CHAPTER Vv

Abelian Varieties

J. S. MILNE

This chapter reviews the theory of abelian varicties emphasizing those points
of particular interest to arithmetic gecometers. In the main it follows Mum-
ford’s book [16] except that most results are stated relative to an arbitrary
base field, some additional results are proved, and ¢tale cohomology 1s 1n-
cluded. Many proofs have had to be omitted or only sketched. The reader is
assumed to be familier with [10, Chaps. I1, I11] and (for a few sections that
can be skipped) some étale cohomology. The last section of Chapter VII,
“Jacobian Varieties”, contains bibliographic notes for both chapters.

Conventions

The algebraic closure of a field k is denoted by k and its separable closure by
k. For a scheme V over k and a k-algebra R, Vy denotes ¥ Xspeca spec(R),
and V(R) denotes Mor,(spec(R), V). By a scheme over k. we shall always
mean a scheme of finite type over k.
: ‘_““ﬁﬁt)’ V over k is a separated scheme of finite Lype OV _
IS integral (that is, reduced and irreducible). It 1s nonsingular if F§ 1s rr.:gulu{r‘
Nom that with these definitions, if V is a variety (and 15 nonsingular) then Vi
Saintegral (and is regular) for all fields K = k. and a product of [ﬂﬂnﬁlngulu'r:
Varieties is a (nonsingular) variety; moreover, V(k;) 13 nonempty. A A-rationd
POInt of ¥ is often identified with a closed point ¢ of V such that k(v) = L
_a‘hll statements are relative to a fixed group field: if V und. W are x'ar.u:ftu_b‘.
OVer k, then a sheaf or divisor on V, or a morphism V— W,is H-m,?m,m-“hdlil};
fant to be a defined over k (not over some «universal domain™ as In the
Pre-scheme days)
mblmr means Cartier divisor, except tha
l;l‘;.-.mmﬂlllar we can usually think of them Lt
Map and D is a divisor on V with local equation f near b,

er k such that ¥

of our varieties
[fo: W= Vis
then n*D (or

{ becausc most
qs Weil divisors.
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cor on W with local equation fom near ™' (v). The ipy,,

~1D) is the divisor on l1be
sheaf defined by D is denoted by Z(D) . |
.”...,;:__,:::‘.;;;‘_,Tr.d space to V at v is denoted by T.(V). Canonicy| 150m .

_. often denoted by =. The two projection maps p: V x W _, |, And
PV x W W are always s denoted. The kernel of multiplicatio, by ,,

X - X. is denoted by X,. An equivalence class containing x is often denoteg

finitions

=

ok '.-,.'., b _t
r .:.. '. T .. . o
% [l B

=

jety over k is a variety ¥ over k together with morphisms

m:V x V-V  (multiplication),

R - inv: V- V (inverse),

@ y ._;l X i

and an e ement &€ V(k) such that the structure on V(k) defined b y mand in
is that of a group with identity element ¢.
Jll druple (¥, m, iny, &) is a group in the category of varictics oy¢r

he diagrams [22, §2] commute. (To see this, note that two morphisms

5P -r W are equal if they become equal over k, and (hat
W(k) W;.) Thus, for every k-algebra R, V(R) acquires a group

re, and these group structures depend functorially on R.
g€ V(k), the projection map p: K x K — K induces an isomorphism

B
T
= S il

rI-'-l.
i B
-

e

nd we define ¢, to be the composite

r L .'-‘:"":_- : .:.l
[/ Badll
T § . _:"--‘-,'“|I e

s

. KsKx{dcKxK3K
0ints £, is the translation map P m(P,a). Similarly, for any poun!

115 a translation map t,: W, = Vi, In particular, if ae V(k), then
Vinto V.

variety is automatically nonsingular: as does any variety, it con

mpty, nonsingular open subvariety U, and the translates of U

up variety is called an abelian variety. As we shall scc, they

1 u

| 'h tely) commutative. Their group laws will be wril-

y
Py : _.'__--r:r .
] 3 _[I

l . _' b

.
-

. ¢ o

i 1F

-

p variety is called a linear algebraic group. Each such varict
A closed subgroup of GL, for some n [24, 3.4]

Al o R Y
! AN ‘-._.-"-"1-:#'"
™ i
FENA,
-

i o

Sy

ﬁi : ¥ x W — U be a morphism of 14"
i, ”av""l, o

h Wo€ W(K), then f(V x W) = {uo}.
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: Let U, be an open affine neighborhood
' ¥ / e 00d of u,.. The & g
gf x W— w !-51 closed {lh:s‘ IS what it means for v t[; ;hzﬂi:ujlﬂjtm? map
setZ = q([ U — U;!)} IS closed in W. Note that 4 closed pr::i ¢), and so
outside Z il and only il f(V x {w})< U, In o point w of W

A L e o CLI'lur 1“1‘ E H"" = ' L
-'.1~*-E" '- a densﬂ open HUbHE I . . N " 0 Af: Iind
so W—Z215 5 Lol W. As V x {w} is complete and U, is

mﬂy ;.f.{w}) mu'sl be a point '_.l.fhunuvur W is a closed point of W _ Z
[14, P- 104]; in fact, f(V' x {iw}) = [({vo} x {w}) = {u,. Thus f is constant
on the dense subset V' x (W — Z)of V x W, and so is constant, AE][

Corollary 2.2. Every morphism [: A — B of abelian varieties is the composite of
a homomorphism h: A — B with a translation 1, ¢ = — f(0)e B(k).
ProoF. After replacing f with ¢ 0 f, a = — £(0), we can assume that f(0) = 0.
Define@: A x A— Btobe fom, —myo(f x f),so that on points a:;}.[u, i) =
fla+a’) — fla) — f(a’). Then ¢(A x {0})=0= ({0} x 4), and so the
theorem shows that @ =0 on A x A. Thus fom, = myo(f x f), which is
what we mean by f being a homomorphism. O

Remark 2.3. The corollary shows that the group structure on A is uniquely
determined by the choice of a zero element.

Corollary 2.4. The group law on an abelian variety A is commutative.

Proor. Commutative groups are distinguished by the fact that the map
taking an element to its inverse is a homomorphism. The preceding corollary
shows that inv: 4 — A is a homomorphism. O]

Corollary 2.5. Let V and W be complete varieties over k with rational
points vy € V(k), wo e W(k), and let A be an abelian variety. Then a morphism
hiV x W— A such that h(vy, wo) =0 can be written uniquely as h =
fop+gog with f:V — A and g: W — A morphisms such that f(vy) =0,
g(wy) = 0.

h
Proor, Define ftobe V =V x {w,} A 4 and g to be W = (v} x W= 4,

50 that k< h—(fop+ gogq) 1s the map such that on points k(v, w) =
h(v, w) — h(v, wy) — h(vy, w). Then
k(V x {wo})=0= k({vo} x W}

and so the theorem shows that k = 0.

§3. Rational Maps into Abelian Varieties

Wﬁjml‘mve some of the results in the last 5ECliFﬂ-
' ::_':';ml[lﬂ, I, 4] that a rational map f: V- W ol ca
43S of pairs (U, f,) with U a dense open subset 00 7 ¢

arieties is an equivalence

\d f, a morphism
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=,
oy

- U~ W; two pairs (U fu

i ) and (U, fy) are equivalent if fy and fi. agrec
e %ﬂyfm is a largest open subset U of V such that f defines a Morphijgy,
B y...,u;md f is said to be defined at the points of U.

e A rational map f: V> A froma nonsingular variety to an abeliqy
 yariety is defined on the whole of V.

Pnaor Combine the next two lemmas. .

Lemma 3.2. A rational map f:V - W from a normal variety to a comple,
am'kty is defined on an open subset U of V whose complement V — () .

