thﬂl& set of effective divisors of degree r on C. In the rem
ion we shall show that C"(T) has a similar interpretation for any

onstruction of J, the reader

| & _:':',:;(Slnce this is mainly needed for the C
| Section J.)

i sﬂ sads in the properties of J can pass (0 the
E .‘.. *he Sscheme over k. Recall [8, I1, 6, p. 145] that Cartier divisor D

family (U, 9i)i with the g;in ['(Up, €
»nerated by gi- Then

;, i ve if it can be represented by a
H‘l%iy"’ *'bc the subsheaf of @y such that F(D)|U; 1s g¢
s e ("D), and there is an exact sequence

ubscheme of X assacmtcd with

e Cartier divisors arc precisely
le element thal

ciated closed

is the structure sheaf of the closed

___ 2d subschemes arising from effective .
is o Bose sheaf of ideals can be locally generated by @ Slas.gsc:-
ero-divisor. We shall often identify D with 11S

‘“*u

I ;

&
i e
A5y

-

r|,i-
b L]

.......
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Fop exs et T= A* = Spec k[Y], and let D be the Carticy
r y | with the Weil divisor nP, where P is the origin. Then D |
w {}”' A'), and the associated subscheme is Spec(k[ Y]/ Y")).

S Iepre.

34.Letm: X » Tbea morphism of k-schemes. A relative . ective
diﬂisor on X/T is a Cartier divisor on X that is flat over 7 th;

as a subscheme of X.

I..oosely speaking, the flatness condition means that the divisor has p

wmml components, that is, no components contained in a fibre, Whep 7 is
affine, say T = spec(R), then a subscheme D of X is a relative effective Curje

~ divisor if and only if there exists an open afline covering X = { | U, apg
ﬁEF(Ul, ﬁx) = R; such that:

(l) D n U, = spec(R;/g;Ry);
_j'f b) g; is not a zero-divisor, and
~ (¢) Ry/g;R,is flat over R, for all i.

Hemﬁorth all divisors will be Cartier divisors.

a 3.5. If D, and D, are relative effective divisors on X /T, then so also is

M 91 + Dz-

; ,f, 00 = It suffices to prove this in the case that T is affine, say T = spec(R)
ave to check that if conditions (b) and (c) above hold for g; and g;, then

» also hold for g,g;. Condition (b) is obvious, and the flatness of R,/g¢/R,

';Lf;;-. Iollows from the exact sequence

"_f,__';slit- as an extension of flat modules. U

J.m D be a relative effective divisor on X/T. On tensoring the

)ﬁ@x with #(D) we obtain an inclusion Uy < #(D) and
| global section s, of #(D). For example, in the qur.i that T
mprmntcd as in the above example, £ (D)|U; 1s g, R; and

ntity element in R;. ;
ﬁ (DL ﬁn) defines a one-to-one mrrespundcncc betw¢

L1y "T divisors on X/T and isomorphism classes of pairs (£
nve n ol Eheaf on X and seI'(X, .Z) is such thal
020> > L[sOx—0
Ly ¥
]ﬂ‘ ﬂVﬁf T r T l[ an

e that X is flat over T, Z/s0y is flat OVEL © - il
mt become a zero-divisor in £ & ¢ . (Use
“ (M N) = 0 for all finitely generalc
V has a composition series whosc quot!

d 111Ddlﬂ*~5 N,
ants are

_
=
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*1 "R by a prime ideal; therefore

wient © the Criter; :
‘with N equal to such a module.) erion has only to be

Ly’ 7_ Consider the Cartesian square

X+ X' S

},E.J.. §'a relative effective divisor on X/T, then its pull-back 10  closed syp. R s

|f} d’X' is a relative effective divisor on X'/ 7", | ey

o & e

L '* -' ) gmay assume both T and T" are affine, say T = Spec R and T' = S £

c R, anc then have to check that the conditions (a), (b), and (c) quﬂ e h e

ﬁ‘H__T:Ji + thc bﬂSt‘. Chﬂngﬂ R— R erte UI U X7 ; G Clﬂdrl}' ™ Ui = j. ’*L: ‘

; R{) The conditions (b) and (c) state that e

""rﬁ' '. 0- R 2 Rf — Rt/JlR — () EYR. _:

k:% r" igd that R;/g;R; 1s flat over R. Both assertions continue to hold after - '__.:

;*q._.,'_;m ce has been tensored with R ] LR

Propo: 38. Let D be a tﬁfﬂsed subscheme of X, and assume that D and X

( * over T. If D, = D x {t} is an effective divisor on X/t for all _ ¢

NS t ¢ ’I} then D is a relative effective divisor on X. TR

)l Trm the exact sequence ;.:*_;1 .
0-FD)»0Oy—0,—0 AL

ﬂatncss of X and D over T, we see that (D) is flat over T. The

of @, implies that, for any t € T, the sequence i,

aaaaa 111 partlcular J (D) ® k(r) F(D ) As D, is a Cartier divisor, J {ﬂ;}

refore also .#(D) ® k(1)) is an mvertlhh. () -module. We nwrhapmt SRR QS

re.| N R LT N

re-b "ﬁbl‘ﬁ criterion of flatness: if X is flat over T and # 1S di G?gf?ﬁ ) % T

¥, le that is flat over T and such that #, is a flal (x,-module 10T PR

RS hat (D) is a fat N FodR ek

{5 L # is flat over X [2, 1II, 5.4]. This implics thd Now B el

nodul ally free over Cy. NO B AN

and since it is also coherent, it is loc E
phism .#(D) ® k(1) > .#(D,) shows thal it is of ran o

€ locally generated by a single element, and the elemen -

r; this shows that D is a relative effective divisor.

bres of dimension One.

e dl‘h’lbﬂr on (6”

lled the degree

_module of

"l = T be a proper smooth morphism with i

"ﬂ: effective divisor on ¢/T, then D\ o~ LHLL:;
= ected, then the degree of D, is constant . I{' c 0
NOte " at deg(D) = r if and only I (Op 15 8 losuily 25550

L
iy =B I
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if and only if it is finite and flat over T in particular, if s: T — € is a so¢(,, A
7, then s(T) is a relative effective divisor of degree 1 on €/T.

ProOF. A closed subscheme of a curve over a field is an effective divisor if and
only if it is finite. Therefore (3.8) shows that a closed subscheme D of ¢
relative effective divisor on €/T if and only if it is [lat over T and hyg finite
fibres, but such a subscheme D is proper over T and therefore has finite Mbres
if and only if it is finite over T (see [13, I, 1.10] or [8, 111, Ex. 11.3]), 0

If D and D’ are relative effective divisors on /T, then we write D > py
D o D' as subschemes of ¥ (that is, #(D) = J(D’)).

Proposition 3.10. If D, > D (as divisors on C,) for all t in T, then D > D,

Proor. Represent D as a pair (s, &) (see 3.6). Then D = D" if and only if
becomes zeroin £ ® O = Z|D'. But £ ® ). 1s a locally free @, -module
of finite rank, and so the support of s is a closed subscheme of T The
hypothesis implies that this subscheme is the whole of T 0]

Let D be a relative effective divisor of degree r on €/T. We shall say that
D is split if Supp(D) = | ) s,(T) for some sections s; to n. For example, a
divisor D = Y n;P; on a curve over a field is split if and only if k(P,) = k for
all i.

Proposition 3.11. Every split relative effective divisor D on €/T can be written

Let Supp(D) = U s;(T), and suppose that the component of D with
~ support on s5,(T) has degree n;,. Then D, = (3 m;s,(T)), for all ¢, and so (3.10)
~ shows that D = } n;s(T). U

o
s

'1 ixample 3.12. Consider a complete nonsingular curve C over a field k. For

o m“ a canonical section s;to g: C x C" — C', namely, (P, ... : A e
A5, Py, B). Let D, to be 5,(C") regarded as a relative effective divisor o1

-.__'._1.

£ .':1!'1

'k =
PR

let D = ZD;. Then D is the unique relative effective divisor
X CY/C" whose fibre over (P,, ..., P,) is ¥ P;. Clearly D is stable under the
T rf 'mtnc group S,, and D_,, = S,\D (quotient as a subschﬂr?‘ﬂ;'
; .‘gf a relative effective divisor on C x C”/C"" whose fibre 0V

€ C"(k)

‘complete smooth curve over k and T a k-scheme, define Dive(T)
8¢t of relative effective Cartier divisors on C x T/T of degre¢ ™

BT s h _"mt DivZ is a functor on the category of k-scheme

i "‘I:l-
Al e
L1
.
3

i
] T I
] . '-

¥
"1 -

- ] :'1:'
s | "1_‘_4' J

e T ® s
y T W o e W AL LR
o e S I-j_.llu.l Fr;ﬁ*.t-.‘

Corollary 3.9. A closed subscheme D of € is a relative effective dipisoy on €7
' f

UL NS e
IJ.:"‘I"- Fi'f "‘-. .':,': ':r: -
P AR A Sl WO NS s .
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| i .' 13. For any relative effective divisor p on C x T/Tof d
| E”'" g morphism @: T — C" such that D = (| 0) (] egree
2 t assume that D is split. s .

oo, Let us first . 'S Split, 50 that D = ¥4 < (T} for -
i s T— C X I. In this case, we define T -, ¢ 10 56 fhe. ¥
[’ﬁ-‘,r posy, POS2, - ..), where s; occurs n, times, and we (gke . luLb?h;lFi
e T — C"— C". In general, we can choose 4 (inite ) L
*i-‘j’"".-‘—*T such that the inverse image D' of D on ¢ « T
gfriﬂ'cld be the map defined by D'. Then the two m
om T xp T' to C'" are equal because they
celative effective divisor
p—I(D') -~ — ([Il{c_:p)_l{f)l — [IILII"UI”_I{DI = ”-I[D-']

%y T Now descent theory [13, 1, 2.17] shows that ¢’ lactors through
" []

r, there

(Deyn). Therefore ¢t

¢ llat covering
1S sphit, and let
dps ¢ op and P ogq
both correspond 1o 1he same

Exercise 3.14. Let E be an effective Cartier divisor of degree r on C, and
define a subfunctor Div¢ of Div: by

Divé(T) = {DeDivy(T)|D, ~ Eall te T}.

Show that Divg is representable by P(V) where V is the vector space
I'(C, £(E)) (use [8, II, 7.12]) and that the inclusion Divg < Divg defines a
closed immersion P(V) o C".

Remark 3.15. Theorem 3.13 says that C'” is the Hilbert scheme Hilbg, where
Pis the constant polynomial r.

8. The Construction of the Jacobian Variety

In this section, C will be a complete nonsingular curve of genus g > 0, and P
will be a k-rational point on C. Recall (1.9), that in constructing J, we are
allow _ﬂd to make a finite separable extension ol k.

For a k-scheme T let

Pe(T) = { & € Pic(C x T)|deg(.%,) = rall tH ~,

_ . ot cheal A on T
Where % ~ &' means ¥ ~ & ® g*.# for some invertible 511}‘;?{[] — ;E.[ETJ,

Lﬂgrz L(rP); then ¥1— £ ® p*Z, is an isomorphism P  mp
mm,tﬁ prove (1.1), it suffices to show that PLis representable 10r

| *‘M do this for a fixed r > 2g. , stors f: Dive = Fe
h * that there is a natural =lru;m;ﬁ:}rmurln:ﬂ,1 of mn,L,mqrb r ;’;’{D]L{ur, n
Mg a relative effective divisor D on C x T/110 the:ciass: Ot
SELIemS, (s, ) to the class of £),
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e there exists a section s 10 f: Divg = PL. Then P s
sed subscheme of C.

B | transformation of f

Eﬂlﬂ ite mﬂjﬁf 1s a natura Unctorg
B nd B:i:.’ is representable by C, and s0 ¢ is represented py
L EIATRR Mm J' to be the fibre product,

o R
| (1, o)l !
5 c x c & ¢

J(T) = {(a, b)e C™(T) x C™(T)|a = b, a = ¢b]

o + -~ ={aeC(D)la= ola)]
e - {aEC‘”(T)Ia = sc, some c€ Pi(T)}
~ PT),
jective. This shows that P is represented by J', which is a
of C”) because A is a clnsed immersion. 0

| ] '; sroblem is therefore to define a section s or, in other words, to [ind
‘"my of associating with a family of invertible sheaves .’ of degreer

| “_L.,; eﬁwuve divisor. For % an invertible sheafl of degree r on C,
“": sion h°(%) of H(C, £) is r + 1 — g, and so there is an (r — g)-
i systcm of effective divisors D such that Z(D) =~ % Onc way 10
ut dow thﬁm of this system is to fix a family y =(P,,...., I\~ of
-ra "" al poi ts on C and consider only divisors D in the system such that

'{-; ;"_'.'-_*:;-.;:-’.f' here D, = Y P,. As we shall see, this provides a partial solution (0

d let

Lﬁ‘ y be an (r — g)-tuple of k-rational points on C, an

Wm‘}’ C? of C*" such that, for all k-schemes T,

| * | !
-----

= {DeDw;_.('mh“(D D,)=1,allteT}.
| ﬂlén C" is the union of the subvarieties C’.

o T

r,;r .‘?EP’C(T)U:“(.? ® Z;')=1,allteT]

- . orni
nctor cy' P' and the obvious natural trans/

ion

b i . Dﬂ' !
hat for any effective divisor D of degree ;

xamplé:
'“‘iﬁ ity holds for at least one D (I°F s

- Z -4-.‘ n
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# e 4 IE;j‘:iI':mr) iuntdblc choice of points Q,,.
"ri 5.2]3) OW cl D:m be the cd
rL B OO/, Thon 114, ¢ ‘?c]nz;lsf:j_ Jcli:li:::{ ;ffcctwehdlm-
\t there is an open subscheme C” of € such tha h°((D o
m h°((Dean) — D,) > 1 otherwise. Let T be g ﬁ::‘:ilh 1) -
gglatwc effective dmmr of degree r on C « /T :um]: a}?d
.1, Then (3.13) shows that there is g unique m;r }: N
g"-'-’ uch that (1 x @)"'(D.,.) = D, and it is clear that ¢ maps ?*11:1:;
! .;*1;;:::“,_; m the first assertion.
% e that k is separably closed. To show that ¢ — L)€, it suffices
; C(k) = | ) C'(k), or that for every divisor D of degree r on C,
g y such that h°(D — D. ) = 1. Choose a basis oy ..., e._ for
fn r f{;p and consider the corresponding embedding i1; C c P ‘ﬂr 1ﬂ'th
(C) is not guntamed in any hyperplane (if it were contained in Y a,X; =0,
*-'-'.‘.* g, would be zero on C), and so there exist r — ¢ points Pisiia, B

» ;5 see the ele-

r-y
[ tfmm D whose images are not contained in any l]I‘lCdl‘ 5ub5puce
1en sion 2 (choose Py, P,, ... inductively so that P, ..., P, are

ontained in a linear subspace of dimension i —2). The (r — g)-tuple
) ., P,,) satisfies the condition because

DG, Z(D— Y P) = (YaelYae(P)=0j=1,...r—g}

dlmcnsmn <2,

L f be an invertible sheaf on C x T representing an element of
"(1). 1 _ hu(D D ,) = 1 for all ¢, and the Riemann-Roch theorem shm:;;s
j“:?ﬁ (D,—D,)=0 for all t. Now [l4, 4.2¢] shows that /4 =
r‘?"" ) p*.&£; 1) is an mvﬂrublc sheafl on T and that its formation commutes
with bas ,changc This proves that P/ is a sublunctor of P%. On tensoring the
,5 map qg* M - L ® p*f Lwith g*.# ", we obtain a canonical map
Oc. ® p* &, MR g* A The natural map ¢, — (¢ induces a map
@cgr. and on combining this with the pn:r::.dmg map, we obtain
¢ danonical map s,: O ® q* A The pair (s,, £ ® ¢*. 4" ')is a
dmsur on C x T/T whose image under f in P/(T)1s T}Pfﬂ*
-‘ﬁ -‘-'? ® g* # ' ~ & (see 3.6). We have defined a section to C7( JD

and our construction is obviously functorial

L,

l"_-_r% '-:r.

'Y 11
J"
E

"r*

1
" o

e
oW
..,. '_‘_ i
e oL
Y
'} |.'I:
= 'rll-

il
e

L
i

- ¥
i
¥

",-'-w \ B B T
rollary 4.3. The functor P’ is representable by a closed subvariety J7 of
-~,:.' | '-. | .
F. The proof is the same as that of (4.1).
¥ e functor

/. and define P” " to be th

(‘:utm der two (g — r)- [uplﬁs y and  to see that
LPM (T = JEE(T)H PY(T) for dll f-. schemes T. 1 lj}; ,m{:t:ﬁ and
1} resentable by a variety J" # such that the maps

: “': ' ~ P’ are open
' LA
Jv 1" < P' and P’
*ﬂeﬁned by the inclusions P ‘

L .'J‘
I.I l'|

v 1
ose tuples Yy s fm

; of C. Cho
acoblar g k, we can assume

oy ': C ct the J
¢ ST€now ready to constru After extendin

"T C(k,) such that ¢ = [ C""
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e © tuples of k-rational points. Define J by patching togeqp, the
;'_. | ._1_#.-.:__? 5& open immersions Jreti o JU JM, It is easy (o seg that J

Ll he functor P%, and therefore also the functor P¢. Since (], latte
g finc mﬁﬂ group variety. The natural transformations Div:. _,
marphmm ¢ — J, which shows that J is compleqe dnd s

e an Imymty The proof of (1.1) is complete. 3

he Canonical Maps from the Symmetric
e ?awers of C to its Jacobian Variety

* .

zh
d j%hh

[ ]
1
ek 1
S '
: :‘*h,, i

=- wghout this section C will be a complete nonsingular curve of ey
5 D,,Assumﬁ there is a k-rational point P on C, and write f for the map f*
efined in Section 2.
| ‘-"‘_Lr ‘Hf f'bc the map C" — J sending (P, ..., P) to f(P)) + -+ f(P) O
;= f" is the map (P, ..., P)—[P, +... + P, — rP]. Clearly it is sym.
¢, and so induces a map [ C" — J Wc can regard [ as the map
; ,-J sending an effective divisor D of degree r on C to the linear equivalence class
(e iﬁ.-ﬁ' The fibre of the map f: C”(k) —» J(k) containing D can be
5 .: *"__"-s-u with the space of effective divisors linearly equivalent to D, that is,
2 Mhmrsystem |D|. The image of C" in J is a closed subvariety W’ of

% :.-f";ff.g_-- tich can also be written W' = f(C) + ... + f(C) (r summands).

.....

particular f @ is a birational map from C9 onto 0J.

j!rf‘“’ 33 be an effective divisor of degree r on C, and let I be the fibre of | tr
"t_f‘*,-f ining D. Then no tangent vector to C at D maps to zero under (df'"),
- unl iﬂfcﬂa the direction of F; in other words, the sequence

0> Th(F) > T(C") > T(J), a= [T (D)
ar, (df ") p: Tp(C) — T,(J) is injective if | D| has dimen-

Tt s
'.|.=-I

:@ﬁgmmr on C, we write h°(D) for the dimension of
H(C, Z(D)) = { fek(C)|(f) + D = 0}
nsion of H'(C, Z(D)). Recall that
h”{B) h'(D) = deg(D) + 1 — g,
f” “HB(C Q!(— D)), which can be identified with the
who ';.;: i er (w) = D.

<t D be a divisor on C such that h*(D) > 0; then ther s

subset C such that h*(D + Q) = h'(D) — | for all
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o
i

r < g, there is an open subset U of ¢ g0
h P,)inU. “Ch that ho(y p) = | for

; ,, f Q is not in the support of D, (hey
D — Q)) can be identified with the subspace o

1 w;th a zero at Q. Clearly therefore w
14“ he zero set of a basis of H!'(C, ¥

tof D.
ﬂu bc the divisor zero on C. Then h! (Do) = g, and on app|

we find that there 1s an open subset U of C” such that EP{E? .
.(P“ ..., B,) In U. The Riemann-Roch theorem now shows that
r+(1_g)+(q—r)_1fﬂrdll(f’ sl )i T 0

1 H | S (5.1), we can assume that k is algebraically closed. If U’ is the
imagein C of the set U in (5.2b), then [ C"(k) — J(k)is injective on U'(k).
NS C(rl — W' must either be birational or else purely inseparable of

Jegree ] The second possibility is excluded by part (b) of the theorem. but
before we can prove that we need another proposition.

(C, 2(D + Q) =

) o Q' (- D)) of
€ ¢an take U 1o be lhc com-
(D)) together with a

| --.-;:@'- ion 5.3. (a) For all r > 1, there are canonical isomorphisms
F(C, Ql ) i—‘; r(Cr‘ Ql )E, _"'f'_ I"[C“', 0! ).

..'?ﬁ;el"(C Q') correspond to ' e T(C", Q'); then for any effective divisor
~ Dofdegreer on C,(w) = D if and only if " has a zero at D.
b) Forallr > 1, the map f*: T'(J, Q) - [(C", Q') is an isomorphism.

ROOF "’ global 1-form on a product of projective varieties is a sum of global

-forms on the factors. Therefore I'(C", Q') = @ prT'(C, ('), where the p, are
€ pro -H-- n maps onto the factors, and so it is clear that the map w— Y pfw

dentifies I'(C, Q') with I'(C", Q')*. Because m: (" —~ C"" is separable,
@l ﬂl)-*' I'(C’, Ql] is injective, and its image IS obviously fixed by the

[(J, Q!)— [(C", Q') < I(C, Q' =T(CQ)

0 to the clement o' of I'(C, ') such that fro= Lo oy
71'?-.: &'lmrl}’ @ = [*w, and so the composite map is / R uence
0 be an isomorphism (2.2). This proves that both maps in the above seq

m Kphlsms It also completes the proof of the PTUP]UISmml
the second part of (a), and for this we need a combinatonal I

ition except for

Let Gy, ..., 0, be the elementary symme
| =Y X] dX,. Then

= allm<r—1
;{1 — g T+ + (— l)me = dOpm+1>

tric pol ynomials in Xy -

nomial In the variables

s -
_______
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.:“ﬁ‘tﬁ:‘ﬁ '1, asy X,ﬂ mﬂ

,' s Op—n = ﬂ'_._.(f) + XiOm—n—1(0),

-
i
&

-,..,1 Atinlving this by (—1)"X{'and summing over 7 (so that the succe
‘erms cancel out) we obtain the identity

f{"'-"L

‘151".':;

“’ Oy — Oy Xi +  + (= )" X["= 0,,(i).

4 | rJ "'? yjﬂs this with ﬂ'X; and Summlﬂg, we get the rcqmrcd ldﬂﬂ[l[v &

Hemw complete the proof of (5.3). First let D = rQ. Then ¥ = k[[x];

3@ = k[[ay, .., 0,]] (see the proof of (3.2); by ;, we mean thc local ring
s fﬁepolmﬂnn C). If o= (HD+HIX+HIX2 )er a;€k, whep
-_‘ regarded as an element of Qp , then o' = a,75 + a1, . We know thy
P '; *h .._,da'}ls S hasis for %dk as an @ -module, but thc lemma shows (b
1 ;iﬁ'“” 7,_, is also a basns Nﬂw (w) > D and w'(D) = 0 are both obviously
--: equivalent to a,=a, =" =a,, =0. The proof for other divisors i

a

We finally prove the exactness of the sequence in (5.1). The injectivity of
{&i)p follows from the fact that i: F o C") is a closed immersion. Morcover
 the sequence is a complex because f oiis the constant map x+— a. It remains

- toshow that

-;'-;f -' dim Im(di), = dim Ker(df"),.

i Identify T(J)¥ with I'(C, Q') using the isomorphisms arising from (2.1). Then

(5.3) shows that @ is zero on the image of T,(C"”) if and only if (w) > D,

that is, weI'(C, Q'(—D)). Therefore the image of (df”), has dimension

g —h%Q'(=D)) = g — h'(D), and so its kernel has dimension r — g + h'(D).
% Qn the other hand, the image of (di),, has dimension |D|. The Riemann-Roch

st 'thetmm says precisely that these two numbers are equal, and so completes
| []

‘T

S5.5. Forallr < g, f: C" > W' is of degree r!.

=, It is the composite of n: C" — C” and [, []

5-‘- (a) The theorem shows that J is the unique abelian varicly

nally equivalent to C. This observation is the basis of Weil's cor-

ﬁf the Jacobian. (See Section 7.)

M sequence in (5.1b) can be regarded as a geometric statement
'-‘ ann-Roch theorem (see especially the end of the proof). In fact!

”3' te Mﬂ:thc Riemann-Roch theorem this way (see [12]).