~ codimension > 2

 Proor. Let f: U — W be a representative of f, and let v be a point of V — [/
of codimension 1 in ¥ (that is, whose closure {v} has codimension 1). They
Oy is a discrete valuation ring (because V is normal) whose field of fractiong

~ is k(V), and the valuative criterion of properness [10, I1, 4.7] shows that the

- map spec(k(V)) = W defined by f extends to a map spec((y ) — W. This
implies that f has a representative defined on a neighborhood of v, and so the
set on which £ is defined contains all points of codimension < 1. This proves

the lemma. u

Lemma 3.3. Let f: V- G be a rational map from a nonsingular variety 1o

m variety. Then either f is defined on all of V or the points where it is not
defined form a closed subset of pure codimension 1 in V.

- Proor. See [2, 1.3]. 8

M eorem 34. Let f: V x W — A be a morphism from a product of nonsingular
~ uvarieties into an abelian variety. If

SV x {wo}) = {ao} = f({vo} x W)
ao € A(K), voe V(k), and woe W(k), then f(V x W) = {a,}.

w’ can assume k to be algebraically closed. Consider first the casc

~ tHat ¥ has dimension 1. Then V can be embedded in a nonsingular complete

urve ¥, and (3.1) shows that f extends to a map f: V x W — A. Now (2.1
ows that f is constant.

e 4 iy
. ""'—:'.- . =

H
= S
2y
g | P
N i 1
e LS
o ey L
=
".||“_

let C be an irreducible curve on V passing through to
nonsingular at vy, and let C — C be the normalization of C. Then

s MOTphISHY C x W — A which the preceding argument shows v be

i J(C x W) = {a,}, and the next lemma completes {}5

ek 0N yral scheme of finite type over a field k, and assume

CRRE) ~ 14411 o= 1
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AL ar at a PUE"{ Vo € V(k); then the union of the integr

: ._;-.f subschemes passing through v, and nonsingular at Vg IS din:*i E}m;
= By induction it sulfices to show that the unj .

Pﬂ@‘?’“ ;ﬁ:roodimﬂnsinn | passing through v, and smsztl?fa:h: li?jfral ?’Uh'

We can assume that V is affine ';u_ld Vo 1s the origin. For Hnu h}’;fi:{;:lr:;
assing through v, but not containing 1, (V), V.~ H is smooth at vy. Let V.

be the component of V,ﬁH passing through v, regarded as an inlf:graﬂ
summc of V and let Z be a closed subset of v containing all V. Regard
7 as a reduced subscheme of ¥, and let C, (Z) be the tangent cone to Z at 4

fid, ML3). Clearly T.(V)nH =T,(V) = C, (V) < C, (2) < C, (V) =
T,(V) and it follows -l'hut‘ Coo(Z) = T, (V). As dim C, (Z) = dim(Z) (see
(14, 1113, p. 3201]), this implies that Z = V. N

¥ L 't
I

L

Corollary 3.6. Every rational map f: G -»> A from a group variety to an abelian
pariety is the composite of a homomorphism h: G — A with a translation.

Proor. Theorem 3.1 shows that f 1s a morphism. The rest of the proof is the
same as that of (2.2). ]

Remark 3.7. The corollary shows that A 1s determined by k(A) up to the
choice of a zero element. In particular, if A and B are abelian varieties and
k(A) is isomorphic to k(B), then A is isomorphic to B (as an abelian variety).

Corollary 3.8. Every rational map f: P' --» A is constant.

ProoF. The variety P' — { co } becomes a group variety under addition, and
P! — {0, o0} becomes a group variety under multiplication. Therelore the
last corollary shows that there exist a, b€ A(k) such that

fx+y) = f(x) + f(0) +a, all x,yek=P'k) —{w}
flxy)= f(x)+ f(y) + b, all Xx yek™ = P1(k) — {0, o0}

This is clearly impossible unless [ is constant. .

Recall that a variety V of dimcns.iun d 1s :mimrfm_m! if there 15 an Emsbcd};
ding of k(V) into a purely transcendental extension K(&y, .- X,) of k. Suc

I : o4, V- whose image is dense
e mwdlng corresponds to a rational map Py - Vi v hose 1mag

in 14,

g 'I'". Y 3.9. Every rational map from a unirationa
tariety is constant.

| variety to an abelian

closed. By assumption there

P’ﬂﬁi We c: . alpebraically : vo sotin
B#iippose K to be 8 d the composile of this with a

S rational map A?--» V with dense image, dil
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[ S

hism f: P! x : x P! - 4 Ac
. :;." or m mp f:_V i A Exlﬂﬂds lﬂ d mﬂrp o ; ' 2 C.
s :.:rdins 10 (2.5), [ (X1 --+» Xa) = Y. filx) for some morphisms f: P1 — 4

-4
‘.‘

5 (3;3) shows that each f; is constant. il

§4. Review of the Cohomology of Schemes

In order to prove some of the theorems concering abelian varicties, we shy)
need to make use of results from the cﬂhnmﬂlng}' of coherent sheaves. T,
first of these is Grothendieck’s relative version of the theorem asscrting (b
the cohomology groups of coherent sheaves on complete varieties are fine

Theorem 4.1. Iff: V — Tis a proper morphism of Noetherian schemes and 7 |
a coherent Oy-module, then the higher direct image sheaves R'f, F are coheren

Or-modules for all r = 0.

Proor. When [ is projective, this is proved in [10, III, 8.8]. Chowy
lemma [10, 11, Ex. 4.10] allows one to extend the result to the general cuse

[9, [11.3.2.1]. _L]

The second result describes how the dimensions of the cohomology groups
of the members of a flat family of coherent sheaves vary.

Theorem 4.2. Let f: V — T be a proper flat morphism of Noetherian schemes,
and let & be a locally free @y-module of finite rank. For each t in T, write ),
Jor the fibre of V over t and F, for the inverse image of F on V.

(a) The formation of the higher direct images of & commutes with flat base
/! change. In particular, if T = spec(R) is affine and R’ is a flat R-algebra.

then H'(V', ') = H'(V, ) ®x R’, where V' =V X g sSpecc(K) and

T F' is the inverse image of F on V'

~ (b) The function ti— y(F) = > (= 1) dim,, H'(V,, #) is locally constant 0"

R s |
- ""hi"""F

Fﬁ'm r, the function t—dimy,, H"(V,, #) is upper semicontinuous (thal
s, it jumps on closed subsets).

"-'ﬁ_l'rp:'-‘\.'n —_ o b . 1 1 § ) (
- ) Iy Tis integral and dimy, H'(V,, #) is equal to a constant 3 Jor 1}”_

L e ..'.- A i 2 ) 5
ﬁﬂﬁl Rf,F is a locally free (O,-module and the natural md

" ':.. . ‘.‘,:’" 4 '|. ‘!
- i N "

( k(t) » H'(V,, %) are isomorphisms.

,['Ih:’

R ".-L Mo L
o T g .I--'-u' f-.‘”. - %'-1;.'\-- - T - -} 5 -
(@) 1he statement is local on the base, and so it suffices 10 |

T n whwh we h_a‘vc given an gxp]lmt stateme
..';4:- r:
s 'i'.' )=

yOVE
1. In

-1. .
’ e
i

L.
1iclL
¥ lq"."‘

. Ir’ L
ey
4 JI'rll'.ill"l"ll.l

m&ﬁ' p. 46], a complex K of R-modules is cong
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#

' ’ ' p i as" ; lructed such th
s R, H'(V", f.) = H {,h @u R’). In our case, R is flat D‘-’:I'[ Lﬂr i
(K. ®x R') = H'(K ) @, R’, which equals H' (V. #) &, R’ , and

ﬁ}[;;,w' (d). These are proved in [16, §5].

m'm hypothesis lmpllt:tiulhal __R Tf*.-ﬁ" =0 ([10, 111, 12.11a]), and it

that f, # ®c, ,f;(;) — H (I*";,' ) 1s surjective for all ¢ (L10, 111 i" [1b]
mml. is an isomorphism. Now this last reference (applied with ; =‘U]msh }
lhltfaq;f is locally [ree. GE

§5. The Seesaw Principle

We shall frequently need to consider the following situation: V is a variety
over k, T is a scheme of finite type over k, and % is an invertible sheaf on
¥ x T. For te T, &, will then always denote the invertible sheaf (1 x 1)* % on
V, = Vaey = (V x T) X t, where 1 1s the inclusion of 1 = spec(k(t)) into T.