-: '_ F&*  observed above, the fibre of f: C”(k) — J (k) containing D Ldﬂr

o ; E@ﬂmﬁﬂl‘ system | D|. More precisely, the fibre of the map 0

e “’ kﬂ’ ihefunctor Div? of (3.14); therefore the scheme- 1hLU[E[|L

/™ cont Eﬁ a copy of projective space of dimension h°(D) —

s that conversely every copy of projective spA< "

JACOBIAN VAHIETIES

itainec in some fibre of [ Cﬂn&t.qugnu
Hse y can be identified with the set of m y’
f-";h ,' hic toprujactlve space.
| "5“ for r>2g — 2, |D| has dimension r—g, and
w? or all D. Therefore [ is smooth (see (8,111 T{Jiﬂ 0 (df "), is
| "{f. 4 ‘r.ﬂ t pcisely the copies of P"" contained i C 1), and the libres

o . This
- e startin 3 point of Chow’s construction of the Jacobian Egil observation
th _? i

S

b e
® '1

Hr

?,“ Jacoblan Variety as Albanese Variety;

T _-;_;:_.,_;f:-" _-;toduﬂ]lt y

Throug! t this section C will again be a complete nunamg,uldr curve of
; 0 over a field k, and J will be its Jacobian variety.

Hposi 6.1. Let P be a k-rational point on C. The map f*: C = J has the
uniﬂermf property: for any map ¢: C — A from C into an abelian
gﬂding P to O, there is a unique homomorphism W:J — A such that

g#iep,»fr

) Consldcr the map C°— A, (P,..., P,)—) y(P). Clearly this is
symmetric, and so it factors through C. It lhcn.furf_ defines a rational
'-'-'“_"_:"__;J—rA which [14, 3.1] shows to be a morphism. It is clear from
ction that W o fF=rp (note that [ s th CDmpﬂSHL of

[14 22] shows that it is therefurt., a hmtmnmrphmm If ¢ is
second homomorphism such that 'o /" = ¢, then ¢ and ' agree on

]

f’f "f' =+ 4+ fF(C) (g copies), which is the whole of J. ]

16.2. Let A" be a divisorial correspondence between (C, P) and J such
Mﬂ X f’]"./i" ~ PP then &/ ~ #" (notations as in Section 2 and (1.2)).

BmUSﬂ of [14, 6.2], we can assume k o be algebraically liJs::tfi;
X ing 10 (1.2) there is a unique map ¢:J —J such that .t = (1 x ). M"
points ¢ is the map sending a € J(k) to the unique b such that

';;é# | ME|C x {b} = A|C X lay.

HIC x {70} ~ £"|C x (@} = #"ICx {["Q}

T"' f’” shows that i is the identity

?“f’)(Q) f2(0) for all Q. Now (6.1) .

'.I'—;.-;-;IJT; .E I P

?I' - :l' iy f [‘H”fb P l:'lfl{ 1!
T ’ ionai p

W ﬁ. Let C, and C, be curves over k with k-re

3 sepondence
e 1S d ONeEs =
,_fv_, 1 and J, be their Jacobians. The " }j .;fu.r.aurmf COrTe

v qu(Jh J,) and the set of isomorphism class
3 § between (C,, P,) and (C,, P;).

e

8

e -
.
£

-'..

IS~

P ]
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correspondence between (C.*‘ P,)) un'd (Cy, P) .
rise to a morphism (Cy, P,)— J, (by 1.2), and this mnrplusrp gives rige t{j
homomorphism J; — J, (by 6.1). Cﬂnvcrstﬁly. a Imm;mmrphlsm VN N
defines a divisorial correspondence (1 % (St o))* M2 between (C,, p,), 3

(CI! Pl]' E]

In the case that C has a point P rational over k, define F: C x C -, j b
the map (P,,PIJHfF(Pl] B fF{P}_]..Onc checks immediately thy this i
independent of the choice of P. Thus, il Pe C(kf} for some Galois ¢xtension ;1._’
of k, and F: Cp- x Cp. = Jy is the corresponding map, then oF = | [, all
o e Gal(k'/k); therefore F is defined over k whether or not C has a k-ratjgy,
point. Note that it is zero on the diagonal A of C x C.

Proor. A divisorial

Proposition 6.4. Let A be an abelian variety over k. For any map ¢: C x C _, 4
such that @(A) =0, there is a unique homomorphism :J — A such (),

YyoF = .

Proor. Let k' be a finite Galois extension of k, and suppose that there exjgys
a unique homomorphism y: C;. = Jy. such that yo F. = ¢.. Then the up;-
queness implies that oy = y for all o in Gal(k'/k), and so y is defined over
k. It suffices therefore to prove the proposition after extending k, and so we
can assume that C has a k-rational point P. Now [14, 2.5] shows that there
exist unique maps ¢, and ¢, from C to A such that ¢,(P) =0 = ¢,(p)
and ¢(a, b) = ¢,(a) + @,(b) for all (g, b)e C x C. Because ¢ 1s zero on the
diagonal, @, = —@,. From (6.1) we know that there exists a unique homo-
morphism  from J to A such that ¢, = o f, and clearly | 1s also the
unique homomorphism such that ¢ = o F. O

Remark 6.5. The proposition says that (A4, F) is the Albanese varicty ol Cin
the sense of [9, IL.3, p. 45]. Clearly the pairs (J, /) and (J, F) are characterized
by the universal properties in (6.1) and (6.4).

’ Assume again that C has a k-rational point P, and let © = W* -1 Itis a
B divisor on J, and if P is replaced by a second k-rational point, © is replaced
by a translate. For any effective divisor D on J, write

L'(D) = m*#(D) ® p*#(D)™! ® q*Z (D)
= Pm™(D)—D x J —J x D)

Recall [14, 9.1 and §10], that D is ample if and only if pop): 7/ ~ 7/ il
D ey isogeny, and then (1 x @4))*(?) = £'(D), where Z is the Poincare 5}1c;1frtjl;
Sa J % J¥. Write © for the image of © under the map (—1),: J — J, and O,lo

1,0 =0 +a,aeJ(k). Abbreviatc (©"), by ©;

-
- o

B { rem 6.6. The map ¢ ye): J — J¥ is an isomorphism; therefore, | X P2W
. isanisomorphism (J x J, (@) 3 (J x J¥, 2)

A

r - F’- '

& k.
[ a
i) & ::,‘:

in ]
i ...'r A e A
- --'t f‘l-l"' - ,.__r_-!_*‘_ ;.." r.-. p
e L q ke ; e g W LT 2
- ’ﬁ'u.:..r fff‘."\"" & { ,.é‘.'*_;;: "‘,: Ay mﬂiiiiiilil |-. | - . R —
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ih«ﬂt Pyo) (— D020 = P2@®), and that P

67, Let U be the largest open subset of J such i

Lemmd

" # 3 nffm: C' — J at any point of U has dime
mg'aEU(k) and D(a) is the unique element of C'"(k)
(i1) ua sum of g distinct points of C(k).

Mf"'l(e:) = D(a) (as a Cartier divisor) for all e Ul(k)
frne=J. 1

nsion zero: and

Mapping to a, then D(a)
where [ =

proor. Note ﬁrst.thal U can be ﬂbla‘:_liﬂ[:"ﬂ by removing the subset over which
the fibres have dm:xcnsmn > 0, wiﬁnch Is closed (see [18, 1.6, Theorem 7))
together with the images ol certain closed subsets of the form A « Cﬂ'lj
These last sets arc also closed because C? — J is proper ([18, 11, 4.81), and it
follows that U is a dense open subset of J.

Letae U(k), and let D(a) = 2. P Py # Pfori# j. A point Q, of C maps to
a point of ©; if and only if there exists a divisor }'7., 0, on C such that
f2(0,) = =Y. f*(Q) + a. The equality implies )¢, 0, ~ D, and the fact
that || has dimension O implies that ) Q, = D. It follows that the support of
40;)is R .., PE}, and 1t remains to show that /(0 ) has degree < g
for all a.

Consider the map : C x © — J sending (Q, b) to f(Q) + b. As the com-
positeof Yy with 1 x f?7':C x C*”' - C x O is [ C?— J, and these maps
have degrees (g — 1)! and g! respectively (5.5), ¢ has degree g. Also ¢ 1s
projective because C x © is a projective variety (see [8, 11, Ex. 4.9]). Consider
aeU; the fibre of ¥ over a is ' (®;) (more accurately, it is the subscheme
of C associated with the Cartier divisor f~'(®;)). Therefore the restriction of
Y to Y '(U) is quasi-finite and projective, and so 1s finite (see [8, I, Ex.
11.2]). As U is normal, this means that all the fibres of ¢ over points of U are
finite schemes of rank < g (cf. [18, I1.5, Theorem 6]). This completes the
proof of the lemma. [

Lemma 6.8. (2) Let ac J(k), and let [©(D) = a; then [*£(0,) = Z(D)
(b) The sheaves (f x (—1),)*2'(07) and WP on C x Jare isomorphic.

PROOF. Note that (6.7) shows that the isomorphism in (a) h?ldsjﬂi Li"“ : }” H
. 11]; - ! SEs

open subset of J. Note also that the map C = C x {
mn(f X (— ])}G(QH[Q, a)) = t_qa°/s

and so

. B = To o ,; '[C]
X (—1)m*2©)/C x {a} ~ 210NV =L O

~ [* (0, )
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(f X (=1))*p*Z(O7)|C x {a} = [*£(©7), andg
(f x (=1))*q*Z(©7)|C x {a} is trivial,
On the other hand, .#" is an invertible sheal on C x J such that:
(i) A"|C x {a} = L(D — gP) if D is an effective divisor of
g such that /(D) = a;
ol (i) A"|{P} x J is trivial.
s Therefore (a) is equivalent to (f x (— 1))*m*Z(©7)|C « |

\a being o

morphic to 4" ® p*Z(gP)|C x {a} for all a. As we know this i« true f
all a in a dense subset of J, [14, 5.3] applied to ~ 0T

M@ p*L(gP) @ (f x (= 1))*m*2(O )

proves (a). In particular, on taking a = 0, we find that [*¥(©") ~ 2
and so (f x(—1)*p*&(O©7) ~ "'..!’(gP) Now [14, 517 shows (hy
(f x(=1))*m*Z(O) @ p*Z©O©7) )=~ M" ® q* N for some Invertible
sheafl A" on J. On computing the restrictions of the sheaves to [P} « J y,
find that A" ~ (—1)*%(© "), which completes the proof. 0

- Consider the invertible sheafl (f x 1)*% on C x JY. Clearly it is a divisorial
mrmpondcncc, and so there is a unique homomorphism f: J" - J such
tha,t (1 x fY)*#" = (f x1)*2. The next lemma completes the proof of the

g
i

12 6.9. The maps —f": JY = J and ¢ 4, J — J" are inverse.

#'*- ? '-'Writt V= —@ye = —Pze-) Wehave

(X)L x YA = (1 x ) x )*2

i | ([ x Y2 = (f x(—1)*( X 9»@)"7
~(f x (~)Z'(© )~ A"

| H "'ﬁ!ﬁl is a map «: J — J such that (1 x a)*.#" ~ .#"; but the only
'7-7‘ is property is the identity. g

6. -ﬂ’“ a) Lemma 6.7 shows that f(C) and © cross transversely 511[111!1}:
s --&' m be proved more directly by using the descriptions 011

| S | * ic tly given near the end of the proof of (5.1)
. wed that #" ~ (f x(=1))*&Z (@7). This implies

(f x lﬂ" 11)"(1 X @) ? = (f x (=1)*(1 x ¢x@) i
6 ~ (f x (—1)*£(©)

&

Sy F."-H '-.: . , S0
P (L :ﬂ‘hﬂmﬂmﬂrphlsm, Py-0) = — Py and $
: Tr} ‘ X @yia}]*.? _— (f X l)*(l pot (P_f‘{ H'.'] ;f

~(f x 1)*2'(—09).