There is the diagram
(V x T, ) (V. L),

! !
T — 1

It is often useful to regard % as deflining a family of invertible sheaves on V
parametrized by T.

Theorem 5.1. Let Vbe a complete variety and Tan integral scheme of finite type
over k, and let & and # be invertible sheaves on V x T. If %, = .M, for ff”
te T, then there exists an invertible sheaf A~ on Tsuch that ¥ =~ M ® q*.¥.

ProoF, By assumption, (¢ ® MY, is  trivial for all teT, and so
H(v, (L@ .#"),)~ H(V, 0,) = k(1) Therefore (4.2d) shows Ihiu .[ht.’.
sheaf ¢ = 4 (£ ® .#7") is invertible. Consider the natural map 4 AN =
P2 4 )2 2@ H" . As(L ® M) = Oy, the restriclion “f‘;}“
the fibre ¥, is isomorphic to the natural map o Oy, _® (W, {r}‘i}mﬂ_;"e‘
which is an isumﬂrphjsm‘ Now Nakayama'’s lemma in_1plz::s that ﬂx 'IE{M;IUL;
tive, and because both g* A and & ® M~ are invertible sheaves, 1[1‘0 ﬂ;;

that g is an isomorphism (if R 1s a local ring, then & surjective R-linear map
R- Ris an iIsomorphism because it must send 1 1o

prm—

a unit).

i , hypotheses of the
CW 5.2 (Seesaw Principle). Suppose in addition ;t:;- f."lltf;['!rf:'ﬂr heses of the
theorem tha L, ~ M, for at least one vE V(K). Then 2" = /%

" for some 4 on T.

: r *. &
Proo. The theorem shows that ¥ = M4 biaid A isomorphism

On Pulling back by, T = {u} w TaVxI weo



r-.'I . 1 i
e S.M
) - 3 of . "~
AR TR . ILNE
) " 11 - L J‘ 2 L
R O L - I
i ey q‘ T o LS
L4 b - - -t PR .

. ..d!' ﬁq*«ﬂ. As & ~ .#, and (g*A), = A", this shows that ¢

# next result shows that the condition % = .#, of the theorem needs
e Dﬂl to be checked for t in some dense subset nf T (for example, it needs only

tq be checked for t the generic point of T').

M 5.3. Let V be a complete variety, and let & be an invertible she af on
I" x T. Then {te T|4%, is trivial } is closed in T.

Imnl 5.4. An invertible sheaf & on a complete variety is trivial if and on}y if

 both it and its dual £~ have nonzero global sections.

2 ROOF. The sections define nonzero homomorphisms s,: (0, — and
% ”gﬂ,—rf" The dual of s, is a homomorphism s3: % — Oy, and s}
} NONZEro, lsan lsomﬂrphlsm (nule lhd[ Hom[@p—, (9;,-) = H (I= 0,) = R}

e

'1_ []

- ProoF OF (5.3). The lemma identifies the set of ¢ for which %, is trivial with
thfﬂr which both dim H°(V,, %) > 0 and dim H°(V,, ') > 0. Par
© .',_,"-_-'_}shows that this set is closed. s

| irk 5.5. Let ¥V, T, and .% be as at the start of the section with V unnpl:,n.
We sl 1_:* ;aay that & delines a trivial family of sheaves on T if ¥ ~ ¢*. | for
tible sheal 4~ on T. According to (5.1), in the case that T is
W!Hm a trivial family if and only if each %, is trivial. Returning
'_‘ -"'“' situation, let Z be the closed subset of T determined by (5.3).
f M the following property: A morphism f: T’ — T from an inte-
_to T factors through Z if and only if (1 x f)*.% defines a trivial
Tlm result can be significantly strengthened: there exists a
subscheme Z of T (not necessarily reduced) such that a mor-
j *!‘ (‘mth T" not necessarily integral) factors through the inclu-
Zc Tifand only if (1 x f)*.% defines a trivial family on V'

. f Sl I|:I
r f:.l-: -~ I b
. B & &
k3 hlfib {;l- L]
R

5 - .
Ta *If.. . -
-!"'_".-

.ﬂ
i
"'-"i. 1

""*- of the Cube and the Square

s gfth’e Cube). Let U, V, W be complete varieties ot¢
i H{k}’ vo€ Vi(k), woe W(k). An invertible sheaf & on
ivial if it § restrictions to {uo} x V x W, U x {vo} x W’ and

| .ﬁa
...‘:‘l:‘_: '. T +
_':;: -.i--.
h '_. W

{!‘i’u} 1s trivial, the seesaw principle shows Ih:l:
=" ,
" "‘ Wmtnﬂalfur a dense set of zin U x V- N¢

'I'

‘:.-I ;
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R vt thﬂl U can be taken to be a complete curye

when u, is nonsingular). This case IS pr ((3.5) accomplishes

221 when k is algebraically closed, and the next le;:f SIE [16, §6, pp.
ymumc that. oWs that -

ma 6.2. Let £ be an invertible sheaf on a Lumphu variety
-B'-’f becomes trivial on Vi then it is trivial on

Vﬂl‘..‘fr ﬂﬁﬂld fl'.,

PKDOF The triviality of % on ¥ implies that both Hﬂ“’i %) and

-1 are nonzero. As H(V;, J’“} H(V, 2% ®. k
HL;(B'EIO,SIl» shows that . is trivial. g 2'A[}Zjl

Remark 6.3. At least in the case that k is algebraically closed, it is not

pecessary to assume in (6.1) that W is complete [ 16, 86, p. 53], nor even that
itis a variety [16, §10, p. 91].

Corollary 6.4. Let A be an abelian variety, and let p;: A x A x A — A be the
projﬂﬂ[iﬂﬂ onto the ith fuc!ur; let Pij=p; + p; and Pijk = Pi + P + D For any
invertible sheaf & on A, the sheaf

PEsZ ®pH L' @pHh Y R pHh L '@ QprL R pY
onA x A x Ais trivial,
ProoF. The restriction of the sheaf to {0} x A x A (= A x A)is
Bt " dm* ' Rq¢* ' R0,,.Pp* Y B q*Y,

which is trivial. Similarly its restrictions to A x {0} x A and A x A x {0}
are trivial, which implies that it is trivialon 4 x A x A.

Corollary 6.5. Let f, g, h be morphisms from a variety Vto an abelian variety A.
For any invertible sheaf & on A, the sheaf

F+g+h*2Q@([+9*L ' ®@+h* 2 @ +N L
R*¥*L R g*Y @ h*Z
on Vis trivial.

age of the sheal in (6.4) b

le The sheaf in QUESUGH is the inverse im
(Lgh):V—>Ax4xA

to multiplication by n. For all

CM"Y 6.6. Consider the map n,: A — A equal L«
invertible sheaves % on A,

nt e~ LU (1)L

.:r[||1I ﬂ].f-
In particular,
(ie, & = (—DiZ)

ntL ~ L if & is symmetric
@'~ (- 1DiE):
nfL ~ ¥ if & is antisymmetric (i.e., 2
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|_ ol

L RS N othemaps n,, 1, (—1),

find [ _ih%l::; f;,: ga(l:: l)ﬁ.fﬂl l; 'S;HI %[( ir 1);* ":: ’:- jI
‘to prove the corollary by induction, starting from ), tilsy
,%q orem of the Square). For all invertible sheaves
A A and pgms-a,bed{k).

I RQL=IXL KL

= e 3 'j,! ““
| - ‘HI"I..' :L. :'-_y
.I.I-"-' — .-‘- ¥

- '::1 .-!'. fe Bt 3

5.
RO

- 'FII-

g

B e T
5 e
3 FE e A e

i i ey L
- ‘I'
[ &

'y--iﬁ.S) with f the identity map on A and g and h the Constan

images a and b. d
Whgntensored with %2, the isomorphism in (6.7) becomes
L 2, 2RL'RRLRLNOWL LT

: -

L. "
- ‘ffi""

i _.-..- g g =
.;;.__'-_'-'.-ﬂ.:-"'._'::l!:;-'-;-% :!'
1P widll
! =l "'_T." : _.-.I

4 L. A=

P

+« . H. i
TR T e e
e :
¥
H——

#

--

L '..

,L‘.' 1] 11

i !
| - -

LA e P o Ly

.

. a—1* 8 ® L A(k) - Pic(A),

*H* Therefore, HZ?.,l a; = 01n A(k), then
R S

A
nark 6.9. We write ~ for linear equivalence of divisors, so that D ~ D'

_1," Also, we write D, for the translate 1,D = D + aol

':":-lﬁ{* iR

e | T1 L(t.' D) = L(D_,). The isomorphisms in (6.7) and
ecome the relations:

i
xR
Dy +D~D,+ D,
3. ‘: ':li 1 _.
‘.-:,‘ Jp-_:@li ~ w’
-,..1"'._ . .

a, be A(k),

if ) ;= 0in A(k).

i :I.
SN

an Varieties Are Projective

‘ona v iety V we write
-.&:wi;f

W) + D 20} v {0} = HO(V, Z(D)),
: k. "::---I'" ! ' % . ) .
LS € L(D)} = the complete linear system containing D

bas!s ,
ith (he

ading of an elliptic curve can be constructed
'8 HI€ Z€r0 element of 4, and choose a suitable
12p A - P* defined by {1, x, y} identifies A4 ¥

% 0

J.- II' P
-y
¥y

: | P
L8= X3 + a, X7 + a, XZ* + asZ”
.“_“;;éF{:"il: | : : ariely-

="

a
-
.1'.""II
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Theorem 7.1. Every abelian variety is projective.

- F. We first prove this under the assumption that the abeli
deﬁllﬂd over an algebraically closed field.
Recall [10, [1, 7.8.2] that a variety is projective if it has a very ample linear
syﬂMr and that a linear system D is very ample if:

an variety A is

(a) it separates points (for any pair a, b of distinct closed points on the
variety, there is a D in D such that ae D but b ¢ D); and

(b) it separates tangent vectors (for any closed point a and tangent vector
to the variety at a, there exists a D ed such that ae D but t ¢ T,(D)).

The first step of the proof is to show that there exists a linear system that
separates 0 from the other points of A and separates tangent vectors at 0.
More precisely, we show that there exists a finite set {Z;} of prime divisors on

A such that:

@ (Z={0sad T e
(b) for any t € T(A) there exists a Z; such that ;¢ T,(Z,).  Tol 0= 103,

The second step is to show that if D = ) Z,, then [3D] is very ample.
The existence of the set {Z;} is an immediate consequence of the observa-

tions:

(i) for any closed point a # 0 of A, there1s a prime divisor Z such that 0e Z,
a¢Z, | |
(ii) for any te Ty(A), there is a prime divisor Z passing through 0 such that

tE To(Z).

The proof of (ii) is obvious: choose an open umnclncighbnrhnnd U of 0, le;
Z, be an irreducible component of A n H where H 1s any hyperplane thr Uilll%
0 not containing ¢, and take Z to be the closure of Z,. The P“f-'”f D.f [’]‘ v IE
equally obvious once we have shown that 0 and a are ;untumed :jn ?Uslilid
open affine subset of A. Let U again be an open afline neighborhood 0 o0
let U + a be its translate by a. Choose a closed point t of Un(U + ir');hbr.:.r-
both u and u + a licin U + a, and so U + a — w15 an open affine neig
hood of both 0 and a. /1, oy ey

Now let D be the divisor ) Z; where (Zi)1<i<n :
family (a;, bi)y <i<n Of closed points of A. the theoren
shows that

sﬁtisﬁus (a) and (b). For any
1 of the squarc (6.9)

Z(zi'.n,- + zl’.b; -+ zf."ﬂi_-”i) yid
| say = l, Zi does

: ome i,
(a), for s o kot BiThe

Let R 1 A B}'
a and b be distinct closed points O .es throug

Not contain b — a. Choose a, = a. Then Zy,a, PSS

{b,|Z,,,, PASSES through b},
{b11Z,,-a, -, passes through b},
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B dosed subsets of A 'll;h?rel'?r; 2it ;:npobim:}iz ;:nc:1:m?ru 4 b, thy,
o . e ol SRR a, and b, lor #%il 80 that nop,
> lies in mmﬁmﬂy : through b. Then a 1s in the syp i
e A o ity Z:,, or y AR passcs ; Pport
 arresaele iy zzl.n-; z;"-ﬂ-}-zl_;-;) but b is not, which §h0ws that [3D| SCPiryye
2( . ;;."ﬂlﬁ ; of tl;at'it ;epa'mt“ tangents is sifnllur.

po"?heﬁﬂ '] step is to show that if AI 1S PrUJBGl_!tﬂ_,__l_h_l;_f_l $0 also is Ay Let p

)

Vs e it | - : , .
2 be an ample divisor on Ag; then D is defined over urﬁnltc;):x'tunrmm Of k, ung
the roUoms itﬂlﬁﬂlﬂﬂ“- exp_hlll} hqw tqcnnstructrﬂm an ample {In'}mr
on A. ,’::: ::ﬂ; :m_:.:,.u”:e AR
(a) Let D be a divisor on A; if | Dxl is very ample, then so also is |D| (T,
map Ag < P" defined by |Dg| is obtained by base change from (),
defined by |D|.) |
(b) If|D,| and | D,| are ample, then so also is | D, + D,|. (See [10, 11, Ex. 7.5),
(c) If D is a divisor on A,,, where k' is a finite Galois extension of k i}
Galois group G, then ) oD, a€G, arises from a divisor on A (This i,
obvious.)
(d) If D is a divisor on A,., where k" is a finite purely inseparable extension of
k such that k’*™ < k, then p™D arises from a divisor on A. (Regard D s
the Cartier divisor defined by a family of pairs (f;, U/), fie k'(A), and le
U, be the image of U/ in A; then k'(4)"" < k(A), and so the pairs (/" U
define a divisor on A whose inverse image on A,. is p™D.) 0
Corollary 7.2. Every abelian variety has a symmetric ample invertible sheaf
Plnt'}F..Acuording to the theorem, it has an ample invertible sheal ¥ As
multiplication by —1 is an isomorphism, (— 1)*.# is ample, and therefore
LR(-1)*Zis ample [10, II, Ex. 7.5] and symmetric. [
Remark 7.3. If & is an ample invertible sheaf on A, then by definition #" 13
very ample for some n. It is an important theorem that in fact % will be ven
e mﬂe (see [16, §17, p. 163]). The three is needed, as in the above prool. 50
B & that one can apply the theorem of the square.

T ];

-
5
P

S o f" A-Bbea homomorphism of abelian varieties, The kernel N of /1"

L"‘t &Df[ﬂ, §2] lsa closed subgroup scheme of A of finite type ¢ ver I:
T Ghlractcmnc zero, N is reduced [22, §3], and so its 'I{lm“-lﬁ
- component N© is an abelian variety (possibly zero); in general, N will ¢ *

i -.':._-.._:_ .-..r,_'-:_ “!l'r"l.‘- 1.
I I e
| BB ....‘:‘

lﬁmmﬁm“l’ scheme by an abelian variety. If f is surjecti'® -

.- 1 l:..._.p# ey

as linite kernel then it is called an isogeny.