' P, : m P putnts on C. Then wr and (Wo-r
iU Lh = m (W; o B ) where

- 2 6.11. Between (C, P) and itself, there is g4 divisoria
B LE) x C — C x {P)

een (C, P) and J there is the divisorial correspondence M, for
my« ajmnal correspondence . between (C, P) and a pointed k-scheme
-(ﬂl}‘w is a unique morphism of pointed k-schemes @: T — J such that
(lx?)'lrﬁf In particular, thcrf: IS a unique map f*:C—J such
lhit’(“‘ o)A = £" and f(P) =

C 'tlemly,

Y P the
.Iff J*-r.}' is the morphism such that (/ X )*2 = (1 x [7)5A7, then LTS
=it _stm i e

6.12. It follows from (6.6) and the Riemann Roch

t (©%) = g!. Prove this directly by studying the inverse image o
,"_mnslﬂtes) by the map C? — J. (CL. [14,8.3
s ite.) Hence deduce another proof of (6.6)

'in (5.6a), the Jacobian J of a cury
dat ~1;:1..E ti mlly equw alent to C%. To construct
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p on points JY(k) — J(k) defined by v e ind
'Nduced by

6 7 can be gencrdhz,cd as follows. An effective

292
,j pomt on C'*' %) whose lmdbL n J will be

t of J such that a — x is not in (Wo=2)- denoted x, gt 4

v and write 4 = Y f(P)
Ju INtersect Properly, and

W = JS( W) e 4 f(P.)

| l:t- :llr . runs Over thﬂ (E} Cﬂmbinuliﬂns Gbl 'li[]cd b ‘ :_I . .‘_.h;--:: :;; .l.:'
d th - sum . ﬂ y taking | R
1.2, ..., g} See [20, §39, Prop. 17]. Y laking r clements S i

| correspondence

1 J and JY there is a c..mﬂmcal divisorial correspondence 2 (the

shca.l); for any divisorial correspondence % between J and a pointed
hemes (7, t) there is a unique morphism of pointed k-schemes : T — J

snduhht(l X Y)»*? ~ &,
ween J and J there is the divisorial correspondence #(0). The unique
1 JJ = JY such that (1 x Y)*2? =~ ¥(0O) is ¢4, Which is an iso-

Thus ¢ 4, 1s a principal polarization of J, called the canonical

pohrﬁtmn. There are the following formulas

2 (f x(-1))*2O) =~ x1)Z(O)"

= (f x [)*2'(©)"

[ C ’ 2;_"-.‘-:?:;:‘_11
], but note that the map 1S 1. ik ,}\

’s Construction of the Jacobian Variety

abelian variety
the Riemann-
C@ and then

e C is the unique
J, Weil used

on
}orem to define a rational law of composition

II 2 — | T "-"rl: ' T 'H
L B e Ith.'f‘-?ﬁ‘-d‘wh,ﬂmi L %“ et T



J. S. MILNE

: theorem that allt?wcd him to construct an algebraic group,
@ ~nd the rational law. Finally, he verified that the algebryic group
obtained had the requisite proper lan of €,

90 —-H of this approach.

j A .
A R
e i
- i

e
i :

?’ onal group over k (or a nonsingular variety with a normg| law of
. osition in the terminology of Weil [20, V1) is a nonsingular varie( |,

i oether with a rational map m: V' x V --» V such that

jfi!'.-aﬁodati?ﬁ (that is, (ab)c = a(bc) whenever both terms are defineq),
O ational maps (4, b) - @ ab) and (a, i (5, ab) rom V x V10 » ,
o5 are both birational.

-

| 1;;_*,-'- Assume that C has a k-rational point P.

P 1 ‘::-' =5
= -'u-fi - g 3
~ Lemma 7.1. (a) There exists an open subvariety U of C'*” x C such thay for

w e L

i

e fields K containing k and all (D, D') in U(K), h°(D + D' — gP) = |
" (b) There exists an open subset V of C* x C such that for all fields g
~ containing k and all (D, D') in V(K), h°(D" — D + gP) = 1.

id '#‘tl_. I.

B Ppoor. (a) Let D, be the canonical relative effective divisor oy
. C x C®9/Cc?9 constructed in Section 3. According to the Riemann-Roch
~ theorem, h°(D — gP) > 1 for all divisors of degree 2g on C, and so [ 14, 4.2¢]
shows that the subset U of C*? of points t such that h°((D.,,), — ¢P) = | is
~ open. On the other hand, (5.2b) shows that there exist positive divisors D of
- degree g such that h°((D + gP) — gP) = l,and so U 1s nonempty. Its inverse
- image in C® x C is the required set.
~ (b) The proof is similar to that of (a): the Riemann—Roch theorem shows
.~ that h°%D' — D + gP) > 1 for all D and D', we know there exists a D' such
~ that k(D' — gP + gP) = h°(D’) = 1, and [ 14, 4.2] applied to the appropriate
~ invertible sheaf on C x C¥ x C? gives the result. O

Proposition 7.2. There exists a unique rational map m: C9 x C% - C¥" whose

X ! of definition contains the subset U of (7.1a) and which is such that for

".r.
S )

all fields K containing k and all (D, D) in U(K), m(D, D') ~ D + D" —gF
reover m makes C'? into a birational group.

"
g
q

PR o
N I ¥ ;'.._ .
AP

-
o
'k
]

-
e Ty
%

- T be an integral k-scheme. If we identify C*® with the functor Iil
represents (see (3.13)), then an element of U(T) is a pair of relative {:m:amlﬂ
divisors (D, D) on C x T/T such that, for all te T, h°(D, + D, —9F) ="

%= 2D+ D —g-P x T). Then [14, 42d] shows that ¢,(£) 5

.

-
-

2uil ” T. The canonical map ¢*q,.% — % when tcnstif;ﬂd ‘;”:
)™ gives a canonical global section s: 01 —» & ® (¢*q.Z) " =
S a relative effective divisor m(D, D') of degree g on C * 1/

n=1 .
syl
R .rr {SEE

e T .. - C[ﬂd d
onstruction is clearly functorial. Therefore we have constrt
~g) .. r

= . . =T o lﬁ
C*¥ as functors of integral schemes over k, and this s T CP':ET.Lhe
y 1 g SRR . .. Pyl . ‘ 4 ]-.‘
ieties. On making the map explicit in the casc that

I‘__.
]
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. :_;,-.j' one sees easily that m(D, D'y ~ p ,
- , s of the map is obvious, Als, assnci:[;J_ gP i
s on an open subset of U(K): m((D, ) 1, "
I an effective divisor on C linearly equivale
r QRRREEES ; 7 aient t : L .
L seneral h°(D + D' + D" — 2gp) = | D+ ip_yp
| .ﬁgumcnl using (7.1b) shows tha

|
Fen

¢ p)is a birational inverse to
that (P T2

L there is 3 map r:

. (@, b)— (a, ab): C'9 x co | C? x cia)

ooause the law of composition is commutatiye

: aguT*"F‘ birational. The proof is complete a, b)i—
e L]
Theorem .3. For any birational group V over K, there is g group variety G

_.--;";"1 5o . ¥ L] ¥ {'jl'!_-'r

i

ad a birational map f:V > G such tha J{ab) = f(a)f(h) whenever ab js

defined; oreover, G is unique up to a unique isomorphism.

=

¥
.
.

1

*. ¥ the case that V(k) Is dense in V (for example, k is separably closed),
}_-_,__.. roved in [1, §2]. (Briefly, one replaces v DY an open subset where
has be T.;?;operties, and obtains G by patching together copies of translates
f U by elements of V(k).) From this it follows that. in the general case. the
orem holds over a finite Galois extension k' of k. Let g € Gal(k'/k). ‘fhcn
of:aVy G is a birational map, and as oV}, = V., the uniqueness of G
shows that there is a unique isomorphism ¢,: ¢G — G such that 0,00 = f.
Forany g, 7 Gal(k'/k), o
B (0010.)0(10f) = p.0T(p,00f) = [ = poef
Lﬁﬂ‘l@, = (.. Descent theory (see (1.8)) now shows that G is defined
o U

OF.
= i | ]

Let J be the algebraic group associated by (7.3) to the rational group de-

fined in (7.2)
k.

-
AT

on 7.4. The variety J is complete.

1S can be proved using the valuative criterion of properness. (For
al account, see [20, Théoréme 16, et seq.].) O

" o
=
Pl
S
.
.*-.121_

LB

1.5. The rational map f: CY -+ J is a morphism.

If D and D'

containing k, then

o€ linearly equivalent divisors on Cy for some field K

.-J: _ .'d).

1- 1."-.';1 ! v \
ok L 1

g
=
=5
o

‘_ )
2

- ¥

=
1
e

-

R 1 -
N
Y&
2 BT
=
T

r the second, recall that
of projective space
s that they map 10

[

{ipTiRe- ﬁrﬂt statement follows from [ 14, 3.1J. Fo
lf are linearly equivalent then they lic in @ cOpY

tt*‘ C? (see (3.14)). Consequently [14, 3.9] show
~"M€ point in J.

e
o 4

| s
-

b S LR N e T
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. -L h . theﬁﬂm"’t universal property.

&= *.*
LEy !

_."._-. "

o is g canoni cal isomorphism of functors ;- PO,
5 _’.. _'-'I‘. ;;. i L

*J:h ‘%ﬁ guﬂ"mes to show that P. s represen

',, ;a,r s take r = g. Let & be an invertible sheaf v

:‘L m I'(C, %) = 1 for some ¢, thep thig |”h ]b

e open L borhood U, of t. As in the progr nf:‘,rlil

,'.-:h mﬂf sils— 2L ® (9%q, L)' of degree - |
J::,., S 1'5 defines a map U — C¥ which When u:n

J,—J. On the other hand, if dim, I(C . lelm ¢
bh sheal 2" ol degree zero on ¢ such I:;&I
dl

> ¢) = Landdcﬁﬂﬁ Wy U — C" on a nuL,hl‘nnln.md
S [ Ygp s with t_,, where a = J(D) for D 4y electiye
i :;.;i.-:_l._'-.;-,:*: that Z(D — gP) ~ Z'. One checks thy this my
o 1‘ nd that the maps for different ¢ agree on (he overly D
orhoods. :rn > thcreforc defineamap T — J. E;
j'I_-;.—"ﬂ ' h-
:},_ urse didnﬂt show that the Jacobian variety represene
e mther, in the days before schemes. the Jacobian
by the universal property in (6.1) or (6.4) angd
that Pic®(C) S J (k). See [20] or [9].

Uf{ 1o

meians for families of curves. Let n: % — § be
hism whose fibres are integral curves. For any S-scheme

(L ePic(@ x; T)|deg(£;) = rall 1}/ ~.

| , ﬁ & %' ® g*.4# for some invertible sheal .4 0f
nverti e sheaf on a singular curve is defined as 0 the

ding coefficient of 7(C, ") as a polynomi!

func *.-f* I *the category of S-schemes of finite-Lype

y #1| ]
m above; then there is a group uhum”j!
ﬂMﬂrphlsm of functors Po— S ““; K.

..... ﬂﬂd i$ an isomorphism whenever (R

N . singuld?)
w .J‘J of a field (but ¢ may ];,walﬂ \Whef
foved Y Weil’'s method (see [17: Hllmnt 0

" / as in Section 3 that @ (quO T

_schem¢
.-;':'._{.:5..‘.:;; or DIV%IS sgndlng a1 §-sC

-
= .

..._T #_.

on L
I'-

JACOBIAN VaR|pT)ps

8 ﬁlﬂ““ effective Cartier divisors of degree r on @ o, -
" an only show morc abstractly that Divf ¢ is re Xs I/T. In g
0 e There is a canonical map Divy, -, pr P ‘—H’inu,d (lj}y a Hilbert
s econ
..;dgdlm the representability of p ]"mm that of part of the

""_for the proof in the general case seems 1o be (er}E::

mw inct account [4, Exposeé 232]: we sketch some of 1t

M'm the case that the base scheme is the Spectrum of » ﬁlf]l; ll}t]l:. :; 2;1:;5“ )
1ions

of the theorem determine . uniquely; it is called the Jg4e obian scheme of ¢/

Clearly f commulcs with base change: the Jacobiay of —_— ; of €/s.
F Xs T In particular, i 6, 1s a smooth curve over k(1), then b/ 1:1h¢, J"Lr ;’ 18
d‘@intheseﬂse of Section 1. Therefore if ¢ is smooy) over S, [thdCﬂ o
sbelian scheme, and we may think of it as a family of Jacobian mru,llf l}fd"ﬂ
,snotsmwth over S, then 7 need not be proper, even in the case th; 5 i

the spectrum of a field.

Example 8.2. Let C be complete smooth curve over ap algebraically closed
field k. By @ modulus for C one means simply an effective divisorm =Y, P
on c Let m be such a modulus, and assume that deg(m) > 2. We 5hf:1]]

tcw]th C and m a new curve C," havi 'ng a HIHLIL 5lnﬂui;mh dal a pmnt
to be denoted by Q. The underlying topological space of €, is (C — §) 0},
where S is the support of m. Let ¢, = k + ¢, where

¢o = { S€k(CO)|ord(f) > npall Pin S,

and define @c to be the sheal such that (U, ()= (), where the
intersection is over the P in U. The Jacobian scheme ,-'m of C,, 1s an algebraic
group over k called the generalized Jacobian of C relative to m. By definition,
Ju(k) is the group of isomorphism classes of invertible sheaves on C,, of
degree 0. It can also be described as the group of divisors of degree 0 on C
Tﬂﬂﬁ"’ﬂyrpl‘ime to m, modulo the principal divisors defined by clements
congruent to 1 modulo m (an element of k(C) is congruent to | modulo m i
Wdr(f 1) > np for all P in S). For each modulus m with support on § there
I amomcal map f,:C — S —J,, and thesc maps arc universal in the

sense: for any morphism f: C — S — G from C — S into ana Lchr:_u.a,
ml’, thcre is a modulus m and a homomorphism ¢: J, = G such that f 15
lhe, Mtﬂ of f,o@ with a translation. (For a d:,mll:,d qccount of this

k's proof of (8.1) First

1OW give a brief sketch of part of Grothendiec
nmm;nmlon of the Grassmann scheme. d. for an
s! - be a locally free sheaf of ¢s-modules of finite rank, &7 rﬂhls:m
e T of finite- -type, define Grass{(T) to be the sct 0 ]bfmuui}d his
rpau-g (¥, h), where ¥ is a locally free ¢ frlmdluh. of rén n ;{ o
r Iphism @, ®, & —» ¥". For example, il 6 = ¢ then . r{ma,. o
“hlified with the set of isomorphism classcs of pairs | 511(;:.1; Uf";
" 18 a locally free sheaf of rank non T a0 e jfﬂ HL[L )

ﬁenﬂrate ¥": two such pairs (7 ,(€; 1 €e)) BCAT D

Y
--------

-
#
",
::*
el
Feg
L ¥ -_j
o
[ L
£ rlr"_.‘...‘
e e ¥ o
o,
..A.l-ll
.-Fﬂ-.':-q.
h-l-'!.
L
[ e %
o
.1_ I__
(% ..4.1-_-,1'
(5
. b i
Py S0,
e« 00
s e .
L g
v i
= 4
" -
i L}
A =, ¢
L]
- ”~
- f
i " s
| L, .
. "
Sl bl
] '
L
Y
.
o
-
'
e
J
|
L]
-
- |
- By |~
'I-- -
R
o '.r
T .
= .1' -1
=
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- % lfthef-ﬁ o morphnsm v 3y’ carrying each

“i10-¢] In

~ Propositi u The functor T+ Grassy (T) is representable by Proje

Cl I.L?E

s (see

| [

"".t hoose an r > 2g — 2 and an m > 2g — 2 +r. As in the case thy, S i

he spectrum of a field, we first need to construct the Jacobian upde, [hls

CE n that there is a section s: S — €. Let E be the relative cﬂ'tttwc
i'i,;m ©/S defined by s (see (3.9), and for any invertible sheaf ¢ |,

....

T, write £(m) for & ® £(mE). The first step is to define an “mbtddl
’ ;,mto a suitable Grassmann scheme.

% 9 e Divis(T), and consider the exact sequence
" penye 0— Z(—D)— Ugxr— 0Op—0
G n % xFT(m often drop the S from € xg T). This gives rise to an exag

0— Z(—D)(m)— Of ,r(m) = Op(m) — 0,
m » __ymg d, We get an exact sequence
C ﬁ@fg(—.ﬂ)(m) = 4y Og x7(m) = 4, Op(m) - R q,, L (—D)(m) -

Note t t,forall tin T, H' (€, £(—D)(m))is dual to H°(C,, #(K +D k),
}1-_, ) thﬂdlwsnr s(t) of degree one on ,. Because of our assumptions,
nis ":?* p 1s zero, and so (see [ 14, 4.2¢]) qu*f( D)(m) is zero and we

¢ an exact sequence

v 0=, L(=D)M =4, Crm) = 4, 0p(m) 0
er 14 g{m) is locally free of rank r, and g, (O (M) = g, C(m) @
‘j" 50 we have constructed an element ®(D) of Grass;" (1)
> other hand, suppose a = (q,0gr(m)— ¥") is an clement of
“J If o is the kernel of g* q*ﬂ?qgﬂ-(m) —» g*¥, then X' (—m) S
1§ “'ﬂ q -- @gﬂ, and its image under ¢*q, Og .7 — U <1 is an ideal 1o
&h# subscheme associated to this ideal. It is clear [rom the
) = D for any relative divisor of degree r. We hav¢?

f n: :ﬁ ‘1__;_‘ insformations
si+%(T) ¥ &(T) > Divi(T), ¥ = id
’ of all closed subschemes of € x5 1. 1n particulst

5 o P ';| .

* =
) Gr 1—
'_,EF i?

'9 identifies Div, with a closed subsc

R -;_:-_:.L“ e ghnws that the fibres of the map Div
‘6

'

nally, o0 o
i * a,,} ive space bundles associated wih Cﬂrmh

3 .|_..

- .rP in C(k). From a finite étale covering J' —J of J. we obtain an etale
coveri T" 0 C by pulling back relative to f:

i—C_.Cx_,J’

e o

,;.:’i

R 232, p- 117]; cf. (5.6¢)) and deduces lhr;:”: - WEE' fos mﬂdulca

' w “Presentability of pr e
| 1 ining Coverings of a Curve frop, Jacobian- 23
Al ju ication to Mordell’s Conjecture -8
FJ,. over field k, and let n: W — p pe 4 lnite étale map, If ;:%
i.‘_l-.:;é't__z_,_-i‘;-{‘t n ta group G acting freely on W by p- morphisms in such R S
that ¥ = G\ W, then (W, 7) is said to be Galois covering of ¥ th]:q é“ ay - B
o ¥ alois Rt
r fr '3 G. ’thn G 1s abelian, then (W, n) is said to be an abeliap covering of i
.fﬁ,,ﬂnl*: sint P on V. Then the Galois coverings of V are classified b‘n,"gthf_, r
?-vr*,f raf;'fﬁ: ental group 7, (V, P) and the abelian coverings by the maximal |
“-1 7w, (V, P)*® of n,(V,P). For any finite abelian group M,
f‘“”f’; {i’ P), M) (set of continuous homomorphisms) is equal 1o the set of =y
150 *:'%. _ 1 classes of Galois coverings of V with Galois group M. If, for
npl Vls nonsingular and we take P to be the generic point of V, then -_
!1‘{ ‘, pite connected etale covering of Vis isomorphic to the normalization R
fu .spme finite extension of K’ of k(P) contained in a fixed algebraic el
*::j":t: K of K; moreover, ,(V, P) = Gal(K""/K) where K" is the union of R
il finite ‘extensnans K’ of k(P) in K such that the normalization of V in K’ is | -
ét: _kg.g}k * V. The covering corresponding to a continuous homomorphism E:
IK)—i- M is the normalization of V in K*<'® (See [13, 1, 5] for a & ik
‘--::TL etailed discussion of étale fundamental groups.) &8ssy
w let Cbe a complete nonsingular curve over a field k, and let f = e }

are abelian (cf. [14, 15.3]), we only

lan coverings of C in this way. The nexl proposition shows that

B ﬁll such coverings.
e ‘ h, k will be separably closed.

F \ C =
.-:- FUSILIOnN (] Ed [jfflf{J ({H_L”””
Pl _’l If J'>J is a connecl b ol mnnufi’d

\'el- 3 {JLE‘”” {]j C
! 'g IS a connected étale ¢ F E qun-u!wm"}. the map

"H- “w m Gf C is ﬂb!ﬂl”f.’d n this way.

5‘" ’HU 0) induced by [ is an isomorphisni.

=)
; F'

:‘-';



S, ."'Mﬂ.m

i ,:'_:‘ffiﬁfmm assertions follows from the i Interprey
1) recalled above and the fact that 7, (J, 0) is abeljy e
1 “assertion, For this it suffices to show th: "
mﬁl(‘,’ 0), Z/nZ) —» Hom(n,(C, P), Z/n7) in
| 1. nc,xt two lemmas take care of the cqge

dl f[]r d”
duceg by
that i

VM complete nonsingular variety and let P be point of .
int u mm to the characteristic of k, Hom(n, (v, p), Z/nZ) ~

1(Wml) divisor on ¥ such that nD = (g) for some . gek(v)
e _-.- / nalization of V in the Kummer extension k(V)(g'm) of
purit; : , X.3.1] shows that V' — V is étale if. for

r u all pr imL
di TLjE‘ th dmme valuation ring @, (local ring at the gEeneric point

1;1 k(?’}, But the extension k(V')/k(V) was constructed by
mutofan element g such that ord,(g) = 0if Z is not in the
port of D an ﬂi divisible by n otherwise, and it follows from this (ha 0,
inr ‘-j“.’-'.‘.:-- - > onversely, let ¥ — V be a Galois covering with Galois group

Kummer theory shows that the k(V')/k(V) is obtained by extracting
the nth root of an element g of k(V). Let Z be a prime divisor on V. Because
’*"r”"ﬂ CC ﬂ;l kﬂ”)s ord,(g) must be divisible by n (or is zero), and so

"Cmt -.-11 -- 1o

- nD for some divisor D, Obviously D represents an clement of Pic(V),.

--ﬁ-.-“. ) ﬂ;now that the correspondence we have defined between
IV 1 d elements of Pic(V), is one-to-one. (For a proof using étale
4,[.[1,4!1]) O

r‘fql?" T

= =]
£l - -
1 o

L | '
e B

7 Y PWU)—* Pic(C) defined by f induces an isomorphisn

I.: ré‘ 'l:.- ’\.lﬁ\J tom ff',
-y
‘In i

0

complete nonsingular variety V and point P
.,-‘l K (]_-,F:- Hl(y @p)—iHI(V @V}) WhEFE F s HH:’
v- ﬁm

| ﬁl I using étale cohomology as well a3 fDDr

T "‘"** '-',.rﬂ ilﬂHIDFPhISMHI(J () ]—+HI(C {rf]

ternatively, note that the same arg%”
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h,ﬂ of (2.1) gives an isomg

rphis ! i
,-.'.f v p ™ Hr [J| @J] = TD(J?)! Hnd

| N
e Ci ﬂn = p", one only has {0 re

place (.. ang 0, b
of length m, W, 0, and Wa0y. (It is als 0 3"lc:thﬂ o
’luil nt Slﬂl‘tlng fl'Dm lh'ﬂ Cdse m = | } POSS) le to usc a

aﬂ primes |, the map of étale
by fis an isomorphism.

o .l J'l.- o

i l’-l e

cohomology groups H'(J, z,)
) &=

.'; vancty V, H'(V,,, Z/nZ) =
ere ¢ are isomorphisms

,; S Hom(n,(J, P), Z/I"7) 5

Hﬂm{nl[lf’, P), Z/nZ) L13, 111, 4].

| Hom(x,(C, P), 7/Im7)
- = H'\(C, Z/Imz)

the required isomorphism by passing to the limit 0]

3.-"4 nified coverings of C, one can use the generalized Jacobians,

¥ SR ll"' !
n X ng tLet C' — C be a finite abelian covering of C that is unramified

Sﬂ 2. Then there is a modulus m uuh :.uppurf on X and an étale
m Whose pull-back by f, is C' — [~

T LN

0

i i": }

]

Sy

the case that the curve is P! and m =0 + =, we have
= }“ %m} which is just the multiplicative group GL,, and f, 1s

' mu For any n prime to the characteristic, there 1s a unique
Lu mng of P' — {0, oo} of degree n, namely multiplication by n
= J, 0 } When k = C, this covering is the usual unramified covering
5 8= C — {0}.

-i.

.,_,.
¥ .|' ) ’

g et Bl g el g d 4 e g
¥ h- &8 e fl _|Er % !j.LI ‘I_:

N

k

s Let C be a curve of genus g over a number field k, and let P be
nal point of C. Let S be a finite set of primes of k containing all primes
nd such that C has good reduction outside 5. Then there exists d

: lite ma
gree < 2%% over k and unramified outside S, and a }“F :, “mf:
' ) Suc

10 degree < 22%%@-0+20+1 pamified exactly over P, an

h-.

=r ction outside S.