. L - ;
- Ll

tion 8.1 For a homomorphism f: A — B of abetian varicris. /"'
EALS are equivalent:

* R
i

Rt R,

o T e s o e
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(a) [is an isogeny,

(b) dim A = dim B and [ is surjective:

© i 4 = i B ans Ker(/) is a finite group scheme:
(d) fis finite, flat, and surjective. ,

prook. As [(A) is closed in B, the equivalence of the f
follows from the theorem on the dimension of fibres of
1.8].

:(I:lcarly (d) implies (a), and so assume (a). Because f is g homomorphi
the translation map f, can be used to show that the [‘Sthﬂmt-[htﬂfﬂlif} ﬁSch
£7A(b) is isomorphic to f7'(0),,,. Therefore f is quasi-hinite. It is also pro-
jective ([10, II, Ex. 4.9]), and this shows that it is finite ([10, 111, Ex. 11.2])
The sheaf f,0, 1s a coherent (,-module, and dim, , (1,0, ® k(b)) ='
dim, (/@4 ® k(0)) 1s independent of b, and so (4.2d) shows lfhul {0, is
locally free. R

rst three statements
morphisms; see 114,

The degree of an 1sogeny f: A — B is defined to be the order of the kernel
of f (as a linite group scheme); equivalently, it is the rank of f,C, as a locally
free Op-module. Clearly, deg(go f) = deg(g) deg(f). Let n = deg(f); then
Ker(f) = Ker(n,) and so n, factors as n, = go [ with g an isogeny B — A.

For an integer n we write n, or simply n, for the morphism a— na: A — A.

Theorem 8.2. Let A be an abelian variety of dimension g, and let n > 0 be an
integer. Then n,: A — A is an isogeny of degree n*?; it is étale if and only if the
characteristic of k does not divide n.

ProoF. From (7.2) we know there is an ample symmetric invertible sheafl &
on A, and according to (6.6) n*.% ~ %™ The restriction of an ample inverti-
ble sheaf to a closed subscheme is again ample, and so the restriction of n¥ %
to Ker(n,) is both trivial and ample. This is impossible unless Ker(n,) has
dimension zero. We have shown that n, is an isogeny. |

In proving that n, has degree n*? we shall use some clcnwnlgry intersec-
tion theory from [21, IV.1]. Clearly we may assume K 1s algebraically closed.

Let ¥ be a smooth projective variety of dimension g. If Dy, ..., D_ﬁr are
effective divisors on V such that ﬂ D; has dimension zero, then their nter-
section number is defined by the equations

D) = ) (Dy,...s Dy), (sumovel ve () D)

(Dy, ..., D,), = dimy(Cy ,/( /1,0 -+ So))

j‘i.;r;ﬁ'“ 1S a local equation for D; near U. The d
’ Y to noneflective divisors whose components - Then
/ : R M [ R
( (gacks that (Dy, ..., D,)1s unchanged if each D; 1S replaced by a linearly

‘ ' s - i .xtend the definition to
\ Cquivalent divisor and shows that this can be used m{;}\ ; fi T

) aE\Q:t‘uples of divisors (loc. cit.). In particular (D?) = (L

Fu‘l.f'\-'ull . 3 1 .J 3 o - Iif”
hﬂlnl 3‘3. LE[’ Vﬂﬂd be:.’ SIH{JHHI prtUUFHI"E parielies r.’gff

ofinition is extended by
intersect properly. Then

ension g, and let
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[Pt

- T (f*Dy, .o [*D;) = d(Dy, -, D)

i rove the equality in the case that the D, are effective ang

fous It suffices to p
Al ﬁm finite. Let ve () D;. Then (£, Ow) ®¢, Ov.o = [ Lron=0 Ow. v, Which jg
i odule of rank d. If £, , is a local equation for D, neyy |

}: the | ree & -m
~ Ithﬂﬁ.rﬂ}rls a local equation for f*D; near each of the points in /1,
8 ,‘gliu#nir -.lif'Dl)H” i3 fl§-pdlmt(ww.w/(fl.unﬂ Rl jﬂ-l’ﬂ-’( )]
=dim,(( [] Ow.) Re,., O o/(J10r---\ S, )
S(w)=v
=d(Dyy.ser Dy 0

We apply this theory to a divisor D on A s!.lch that D is linearly equivalen;

to (—1)*D (i.e., such that #(D) is symmetric). Let d = deg(n,). Then (83
shom that ((n¥ D)) = d(D?), but (6.6) shows that n¥ D is linearly equivalen

3 'r_,--tnjl’D and therefore that ((n¥ D))’ = ((n*D)*) = n??(D?). These equalitics im-
plyd = n** provided we can find a D for which (D?) # 0. Choose D to be very
ample (see (7.2)), and let A < P" be the embedding defined by |D|. Then for

_ thm sections H,, ..., H, of A in P", (D) = (H,, ..., H,), and this

{ iwbvioluly positive.
It remains to prove the second assertion of the theorem. For a homo-
~ morphism f: A — B, let (df),: Tu(A)—+ To(B) be the map on tangent spaces

“defined by f. It is neither surprising nor difficult to show that d(f + g), =
(d) ':"(dﬂ)g(d: [16, §4, p. 42]). Therefore (dn,), is multiplication by n on the
- k-vector-space T,(A), and 50 (dn,), is an isomorphism (and n, is ¢tale at zero)

: and only if the characteristic of k does not divide n. By using the translation

L s f ne shows that a homomorphism is étale at zero if and only il 1t 1s ¢lale
- AR D 0
”’LT M If k is separably algebraically closed and n is not divisible by 1S
ristic, then the theorem says that the kernel A, (k) of n: A(k) — A(Y
.5',{ | ments. As this is also true for all n’ dividing n, it follows that H»}

| frec Z/’lz‘mﬁd“h of rank 2g. Therefore for all primes | # char(k). 1 A=

r"

5&! a free Z,-module of rank 2g. Note that an element a = (d,) L‘f 1,4
S .:' * ! h ﬂll a’i ﬂ;. O Ofclcmeﬂts Of A(k) SUCh thd[ fﬂl — U 1..1nd I‘H =

|:' . .ill:j '.-

= I 11 1.

1 11 i 5
I!:lr ﬁ ot

L
_-.._

wmbly algebraically closed then we define 7,4 = Tii.
A continuous action of Gal(k,/k) on T, A.

.r',_f 0.
‘ '--- "i h tk is algebraically closed of chdmctuﬁm p7

{or¢

-_'-"-,"-"r X o, for some r, s, t such that r + 5 +
ﬂ{thﬂ inequality is a CGHSEQUEHLL of the [

.-'. '. . 'f.“-tf"'-‘ FaviLve I ‘Iﬁt,-“ Milae .
\ |=: I‘-‘“lf Wohong g et £

» “‘*ﬂ'l T L

't'“!'v

d. Then for any divisors Dy, ... . D ,, |,

ABELIAN VARIET|Es
117

o = 0). All values of r, s, and t are possible
A ase r = g is the “general” case. For example w
cast !l gulﬂf elliptic curves and there are only fj

' k [16' §22_ p. 216].

bject to these constraints,
heng = | thenr = 0 only
lnitely many of these over

§9Thﬂ Dual Abelian Variety: Definition

Let £ be an invertible sheal on A. Recall (6.8) that the map
@y A(k) — Pic(A), a—1*Y ® ¢!
is a homomorphism. Define
K¢ = {a€ A|the restriction of m* % @ ¢* %' to {a} x Ais trivial.

According to (5.3), K & 1s a closed subset of A, and we regard it as a reduced
subscheme of A. For a in A(k), the maps

A={a} x AcAx A3 A

g

IJ
send P . @p) T
— P

andsom* % ® q"‘_‘i‘.”_lliu} « 4 can be identified with 17 ¥ ® £~ on A. Thus
Ky(k) = {acAk)|tr &% =~ &}.