—» J: it 1s an abelian étale

' ‘ f2:J
Let C’ be the pull-back 0 opmula [8, 1V, 241 shows

.. iC ﬂﬁgrec 224 and the Hurwitz genus
j:--_._. -Qf C’ satisfies

. 2g' — 2 = 2%(29 — 2)

| ,1»3 — 1) + 1. Let D be the inverse im

3

age of P on C. Itisd
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poth of D will be rational. Let m = p _ k | ) =0 for all i > 0 ang summnuy “n =t Oy-modyjes
- of the covering 2: J,, — J,, (of degree < 21; ﬂd | | "L projection formula: if ¢ and .y a;;E{E}; Also we shall

x Supp(D) — {P}. Then C" is a curve over k' 4,

) by and V respectively, then
ciated complete nonsingular curve. -

i
dwu i
Q ‘

es 1 hﬂs a very striking consequence. Recall that a conjecyy, of L F} s that if B is an A-algebra ang N . and
ich states the following: A nespectively, then N ®, (B ®, M) ~ N @,
~ f. her:nt Ow-module. Because 7 is f;

1 or Ex. 8.2] that

ﬂ*(“’r ® m*, W)~ n, N ®

M as A. I‘n{}dUIEH]
nite (hence affine), we haye

":: | * WJ" mbﬂﬁefd k, integer g, and finite set S of primes of k, they
_".~ y muy isomorphism classes of curves C of genus g over I; havin E i 2 A
reduction at all primes outside S. . | H(Wf®ﬂ <) & H(V, T F ® n* )

B = fofmula shows that the second ¢ group equ
9 ll. Shafarevich’s conjecture (9.10) implies Mordell’s conjecture "- *‘fﬂr all i > 0 and sufficiently large n be

: i , 4.1]). The criterion now showe

(re

als H'(v, e @ %M,
cause 2 is ample and

'4\ 2% S I.h{.l[ H .i"u |5| L”TIPIL D

~ PRrOOF. Lct C be curve of genus g > 2 over k with good reduction outside 4 k3

H - - 1 i

ﬁmwnmg all primes of k lying over 2. There i ;s a finite field extension g B i _;_ et V be a nonsingular projective variety of dimension >

2 ~. -I COr 4 2 R ! ‘ ~ over a
| f_tt_,, ontaining all extensions Kk’ of k of degree < 2*¢ that are unramified oy- - 2 be a hyperplane section of V relative 1o some fixed wnbedn’mq

: R
- A 3. For each k-rational point P on C, Proposition 9.9 provides a map 4 ﬁ:ir any finite map n from a nonsingular variety Wto V, n74(2)
}!connectea' (that is, n™ ' (Z); is connected),

g'ﬂf Egﬁ' Cx ofm < a fixed bound B(g) which is ramified exactly over P:
.,f_w;:h & . r, Cp has good reduction outside S. The Hurwitz genus fnrmula

~ Pro r#- potheses are stable under a change of the base field. and so we
29(Cp) — 2 < B(9)(29 — 2) + B(g) — 1. _",.:'*'_-_-}’_'i'_ ?‘3 at k is algebraically closed. It then suffices (o show that n7*(Z)
*5h scause Z is an ample divisor on V, the preceding lemma shows

18 is the support of an ample divisor on W, which implies that it is
ted .;@ 111, 7.9)). -

1..

.'wh's conjecturc implies that there can be only fi nnr:ly

o "_'ve the theorem. Since all elliptic curves are their own Jacobians,
B ‘* that dim(A4) > 1. Fix an embedding A < P" of A into pro-
€ space. Then Bertini’s theorem [8, II, 8.18] shows that there exists an
5€ § bBCt U of the dual projective space P{* of PJ such that, for all

D

Abelian Varieties Are Quotients of '- '. H In U, A4z H is nonsingular and Lﬂmwsd B*—}hl“tﬂ- k ::,

e o » ULK) lﬂ nonempty (consider a line L in P["), and so there exXISIS
- E A L |

blﬁﬁ ‘Varletles g T J‘f ; conrdmates in k. Then A N H is a (gecometrically connected)

“’ t in this section sometimes allows questions concerning abelian | T :
mﬂueed to the special case of Jacobian varieties. ~ ling;

ty in P". On repeating the argument dim(A) — | times, we
J"'33'"331113,r curve C on A that is the intersection ol A with a
b Df P”". Now (10.3) applied several times shows that for any

 NOnsingylar trically
r any abelian variety A over an infinite field k, there is ¢ & Gonpapes riety W and finite map m: W — A, 7 (C) 15 BCOME
._ﬂ.mj&ctwe homomorphism J — A. it

and let
map J — A arising from the inclusion of C into A, and l¢

: T d if 1t 18
e ¥ ‘-ﬁ_.*'u n subvariety of A, an
f.,* V be a finite morphism of complete varieties. and let E. . of the map. It is an abelia 4, of A such that

A ﬂf A, then there is an abelian subvariety -
ﬁm V. If & is ample, then so also is n*.%. _ A A, is finite. AS
m‘mgﬂﬂ}’ (see [14, 12.1]);1n Pdl'“‘-um l:, and take 7 to

s that C n A, is finite. Let W =

tible sheal Ll — A, where
g criterion ([8, III, 5.3]): an inver | DO lﬂofl X my: Ay x Ay = Ay X A, wnh A, ¥

x .I‘.I'
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& -

ton 11.2. For any endomorphism of C,

2 =
1

T‘ .+; alf 5
L Ty

L d
= 1.1,
gy Y
P
=

- -

iy ‘.\1._.. - =
- T Tilel B
n 1l iE-:
o o e i

e

o to the characteristic of k. Then n7'(C) i, o P
This is a contradiction, and s0 A, must equy| 4, & & (Fa-8)=1—Tr(z) + deg(x),

e 10.2 has the following useful restatement: let 4.512] that if P,.(X) =[] (X — a,), thep Tr(a) =
| m a field k and let D be divisor on ¥ such that the lincar sysiem | ) = Tr@ T ) We now show that the proposition implie
VaRELY @R e if the map ¥ — P" defined by | D] is finite, then p - 1Et Ci G be the krobenius endomorphism of C (see
- is withot base points; " aufore proving (11.2) we need a lemma, _
rems from étale cohomology are assume | e _ g T
l;t:;l:ywshort proof of the theorem. They shoy [h;ﬁ: : Lx 33. Let A be an ubelh:'m u:{riet_v of dimension g oper 4 field k and & ,
' be the class of an ample divisor in NS(A). For any e e e

ndomorphism o of A e L it
' '

lr.n : Iy.J'_.'"ui:l'r; i = (a + I)*(H ) <eq ﬂ*(H ) = I_ 1. T J en J"J:hi

=
o=
e

el - 2
. | o
pemo igd] TRl
E i

. B

=
1

1A

! -t I'I" 3
1y ¢

.

. I..:
= 1."{*..{._'1'.

X :" . w A EEE

" h (a) Lemm .mma

Z“h and that
S the theorem

[14,§19]),

L'

T some of the i

R 1ve a
S e tigclonsuucted as in the above proof, the map H'(4, 7, _,
~ foranycurve ; : : A is injective (see [13, V1,56
e~ T by the inclusion of C nto * 6])
£ 51((12;11& %ﬁnﬂyto T;A and H'(C, Z)is dual to T,J, and 50 this says thyy
. E:t 1 ;‘JL 'ﬂ“‘ induced by J — A is surjective. Clearly this implies thay

'I-'
-

wl

s
-
¥
[

: it S e
- , L

e OF
Tr(o) = g @) (g
(H?) s ok

=

| | I ot etisically o .':'-'_'f-_'-wculatiﬂn in [14, 12.4] shows that "

'Open Question 0.5. Let A be an abelian variety over an a gf: raically closed __'-_-, \ o e
| ‘WQ hav: Shﬂwn thﬂt thﬂm is a SUfjﬂCtiﬂn J' —» A W’llh i JilCDbiEln .'_. ‘-'* (ﬂ.+ H)*(H) - ﬂ(ﬂ — l)H + H(ﬂ -+ 1]1‘IE H ~ [H — ]:I.E*[H] .it'l? {
o Lt A, be the subvariety of J with support the identity component | "“ H = 4H in NS(A)), and so

b,
-

rﬂﬂlﬁ kernel of this map. Then A, is an abelian variety, and so there is a - _.

:I urjection J; —» A, . Continuing in this way, we obtain a sequence of abelian | f!:,‘J (@ + n)*H = n*H + nD,,(x) + 2*(H).

S | A, Ay, A, ... and a complex Now the required identity can be read off from the equation

s et 2 A0 L B(—n) =deg(a+n) = ((x + W*HP)(H)  (sce [14,83))
" Is it possible to make the mnstructiunF in such a way lhut.lhc ti-::'f;m:nrr.:i: | ’HHP,(-H) = n2 4 Tr(@n?' + . 8
terminates with 0? That is, does there exist a resolution (up to isogeny) ofan 1§ B

! arbitrary abelian variety by Jacobian varietics? We now prove (11.2). Consider the commutative diagram R
e 5 X, g 1xd g R

, .'T'I- : C X C — J X J E——— _ ..{: “1._-_-rr'

-5
gy &
",
foof Yol
o LR
i

LA | . | | ; \ 2 nag
~ 811. The Zeta Function of a Curve ' L8 I ’ I 3
s EABIES 1t i GF s &

!'.rl._'._'_:_b-e -E.- il
. = df
O) =

¥ L 1
il T

J-'— T
1.6

t C be a complete nonsingular curve over a finite ficld

M ety

11 il . . f ' = . :}fﬂ
e "f’ for some rational point P ol C. Consider the sheal ' (

e T
¥ ';-‘-;"lii};"h

i~

;o » best way
il L o ?H" ThL
X

e s ‘ ] . . .ory on C X C o Lhis .
to prove the Riemann hypothesis for C is to use intersection thLDnr}bu darived A — © X J—J x ®onJ x J(see Section 6). Then

' [8, V, Ex. 1.10]), but in this section we show how it can e )

from the corresponding result for the Jacobian of C. Recall [14,§19) {4 "0 HEXE)(f x 1))*2/(©) = ((f x /)1 x )" (O] .

G LA : A - 3C R o o’
haracteristic polynomial of the Frobenius endnmnrphism_ﬂJ of J ”“'” a0ls it ~ (1 x a*(f x /) #'(0) = (1 X 2)* (2
nJ 1?; nial P(X) of degree 2g with integral coefficients Whos

e absolute value ¢'2.

= _’i!- - Lt{j“ir“' [0

R AL s | | : aates in k1S
| 1L1. The number N of points on C with coordinates in

a;+ g. Therefore, [N — q — 1| < 29¢"".

A%l x a)*#* = 2T, (A—PxC—Cx P

the cheal by going
%;kgm (r' y A) ] dﬂg(ﬂf) We next CDHIPUIL [h;j‘i}:d ¥

ound the 4:. a _ . we he

7 1race ~ “i€diagram the other way. As (I x @)° A=(1,9

el \ N

| 1 Wil !-'j}‘ on the fﬂllﬂWlﬂg Eﬂﬂ.lﬂgﬂﬁ }?f thi_,L;ffbj S'Lli:h that | & . -. ((1 X ﬂ!)ﬂ A)*_(f(”:*@) ~ (1 + c.(}*_.!f’ {9) an
map «: C — C induces a unique endomorphism WO (1 + 2)*O.
e L o8 4 . _ deg [*(1 + ¢
" for any point P in C(k) (cf. (6.1)). P de (1 +07(@) =deg/

|
5 rt ry.
L

Y i
1tl'| 1
.T” o=
1l
j b,

¥
e

.l-.!.
i
]
¥ =
A,
- Nl
2 d s
* T L r k.

- i oy -
IHA" o
- |

e
g

L

II..

- .-:
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Similarly deg f*((1 x a)oA)* L(O x J)~deg [*O and
deg f*((1 x 2)o A)*Z(J x ©) = deg [*(a*0),
and so we find that
1 — (I - A) + deg(a) = deg f*(Dg()).

We know (6.12) that (©7) = g!, and 1t is possible to show that *'('*(DH(x}} .
(f(C) - Do()) is equal to (g — DI(@*™" + Dg(a)) (see [9, 1V, §37) Therefop
(11.3) completes the proof. ¢

0
Corollary 11.4. The zeta function of C is equal to
P(t)
(0 1) = ,
Ly
Remark 11.5. As we saw in (9.6), H'(C,., Z,) = H'(J,,, Z)) = (T,J)", and s,

(11.2) can be rewritten as
(e * 4) = ) (= 1) Tr(a|H'(C,,, Z,)).