Note that (6.2) implies that the definition of K, commutes with a change of
the base field.

Propesition 9.1. Let % be an invertible sheaf such that H°(A, %) # 0. Then Z
is ample if and only if K . has dimension zero, i.e., if and only if 17 % = 2" on
Ag Jor only a finite set of ae A(k).

PROOF. Let s be a nonzero global section of ¢, and let D be its divisor of
26108. Then D is effective and & = (D), and so the result [16, §6, p. 60]

We shall be more concerned in this section with the & of opposite type:

| i i tions are
P’Nﬁon 9.2. For % an invertible sheaf on A, the following conditions
Wvﬂlent-

?’)l‘&“'.?nn A for all ae A(k);
Q’ ?!*ff Rp*Y ® q* <.

the remarks in
The equivalence of (a) and (b) follows iy t for all ae4,

%ﬁrﬂ paragraph of this section. Clearly (¢) implies tha

= G T W #“"-;.l
s e
R S Ll g 1 T pieat gy .'f_r*- b o LR iy 2 “l.'n-}.- b s T )
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L | (a} % 4> which is trivial. Thus (c) imp]je, ()

L ST TR b b
| m*? ®q (a} x easily from the seesaw principle (5.2) becaug,

' ~ and the converse follows

. m*2®q* ¢ s 20d s s bothtavial for all ae g
rm*f@ﬂ*g“lhx{ﬂ}=f=p'£ﬂ"‘”{ﬂ} 0

Define Pic®(A4) to be the group of isomorphism classes of Invertjh|,

L Er—

M"ﬁ on A satisfying the conditions of (09-2}- Note that if fand g arc i,
" from some k-scheme S into A and £ € Pic"(A), then

L +9r 2R (LM LR LI PL B[ L ® gty
‘From this it follows that n* %" =~ Z” allneZ, & € Pic’(A).

9.3. An invertible sheaf . lies in Pic® A if and only if it occurs i an
~ algebraic family containing a trivial sheaf, i.e., there exists a connected varie(y
T and an invertible sheaf .# on A x T such that, for some t, t, € T(k), 4
s trivial and .#, ~ . The sufficiency of the condition can be proved directly
~ using the theorem of the cube [16, §8, (vi)]; the necessity follows from (he
 existence of the dual abelian variety (sce below).

& Ro ghly speaking, the dual (or Picard) variety A" of A is an abelian

variety over k such that A*(k) = Pic®(Az); moreover, there is (o be an inyer
ible sheaf (the Poincaré sheaf) 2 on 4 x A" such that for all ae A”(k), the

WA b L, 4%

inverse image of 2 on A x {a} = Ay represents a as an element of Pic”(4)
sually normalizes 2 so that 2|, . 4v is trivial.

The -ﬁ..,--e; dcﬁnitigg is as follows: an abelian varicty A is the dual
b @ ety of 4 and an invertible sheaf 2 on A x AY is the Poincaré

1) Plio) « 4 1 trivial and 2|, lies in Pic®(4,,) for all ae A"; and
| for every k-scheme T and invertible sheal % on A x T such thal
Eljo} 7 18 trivial and 2|,y lies in Pic®(A4,,) for t € T, there is a unigue
f :T—> A such that (1 x f)*? ~ &.
rly the pair (4", 2) is uniquely determined up 10 ¢
- ﬂﬂ n by these conditions.

il applying condition (b) with T = spec K, K a field, one finds thal
”i”:,;-; particular AY(k) = Pic®(4;), and every element ol
,*‘H exactly once in the family (2,),.. - 1h¢ map
,};f (b) sends te T(k) to the unique ae A" (k) such bt
w scription of tangent vectors in terms of maps [ront
E:EE II, Ex. 2.8], one can show easily that there B )
: H'(A4, 0,); in particular, dim AY = dIIj1 1]
= G there is an isomorphism H'(4, 0,) > H'(4". ("
€ 1o the complex topology), and one shows_th Lﬂp‘
8 an isomorphism H' (4%, 0,..)/H" (4", 7) = A"

4

ey HE

m the
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L of course that AV
.@m_ﬂl’“"“

e of this. Mumford [16] gives an elegant

on 9.5. Let 2 be an invertible sheaf on the

I ;'::H:m- parieties of the same dimension, and assyme
.A. # {0} and {0} x B are both trivial. Then B js

Pmﬂréwqfifand only if 7(A x B, ?) = +1.

product A x B of two
that the restrictions of 2 to
the dual of A and # is the

proof. [16, §13, p. 131].

Note that the second condition is symmetric between A and B; therefore i
(B, 2)is the dual of A, then (A, s*2) s the dual of 4, where s: B « A -he_iﬂfg
is the morphism switching the factors. | ,

§10. The Dual Abelian Variety: Construction
We can include only a brief sketch—for the details, see [ 16, §8, §§10-12].

Proposition 10.1. Let & be an invertible sheaf on A; then the image of
@ A(k) = Pic(A) is contained in Pic®(A); if & is ample and k is algebra-
ically closed, then ¢ maps onto Pic’(A).

ProoF. Let be A(k); in order to show that ¢ (b) is in Pic”(A), we have to
check that t¥ (¢ (b)) = @ (b) for all ae A(k). But
1H0pb) = (L ® L) = 12,7 @ (L),
which the theorem of the square (6.7) shows to be isomorphic to
e ® L' = @y(b)

This shows that ¢, maps into Pic®(A), and for the proof that it maps onto,
we refer the reader to [16, §8, p. 77].

Let % be an invertible sheaf on A, and consider
P*—m* P Q@ p*¢ ' ® q* <"

ﬂl_l_A X A. Then L*|0yxa = ¢ ® £, which 1s triviul: and fnrl_ﬂ In
A(k), '?*Lu{,,} = t*P ® L' = pyla), which, as we have just seen, lies 13
Picu(AE)- Therﬁfﬂrﬁ: if & 1s Hmple, then &£* defines a f;l.m]l}' of sheaves Ullu*
Parametrized by 4 such that each element of PicO(Ay) is represented by <

= CiF(AY. P)exists, then
f“-"a(nﬂnzcro) finite number of a in A (k). Consequently, f (A7, &) eXI8S

thm iﬁ 1 s - h ( l % qg]**f — .Eﬂ*. MD[EGHEI‘
¥ 15 a uniqu . 4 — A" such that{ )
B o o are the equivalence classes for the

:‘1:?.2, and the fibres of A(k) — A" (k)
ation “a ~ ¢’ if and only if &, ~ £

g | -+ = = ] HS ﬂ. ﬁnitc
In Characteristic zero, we even know what the kernel of ¢
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A
JF e
i 5
4 T

L | -
s =3

05

L8 s

" "ﬂ- 1

| m of A must be because it is determined by its underlyiy,

"' Ko with its unique reduced subscheme structure. Therefore, jp j -
case we define A” to be the quotient A/Ky (see [16,87, p. 66 or §12, :
for the construction of quotients). The action of K4 on t.hu second factor of
| ’ to an action on £* over A X A, and on forming the quoticp, -
ohtain a sheaf 2 on A x A" such that (1 x @¢)*? = L4

- il. 1
T .

~ Assume further that k is algebraically closed. It easy to check thyg
- AY, 2) just constructed has the correct universal property for famj)j,.

of sheaves .# parametrized by normal k-schemes. Let .# on 4 . 4
" be such a family, and let # be the invertible sheal ¢f,.# ® qt,»

: KT x AY, where g, is the projection onto the (i, )th factor. Ty,
T'-jﬂibjm M ® 271, and so if we.lct .I" : denote the f:lnscd subset of
T x A" of points (t; b) such F | .y is trivial, then I'(k) is the graph of ,

" map T(k)— A*(k) sending a point ¢ to the unique point b such
| Regard I" as a closed reduced subscheme of T'x AY. Then (he
;,_,ﬁ“ I" - T has separable degree | because it induces a bijection op
"'f [21, II, 5]). As k has charactcrfsllf: ZEI'{}: Il must In l.”au:l have
degree 1, and now the original form of Zariski’s Main Theorem [ 14, 1119
5 413] shows that I" — T is an isomorphism. The morphism f: T~ "~ 4
has the property that (1 x f)*# = .#, as required.