§12. Torelli’s Theorem: Statement and Applications

Torelli's theorem says that a curve C is uniquely determined by its canonically

polarized Jacobian (J, 4).

S Theorem 12.1. Let C and C' be complete smooth curves over an algebraically
e closed field k, and let f: C — J andf*: C' = J' be the maps of C and C' into their
- Jacobians defined by points P and P’ on C and C'. Let B:(J,A)— (J', /) bean

e : -
{-; isomorphism from the canonically polarized Jacobian of C to that of C'.
(&) There exists an isomorphism «: C — C' such that floa= +fof+c for

- somecinJ'(k),
r{b) Amme that C has genus > 2. If C is not h yperelliptic, then the map x, the
- sign %, and c are uniquely determined by B, P, P'. If C is hyperelliptic, the

i’-‘*.' ' m n : :
' e can be chosen arbitrar ily, and then o and ¢ are uniquely determined.
S

f° Th" proof involves complicated combinatorial arguments in the
W —we defer it to the next section.

- (®) Recall [8, IV, 5] that a curve C is hyperelliptic if there is a finite map

nw: C - p!
& N W

VR ’Qrdew 2; the fibres of such a map form a linear system 0D C ol

S e
5l -
' ._. -

=N
e
"

~ *:-‘f@msmn 1, and this is the unique such lincar system OF
e ely if C has a linear system of degree 2 and dimension |, the"

i N e o
! s l
- '
o
T .
e |
gl L f
=

“4* a finite map n: C — P! of degree 2, and 50 € B
{;;- --_u,; Of T are the members of the linear system, ﬂ“d_ 50 {htl'
SOIpIsm 1 of C such that 7o = 7 preserves these individu

. o
PRITE =, |
'PJ!;-:‘ I-I
St -y
. .

=

el
L
3

il
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e pose that there exist o, o, ¢, and such th
| : SRR L

dal

T .
2

s _‘-‘ f;ﬂﬂjz "Jl'ﬁﬂf_*_t.
Jlod = 4 fofy

E-r. g T, i o
g1 Q)) — f(« (Q‘)) =c¢—c forall Qe C(k), whic
iiﬁ'—f":jﬁfthc map Dive(k) — J (k) defined by /- uruu{

h'is a constan

. Since
he linear o

_.-:;-1-P-Sactinn 2), this implies that for gl Q and @' ip Ciky quivalence
s 2(Q) — #(Q) ~ 2(Q') — £(0'), of
b

o a(Q) + o' (Q) ~ 2 (Q) + 2(Q").

i ||’_m. a#o. Then a(Qy) # «'(Q,) for some Qo€ C(k) and
Q’mdgﬁ:”& a(05). ThErcl'DrE': 12(Q0) + ' (Qp)| is a linear system of dimep-
sion2 1 (and degree 2) on C'. If C (hence C') is nonhyperelliptic, there i_m
MW’ and we have a contradiction. If C is hj.*pl:rciliplic, l‘hun lhtg::‘::'nitjf
.Iwi;ﬁsc.-; P’ of degree 2 such that n(«(Q)) = (2 (Q")) for all Q Q' &gai;
we have a contradiction. We conclude that 4 = »', and this iniupii;:;. Ihat
f:i;ﬁ_:- '

On the other hand, suppose that the equations (12.1.1) hold with different
signs, say with a plus and a minus respectively. Then the same argument
shows that *

, for a Sultable

a(Q) + «'(Q) ~ a(Q') + «'(Q'), all Q, Q" in C(k)

Therefore {«(Q) + «'(Q)|Q € C(k)} is a linear system on C’ of dimension > |,
which is impossible if C is nonhyperelliptic. (In the case C is hyperelliptic,
lhmﬁﬂn involution 1 of C’ such that 1oa = o'

'Ihme that the equations (12.1.1) hold with minus signs can be treated
lhﬂm way as the first case.
_ Fimlly let C’' be hyperelliptic with an involution 1 such that [Q" +10Q'| 1s a
M'sxs_tcm and f'(Q') + f'(1Q’) = constant. Then if ffox = fof +¢, we
have f*o10 = — g f+c. 0

| 12.2. Let C and C’ be curves of genus > 2 overa perfect field k. If the
—SMICalty polarized Jacobian varieties of C and C' are isomorphic over k, then

Chﬂﬂsﬂ an isomorphism f: (J, 4) = (J', 4) defined over L For :.:;uzlj
Qfa Pair of points P and P’ in C(k) and C'(k), there 15 @ unique
~OMPiISm o: C — ¢ such that

ana = iﬁn_["” + ¢

VoI J' (k) (in the case that C is h yperelliptic, we

J00

Bl _

". A et
o :":F'-‘-_r-
-

.

choose the sign t0 be
= ff+d and

L ._,51'!' ] ; . ‘ : ) U
lhat if (P, P') are replaced by the pair (@, @), then /
k- T:f:.':’i"':f-' e for some deJ (k) and e e J'(k), and sO

- o B
B oo o= 1+ poft+c+e=tp /O F IO

-,
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ﬂllt a does not depend on the choice of the pair (p, p
(E/k) to thc l‘bo?c equatlﬂn, w¢e ﬂ‘blﬂln dn C({ Uiltan )

af P ooa = +foaf” + ac.

= [°F we see that oga = o, and s0 « is define over k

0

Corollar 12.3. Let k be an algebraic number field, and let S be q fin,
_ The map C—(Jg, 2) sending a curve to its canonic ally polariz, d

ian variety defines an injection from the set of isomorphism clys;,
curves of genus 2> 2 with good reduction outside S into the set of isomoy)|
pﬂncipaﬂy polarized abelian varieties over k with good re

Hsn
ductioy

5] ; ) LetR be the discrete valuation ring in k corresponding (o a prime of
a., i ﬁfm C extends to a smooth pmpcr curve 6 over spec(R), and (see
;_*“‘f.ﬂ?}*. 18) the Jacobian # of € has generic fibre the Jacobian of C and speciy)
~ fib j&lﬂﬁﬂb‘llﬂ of the reduction of C. Therefore J.. has good reduction g
v "‘ 3 rime inqmon. The corollary is now obvious. 0

5 ::ﬁ &

]
i J- _“'"_f

-.-l..
i f
P

) lu Suppose that for any number field k, any finite set S primes of
&*my inmger g, there are only finitely many principally polarized abelian

d dimension g over k having good reduction outside S. Then Mordell's
. ' € :-i_" true.

S
:

v(".!omhnc the last corollary with (9.11). O

m Comllary 12.2 is false as stated without the condition that the
fﬁ 15 mtﬂr than 1. It would say that all curves of genus zero over k
morphic to P! (but in general there exist conics defined over k having
pomt in k), and it would say that all curves of genus | are
their Jacobians (and, in particular, have a rational pont)
jl ﬂbﬂmly true (without restriction on the genus) that (wo
A having k-rational points are isomorphic over k if their canon-
are isomorphic over k.

Fe

Rty
a'ﬂ,j'
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e
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ﬁa eorem: The Proof
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; ction, C will be a complete nonsingular curve of genws
: ** y closed field k, and P will be a closed point ©f fj
o, {'} JC‘" —J correﬁpondlng to P wﬂl all be denote

D 4rp ﬂme r = deg(D) — deg(D’) :
kg J is denoted by W’. A canonical divisor ps
o

t il |
""_A. _'.-
‘ l:... .'
[ _J-I -

‘ .*;._L v e

e =
B 34T

Set uf

'&[U‘
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m (i( 9% whose i Mage in J wil] pe den
h J Z* will denote the j image of Z Oted by k, For any

:. all a in J(k), (WS~ y* — o1

i

ective divisor D of degree g9—1onC
: h®(K — D) = h'(K — p)

.' . J

=h(D) > 1,

re exists an effective divisor D' gych
' t}'l l

mf(D)-—-a which shows that (ws-1)s & K=DnlV, Thes

Wo—1)* g1 WZ, % On replaci
ptthat( -a ) :w ydndhﬂwﬂrl ng

,. (Wﬂulltt o~ (”.-"9 1}*
. B
@ 13.2. For any r such that 0 <r < g4 — |,

Re: r -1 i
H’; = H";f <> € PH,E | r
.'1.

prook. =t If ¢ = f(D) + a with D an effective divisor of degree r, and
g.b with D’ an effective divisor of degree ¢ — | —r, then ¢ =
fD+ D r# b with D + D' an effective divisor of degree g — 1. |

=1 As ae W#™', there is an effective divisor A of degree g — | such

A)-l-b Lct D be effective of degree r. The hypothesis states

a==f(D)+ b for some D effective of degree ¢ — |, and so
Eﬁ‘ f (D) and

D+ A~ D +rP.

ive divisors A’ and D’ of degree g — 1 such that A + A" and
are linearly equivalent to K (cf. the proof of (13.1)). Then

DK — A'~K—D +rP,
D+D ~A +rP.

rﬁHJ 1 a family of dimension r, this shows that hO(A'+rP) 21+ 1.

and so

| "H il, |[A' + rP| can be regarded as a closed subvaricty of Crers),
b Bhﬁwn that it projects onto the whole of C") It follows frﬂm
N —Roch theorem that h°(K — A' —rP) > 1, and so there is an

sor A of degree g — 1 + r such that
A+A+rP~K

+rP K A;‘"‘-'A and Sﬂj j;!)dﬂd ﬂ‘f[A)+bE

"*"-iﬂranyrsuch that0 <r<g—1,

ﬂ {We laec W'} and (W) = N {I'.i{,*"”‘lue W’}
_%F

Cle ,fora fixed a in J(k)
"‘-". Wol-r = Wl o Wi re b

-
| oA
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r e PR
- I ‘;"-
f

i i
e

\ ':W mt both hold if ae W'. Therefore
3 Wi n{ W tlae W'}

! . ':.. "‘ '-_I: . ' 1 4
3 : ceWi ! < ac€ we-l and so if ce W2 ' for all ae w , then

_1 fandW' = W', According to (13.2), this implies that ¢ € Wo-1-/
“hich completes the proof of the first equality. The second follows from i,

j': . d the equation

ﬂ{W"ilﬂEW'} = () {(W. W) lae W) = (Y {We  Hae W)+ N

. 13.‘- Letrbe suchthat0 <r < g — 2, and let a and b be points of J (k)

elat b an equation a + x = b + y with x& W'and ye W™~ [f et ¢

tm Wﬁ-l A WI'I ANELSIN with S = mﬂ-l &\ (H’;,H__H )

. .Wnte x = f(X) and y = f(Y) with X and Y effective divisors of

| ".‘" :;? landg— 1 —r. If Y > X, then, because f(X) + a = f(Y) + b, we will

" have '4 = f(Y — X)+ bwith Y — X an effective divisor of degree g — 2 —,

. ore ae W 2", and so wrtt « W# ! (by (13.2)). Consequently, we
}‘mume that X is not a point of Y.