~ When k has nonzero characteristic, then A" is still the quotient of A by 4

-

subgroup X, having support K 4, but X need not be reduced. Instead one

ines X% to be the maximal subscheme of A such that the restriction of

” to Xy x A defines a trivial family on A (see 5.5), and takes
= ’{ i'l'he proof that this has the correct universal property is similar

5

The Dual Exact Sequence

-t

Sk

4= B be a homomorphism of abelian varieties, and let #; be the

e

aré. » X BY. The invertible sheaf (f x 1)*#, on A x B" gives
iomomorphism f¥: BY - A¥ such that (I x [Y)*2, = (/ x )"7x

4

 Nar
" il 1--,;--..-.., -~
-

J f;,_ the map Pic®(B) — Pic®(A4) sending the isomorphism
invertible sheaf on B to it inverse image on A.

B

L :HB” an isogeny with kernel N, then f¥: BY — A" is !

ko J’J}"llf’-‘ th Cﬁrﬁﬂf duﬂf ﬂf N. I" ﬂfh{:‘r “T{er:‘;‘ fhl’ f_"l'ﬂ[f
A

------

o f--"u‘-.
| L g e

| I g
of o W

‘f.f;' 0N A-5B-0

r.'-_'l iy

3 L.
[ - ;i T 4 .
¥ --|'.---F--' - w "
F W o .Y ' Fi
“ct séquence
{1F_-. L
[ i o

0> NY- BY - AV -0,
"1 AR

L
.
| ':'I J—.l.-
B 'I'Iu. -l .. )
¥ -

L4 [}
r-II T

associated with Z. The isomorphism p* ¥
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 nere is another approach to this theorem which offers a dj Lo
" be an invertible sheal on A4 whose class is ip Pic®(A) ﬂltzf;rﬁ::t ﬁn;.;gt;lt.
“Sund ; the

. ; ®g* L - ¢
@ﬁmm to a map m;: L_ X L— Llying overm: 4 x 4 , 4 Thun:l bj of
o constant regular functions on A forces numeroys ¢ absence

O( -j__ﬁfﬂu which are summarized by the following statement

2 11.2. Let G(Z) denote Lwith the zero section removed, then, for
O Lvation al point ¢ ﬂfG(_!Zﬂi), m, defines on G(%) the Structure of a cm;lmu-
ﬁ! III' , group pariety with identity element e relative to which G(Z)isan e

sion of A by Gm-
“u, g gives rise to an exact sequence
E{-{Zj): 0— Grn ~Y G(:T) —+ A =0,

Xten-

The commutative group varieties over k form an abelian category, and so
it is possible to define Ext} (A, G,,) to be the group of classes of extensions of
Aby G, in this category. We have:

ion 11.3. The map & +— E(%) defines an isomorphism
Proposition P P
Pic®(A) — Ext, (A4, G,,)

Proofs of these results can be found in [20, VII, §3]. They show that the
sequence |
0— NY(k)—> BY(k) — A" (k)
can be identified with the sequence of Exts
0 — Hom, (N, G,,) = Ext}(B, G,,) - Ext} (4, G,,)

(The reason for the zero at the left of the second sequence is that

Homt("‘l G,)=0)

The isomorphism in (11.3) extends to any basc
that if we let &2¢" denote Ext in the category nf.shca}w:s nnrthc
over spec(k) (see [13, I11.1.5(c)]), then A" can be identified with the

bzt (4, G,,), and the exact sequence
0—>N'—>B = A" =0

[17, 111.18]. This means
flat site
sheafl

can be identified with
0= Hom(N, G.) - 8¢ (B, Gp) = St (4, Gu) =0

§12. Endomorphisms

(A) I End(4) @ Q is a ﬁmtei-
in the classical casc, the sem
ximate complements for abehan

lem result in this section is that End’
limensional semisimple algebra over Q. As
WU follows from the existence of appro
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A i :qwtm' space V, one way ﬂ.fmml

=:-I'.'1 | - » a nondegenerate bilincar g, &, Uctjp,
e migomorphlsm V=V and 1. WV ng

e method works for abeliy,, 'ILLIH ”
Iy

‘ﬂﬂ subvariety of A; the), Lherg
.HﬁF &ﬂﬂiff and B + B = 1 ie 'S ap

v g -II J![;r

m g on A and deline B' to be (), redugy

n ample é.
**‘ tofthckemcl Of A —= AY — i
“L orem on the dimension of fibres of murthmr

} mtnctlﬂn of the mnrphnm A—- 0 By
} m‘ because _f|B 15 r.ll"l'lplL IhLIthrL Br B

’Hlﬁﬂﬁﬂ“? 5

m "*?ggbe simple il it has no proper nonzerg abeliag
case, each abelian variety A s 1S0genos

;;- ers dnﬂnmgcnous simple abelian varicties 4,
. Sy thﬁ A, are uniquely determined Up 10 isogen
(4,) is Id, End®(A7) is equal to the matr dlgebrs
) ':t"? Er andD(Ar’)

ol o §
Sy
-

]

. the natural map

. A .'; . _r"" I::l".ll‘?".'.- &
e FY ?.

s—

d,‘ [ A B) Is torsion fl’t’:’ﬂ-

-,. ’*"
J 'I:
l

Nei i» homomorphism such that T, =0 the
. Hmple abelian subvariety A" of A, this implies
14 inite and therefore must equal the whole ol 4

= i
1 4 l. : i -- -
| 1'}'..

al function of degree d if for every [init linearl

=~I __“"HEE.', + 1 |‘_ :||""| l{h;_"l[lh

h-1uﬁnmdeﬂmﬁ
inction of ee d in the x; with CGLWL]LII[H in A.

1l
e, and let f: V — K be a function St h h: i
X "T #mfents in K, for all v, win V' thet,

B
il
.._l"u '

- +-ﬁ-

tion on | '_that, for every subset {vy, -+ (r

R .Jﬂ. . 1S lf“
lynomial in the x;. For n = |, this

EL ¢ .Qﬁmd hypothesis applicd with !

T 5.
‘_1,,--1: ]

ikt

S ' I _,: , x.—l) + e + il d('r '

——

| W $VMQr space V over a field K 15 aid 0
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fﬂfm d, with the q, functmm k-1, k. Cho
of K:on on solving the system of linear equations
, f_(x;lh Bty .'f,..,ll.i',,_l -+ Cjun +- H’] == zaih‘:l =
om0 1y d

for a;, We obtain an expression for a; as a linear combing
f(xy 0y $rer o XUy T G0, + W), which the
are polynomials in x,, ..., x,_,.

0se distinet elements Cq c
v 4

) IH"'I }C}.n

ation of the terms
induction assumption says

O

Let A be an abelian variety of dimension ¢ over k. For € End(4), we

define deg @ to be the degree of ¢ in the sense of Section 8 if (1S an Isogeny
and otherwise we set deg @ = 0. As deg(ng) = deg n, deg ¢ = n2 deg o, we
can extend this notion to all of End®(4) by setting deg @ = n~29 deg(m‘p) if

npe End(A).

Pm'ﬁﬁcll 124. The function (¢ deg ¢ E“dﬂ(f” —+Q is'a homogeneous
pobmomial function of degree 2g on End®(A).