 Let ce W' WL Then ¢ = f(D) +a = f(D’) + b for some effective
sors D and D’ of degree r + 1 and g — 1. Note that

b f(D)+y=fD)+a+x—b=f(D)+x,
'ﬁiwn+¥~ﬂ+x

- |

1_ 'M"EE u':H:*

- B + Y #D + X, then h°(D + Y) > 2, and so for any point Q of C(k),
) F '+ Y — Q) > 1, and there is an effective divisor Q of degree g — | such
“ Y~ 0 + Q. Then

c=f(D)+a=f(Q)+a—y+/(Q)

“,ygﬂ{ﬂg.,,ﬂlde Wi} = (W 2)x (by (13.3)). As (W),
”E ¢ is in W/*' by assumption, this completes the proof thal

- .. - 1,.:.'i “y |
I AW € W, LS,
.yL

> reverse inclusion follows from the obvious inclusions:

——
—

. . s F 1
g—1. ~-2\% g = W
| - ':.-:*r'.d.: ¥ ‘+x = W.+’ : H‘L ) (w;ﬂ_ﬂ ) C: (ml—u- [j

/E’J(k) be such that W'g W2™'; then there 15 d unique
isor D(a _'.-;'*-degree g on C such that

f(D(a)) =a + k

whe i'!-r",'i-::.j__ﬁ-af ded as a divisor on C, equals D(a).

|.' ',l:'

(13.5.1

H“‘rl. F'Dr

-~ ._,._-..'_r -
i

ﬂf Section 6; in particular, ©
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ys that (©7), = ©, Therefore, ¢

;f,; c) (O )asn = /7H((©7),, ) =
- h that /(D) = a + . This ;

B applying (¢ 8), we find that
whcre D is g divisor of

ired resy
| U

rcady to prove (12.1a). We yse -

M image of C'” in J, As we- l{iut"j?_i !':llfT“ffiJ;ﬁmh J', and
of J, they give the same elemen; of NS(J) efine thc same
ﬂ a translate of the Dthr say Wo~1 = pa-1 ce
17 1a). we shall show that V' is a translate of 1! = U““Hi EJH:] TD prmc
S letrb e the smallest integer such thay ' ;"

(Wrt')*. The theorem will be proved if we ' a translate of
“;.. ;.g;-- 1.) Assume on the contrary that r > ( W .
bt e ma
lergassibly replacing by —) that V' < ;"1 Chooseun iy s
avin WO ’ ‘and set b = a + x — y. Then, unless e

not: uans of (13.4))

AW = V' o W I = 0 o e

and
; -
< Wy, we have

:‘I’g ra fixed a, W/, . depends only on x and § depends only on y.
fix an x; we shall show that for almost all y, V! ¢ W21, which implies

__ W"’l for the same y. As y runs over W '™". _} runs over

Now, if V! We~! for all —b in e then ¥lic H” (by (13.3)).

tre mthc definition of r, and so there exist b for which l” ¢ Wi,
_"V e Wt (= Vgl)<> —be Vo2 (by (13.2)). Therefore V92 &
'~(a: W.i 0 the intersection of these sets is a lower dimensional subsct
W 10se points are the —b for which V! < W
Wurn to the consideration of the intersection V' n W™, which
Wiix) U (V! N S) for almost all y. We first show that 1 by W
most one point. If not, then as —b runs over almost all points of
Fr ) - ' l r
.*#-,-i.* ' a fixed x), the element D'(b) < [ '(V - W) {cf, (13.5) will
H At least two fixed points (bECdUhE W, c 11{}’ L= W"), and
I[b)) will lie in a translate of V972, As /" (D (b)) =b + k', we would
;—1-—1-)* contained in a translate of V9 = say Vi ° and so

!

n {‘,.:E:IIIHE V;‘H—E} — m {I‘VEJIIHE“.FW‘I—:‘}#I

1 applving ¢ ; . / in a translate
Ing (13.3) to each side, we then get an inclusion of V04 translate

i tradmtmg the definition of r. . .
Ko :.1- 5.1) that V! n W, must
ﬁmq:& -? fixed and varying x, we see from (13.> J (; according
otha . astone point, and hence it contains exactly one point; & e for
“:; "t-‘j-"-"ifi*-" 1g argument, the point occurs in D' (b) with multip bty
| | Ch wes ny uch
,-“ 2 - f in “M F sUC
* *,_ 'mll}’ seen that we can find x, X' In W lnli‘i =0+ D
.; )B'(ﬂ+x-—y) Q+and{D(!JJ-JD(ff | on C not
Li e LG in C’ and D is an effective divisor of dL“:rLL_{ . and hence
Wip, *3 br Q'. By equation (13.5.1), /(¢) — - /@ )Iﬂ: fjf‘ Now, il X,
A istinct points in common with some transialc ©

B

!i-.
{1
.i.
o
R
r
L

wﬂ' &)

i..
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x'are in W', then W2Z! 0 W2G!E = W2 U(WEE)* (by 13.4)). Accordip,
(13.3), we now get an inclusion of some translate of V7% in Wo=2 {Hﬂ,-_z]f‘
Finally (13.3) shows that -

V1= () {VolecV?)

f_i’. which is contained in a translate of W' or W'* according as yo-2 con.
tained in a translate of W92 or (W? ?)*. This completes the proof 0

Bibliographic Notes for Abelian Varieties and
Jacobian Varieties

The theory of abelian varieties over C has a long history. On the other hypg
the “abstract” theory over arbitrary fields, can be said to have begup wimh‘
Weil’s famous announcement of the proofl of the Riemann hypothesis fo;
function fields [Sur les fonctions algébriques a corps de constantes fini, Comp,
Rendu. 210 (1940), 592-594]. Parts of the projected proof (for example, the
key “lemme important”) can best be understood in terms of intersection
theory on the Jacobian variety of the curve, and Weil was to spend the nex;
six years developing the foundational material necessary for making his
proof rigorous. Unable in 1941 to construct the Jacobian as a projective
variety, Weil was led to introduce the notion of an abstract variety (that is, a
variety that i1s not quasi-projective). He then had to develop the theory
of such varieties, and he was forced to develop his intersection theory by
local methods (rather than the projective methods used by van der Waerden
- [Einfiihring in die algebraische Geometrie, Springer-Verlag, 1939]). In 1944
, Weil completed his book [Foundations of Algebraic Geometry, AMS Coll.
- XXIX, 1946], which laid the necessary foundations in algebraic geometry,
- and in 1946 he completed his two books [Sui les Courbes algébriques et les
- ?Mtés qui s'en déduisent, Hermann, 1948] and [20], which developed the
b 'Mtheory of abelian varieties and Jacobian varieties and gave a detailed

- dccount of his proof of the Riemann hypothesis. In the last work, abelian

: !"-' are defined much as we defined them and Jacobian varieties are
- constructed, but it was not shown that the Jacobian could be defined over the
same field as the curve.

1* '([Algebraic systems of positive cycles in an algebraic variety, Amer

I. -

- ?2 (1950), 247-283] and [3]) gave a construction of the Jacobian

]
af
]
L e ,lr- 1; .
=4

Bt
II
U

"I. '

AHELywhich realized it as a projective variety defined over the same ground
* @8 the oniginal curve. Matsusaka [On the algebraic construction of the

E,Japan J. Math., 21 (1951), 217-235 and 22 (1952), 51-62]

T ‘;i' construction of the Picard and Albanesc vuri::tlﬂi;
0 ~; that they were projective and had the same ﬁcld[ﬂ
ON A the Aria) g . $ . i 2
R 3 A0 original varieties. Weil showed that his construction © a

7 et

eV startine . . o ul
¥ty starung from a birational group could also be carried ©

i =N
+= o oy

R P =y

Gk AD. £xten: ion of the ground field [On algebraic groups e

-
-
t-.
-

I1 n i

L
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;' Amf{’. J. Math., 77 {1955]1 355 __3,;”] ‘
IR ion of a variety, Amer. J. Math, 78 (1956) : an
0bEEd his methods of descending the figlq o 1-52
3 fr aarsotti [A note on abelian varieties, Re

| L T
{ . ¥

L
'

I
i
]
L L R
L .
Lt
ol

Matsusaka [Some nd. Cire, Mat, d
9362571, Matsusaka [Some theorems on abelian variag:

" Ochanomizu Unh{_, 4 (1953), 22-35], ang Wei arieties, Ngr S:c'f_
( of abelian varietics, ”_1 Algebraic Jeometry and 1opop|

n Honor of S. Le_ﬂic:‘feiz: Princeton, 1957, pp. 177 'lglin-h |

o varieties are projective. In a course a( (he Unix'crﬁ?l fm;:d that all
05455, Weil made §ul:fslalnliall Improvements (o (he 1|1~E{}1.Hu Chi
m(thc seesaw pnncu?lﬂ and the theorem of the cyb -
Mﬂﬂﬂm‘ results mentioned above together with C
+image” and *k-trace” [Abelian varieties over function lields, Trans.
Math Sacs 78 (1955), 253-275) were incorporated by Lang iy iy poop 1ot
mm lacuna at this time (1958-59) was a satisfactory IE:’:{H}' éfiHDEE['].
o[m p and their kernels in characteristic p; for t;."iilmph: It “»*.".1-5 [::E:
known that the canonical map from an abelian variety to the dulil of i[s dual
m:;ﬁ;'jgomnrphi!ifn (its degrcc might have been divisible by n). Cartier
W and duality ofabcllan vaneties, Ann of Math., 71 (1960), 315-351)
and Nishi [The Frobenius theorem and the duality theorem on an abelian
variety, Mem. Coll. Sc. Kyoto (A), 32 (1959), 333-350] settled this particular
point, but the full understanding of the p-structure of abelian varieties required
the;t_lmqlopmcnt of the theories of finite group schemes and Barsotti-Tate
groups. The book of Mumford [16] represents a substantial contribution to
lhﬂ;bpct of abelian varieties: it uses modern methods to give an compre-
hensive account of abelian varieties including the p-theory in characteristic p,
and avoids the crutch of using Jacobians to prove results about general
lhlimvamum (It has been a significant loss to the mathematical community
that Mumford did not g0 on to write a second volume on the topics sug-
gested in _thﬂ introduction: Jacobians; Abelian schemes: deformation theory
Mmduh, the ring of modular forms and the global structure of the modull
$pace; the Dieudonné theory of the “fine” characteristic p structure; arithmetic
W’i@_belian schemes over local, global fields. We still lack satislactory
Wﬁﬂf some of these topics.)

Mmﬁfﬂle present two articles has been based on these sources. We now

tive

mmhﬂ' sources and references. “Abelian Varietics™ will be abbreviated

by A

| ﬁlid “Jacobian Varieties” by JV. o 7 is Weil's
% that abelian varieties are projective in AV, S”‘:“f‘,'? 1|::' “jEU;
f-'-'f:-_; The term “isogeny” was invented by Wlmlr prm?ljb{li-u gl
E had frﬂqulf:ntly been used in the same siluzllmﬂ'_ Tltc'!-‘tlit:t w';s one
_, has m?? elements when m is prime to the e L

"1e maj; : : : e substance to his
Moofap t . TCSUlts that Weil had to check in order 10 gV¢ SUR E o
Wi gy m20n hypothesis Proposition 1130 AV S AR,
! .LI:L ;,::.,:: yari . <y - . 4 {H”'H f.jlr 4 lff}r!f_‘ L. :
) o, Lrariétés Abéliennes. Collogue d'Alg rStructure theorems

B
e

' 1281, and is treated in detail by Barsottl

=
" i
=]

ogy, A Sympo-

cago,
belian
¢, for ¢xample), and
how's theory of the
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» varieties, Annali di Mat., 38 (1955), 77-119]. Theorem {ir
" at was used by Tate in [Endomorphisms of abelian Varietjeg %
fin 2lds, Invent. math., 2 (1966), 134-144], which was one of - l:'%cr
3. ts for the work that led to Faltings’s recent proof of Morde]|'s Lu,”:c[lmg
zéu]ecohomnlﬁgy of an abelian variety is known to everyone i, kn -
| ; ca!mm{llﬁsy, but I was surprised not to be able to find 4 adec S'u.
eference for its calculation: in Kleiman [Algebraic cycles and the WL”tL e
es, in Dix Exposés sur la Cohomologie des Schémas, North- Hollang, l{}‘l‘ﬁr;‘
~ pp. 359-386] Jacobians are used, and it was unaccountably omjyeg lto
[13]. In his 1940 announcement, Weil gives a definition of the ¢ - Pairing []n:]
~ our terminology, &,-pairing) for dmsc?r'cldsscs_nf degree zero and order on
~acurve which is analogous to the explicit description at the start of Section |6
~ of AV. The results of that section mainly go back to Weil’s 1948 monograph
. m], but they were reworked and extended to the p-part in Mumfor(s book
- The observation (see (16.12) of AV) that (4 x AY)* is always principally
- ;'jpe]med is due to Zarhin [A finiteness theorem for unpolarized Abelian
~ varieties over number fields with prescribed places of bad reduction, [nye
“math., 79 (1985), 309-321]. Theorem 18.1 of AV was proved by Narasimhap
QM Nori [Polarizations on an abelian variety, in Geometry and Analysis
"S,pnnger-Verlag (1981), pp. 125-128]. Proposition 20.1 of AV is due 1o
o - Grothendieck (cf. Mumford [Geometric Invariant Theory, Springer-Verlag,
| 19,65 6.1]), and (20.5) of AV (defining the K/k-trace) is due to Chow (reference
2 5 - above). The Mordell-Weil theorem was proved by Mordell [On the rational
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L'in: T Sem [17], Mumford [15], and the first section of Katz and Mazur
P I..'& ithn ic Moduli of Elliptic Curves, Princeton, 1985].
’ ,_ J t[Gcnerahzed Jacobian varieties, Ann. of Math., 59 (1954), 503-
53( mﬂrﬂa] mapping property of generalized Jacobians, ibid. (1937)
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v {!;1;‘*;, s mm from Martens [A new proof of Tore|li's theorem, Ann, A
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