ProOF. As deg(ng) = n*? deg ¢, the lemma shows that it suffices to prove
that deg(ne + ) i1s a polynomial of degree < 2g in n for neZ and fixed o,
yeEnd(A4). Let D be a very ample divisor on A, and let D, = (ng + y)*D.
Then (see (8.3)), deg(ne + ¥)(D?) = (Df), where g = dim A, and so it suffices
to prove that (D) 1s a polynomial of degree < 2g in n. Corollary (6.5) applied
to the maps ne + ¥, ¢, p: A - A and the sheal ¥ = Z(D) shows that

D,i; — 2D,y — (2¢)*D + D, + 2(¢*D) ~ 0,
Le., D,., —2D,., + D, = D', where D' =2(¢p*D)— (2¢)*D.
An induction argument now shows that

— 1
_— n[” ]D’ -+ “DI = (” - I)Dﬂ'

and so

2
i$ a polynomial in n of degree < 2g.

Theorem 12.5. For.any abelian varieties A and B Hom(A, B)h” f) -ﬁ'ﬁj
Z-module of finite rank < 4 dim A dim B; for each prime | # char(
Wﬂl map

(D9) = (n(n —~ l))g(Drg) .
O

Hom(4, B) ® Z, —+ Hom(TiA, T:5)
is Wecnue with torsion-free cokernel.
o Clearly it suffices to prove the second statement.
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B | Lemma 12.6. Let 9 € Hom(A, B); if ¢ is divisible by I" in Hom(T; A, T,B) ther
~itis divisible by I" in Hom(4, B).

Proor. The hypothesis implies that ¢ is zero on Ap(k). As Ay is an ¢y,
| :sﬁm“p scheme of A, this means that ¢ 1s zero on Ay and therefore facqp,

: u.?n@’ﬂf.:
0bidn—>A A0

\¢ | ¢
2 0
Lemma 12.7. If A is simple, then End(A) ® Z, — End(T,A) is injective.

Proor. We have to show that if ,, ..., ¢, are linearly independent over 7 i,
End(A), then Ti(e,), ..., Ti(e,) are linearly independent over Z, in End(T,4)
Let P be the polynomial function on End®(A) such that P(p) = deg(op) for 4]
. Note that every nonzero clement ¢ of End(A) is an isogeny, and therefore
P(g) is a positive integer. Let M be the Z-submodule of End®(A4) generated
by the ¢;. The map P: QM — Q is continuous for the real topology, and so
U = {v|P(v) < 1} is an open neighborhood of 0. As( QM NnEnd A)n U =0,
we see that QM n End(A) is discrete in QM, and therefore is a finitely
generated Z-module. It follows that:

(%) there exists an integer N such that N(QM n End A) = M.

Suppose that T(e,), ..., Ti(e,) are linearly dependent, so that there exist
a,€ Z,, not all divisible by , such that ) a;Tj(¢;) = 0. Choose integers n, close
to the g, for the l-adic topology. Then T)() n;e;) = > n; Ti(e;) is divisible by

-~ high power of | in End(7;4), and so ) n;e; is divisible by a high power ol [
? MA)‘ This contradicts (*) when the power is sufficiently great, because
hen, for some m, (N/I™) n;e; will lic in N(QM n End A) but not M. 0

£ “We are now ready to prove (12.5). Because Hom(A, B) and Hom(T; 4, 1,5)
mm summands of End(A4 x B) and End(T)(A x B)), it suffices (o pro
- (125) in the case that 4 = B. Lemma 12.7 shows that End®(A) is finitc
S nensional over Q if A4 is simple, and this implies that it is finite dimensional
for all 4. It follows that End(4) is finitely generated over Z because it is
i" Clearly now condition () holds, and so the same

JenL as above shows that End(4) ® Z, - End(T; A) is injective. Lemm

.-F.-;“. '_‘j‘..r_

4 i .

) .-'l '..' r E

1 i":ul";r ..::--_-?
1% £ ch

i
. .':.

12058 1at its cokernel is torsion-free. :
Jeline the Néron-Severi group NS(A) of an abelian variety (O e

quotient group Pic(4)/Pic®(4). Clearly £+, defines an in/ec"

B
WYY _' j'-‘;',". M ® %
‘ }_;;,:;._5 , A¥), and so (12.5) has the following consequence.

arv | r' i:.-'::ﬂ-:':'rl : ‘-., . _ » f , , ;"‘f,*lf.J
A&8. Lhe Néron—Severi group of an abelian variety I° a |

ABELIAN VARIETIES

_‘il 2 .f. .. ' B 2 _
' At Polycoraal O Q0 -« Ndsrnprp'

e sosition 12.4 shows that, for each o in End®(4)
L rl‘lﬁ.| .. R ’
-‘i' of degree 2¢g such that, for all

y(X)E

125

there is a polynomial

rational numbers r, P(r) =

%w Let a€ End(A), and let D be an ample symmetric divisor on A:

"6 calculation in the proof of (12.4) shows that

s P,(—n) = deg(x + n) = (Dg)/(D9),

here Dy = (1(n — /2D’ + n(e + L)*D — (1 — 1)2#D, with
D' =2D — 2%D ~ 2D,

ol ticular, we sec that P, 1s monic and that it has integer coefficients when
gep'ﬁndq( A). We call P, the characteristic polynomial of « and we define the
irace of o by the equation

P(X) = X? — Tr(a) X**™' + -+ + deg(a).

w 12.9. For all | # char(k), P,(X) is the characteristic polynomial of
¢ acting on TTA ® Q,; hence the trace and degree of o are the trace and

determinant of « acting on TA ® Q.

Proor. We need two elementary lemmas.

Lemma 12.10. Let P(X) = l—l (X — a;) and Q(X) = [ | (X — b;) be monic poly-
nomials of the same degree with coefficients in Q; if || | Fla)l, = [T F (b))l for
all FeZ[T), then P = Q.

Proor. See [12, VII, 1, Lemma 1].

Lemma 12.11. Let E be an algebra over a field K, and let 0:E—-K be a
polynomial function on E (regarded as a vector space over K) such that 6(2f) =
0(@)o(B) for all a, feE. Let aek, and let P = [](X —a) be fhffrf»"”f}"”f-‘”“”f
such that P(x) = d(x — x). Then 6(F(«)) = + [ Fla;) for any FeK[T]:
PROOF. After extending K, we may assume that the roots by, b, ... of F and
of P lie in K; then

O(F(x)) = 5([] (o — bj)) ~[[o(x—b)=11P®)= E[Ua- - &)

i J

= + I:[ Fl(a;).

]

W : . F any E d *1}
We now prove (12.9). Clearly we may assume k = k,. For any f€ End(

7 o -1
deg(B)), = | #(Ker(B)l, = #(Ker(AL)
_ 4(Coker(T;p) ™" = Idet(TiA)l: "
; an
2€End(A4), and let a,, 42, - be the roots of P,. Then lOI

.’l':-:j;:' i
-
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FeZ[T]
[T F@)ly = [deg (@) > (12
= |det T)(F(x))|,
| = [T F®)I, by (12,11
“whm the b; are the eigenvalues of T,f. By Lemma 12.10, this proyes
Wﬂ]ﬂﬂ .

mn be a simple algebra of finite degree over Q, and let K be the Centre
j@@ The reduced trace and reduced norm of D over K satisfy

“'f Trox(@) = [P: K1 Trdp (@),  Npx(a) = Nrdpu(@)'* ¥, 5

"g* M ﬂ]ﬁ'&)’ﬂ set Trd = TI';_;Q“Trd D/K and Nrd = MUC’NI’il“h Ll
Y = = [K : @], be the nonisomorphic representations of D over O
0 ::_,_ h has degree d where d* = [D: K]. The representation V = (D)}, is de.
r' ‘over @ and is called the reduced representation of D. For any « in p.
j"*“ y) = Tr(x| V) and Nrd(x) = Det(x| V).

1 "_ " d

"’" 12.12. Let D be a simple subalgebra of End®(A) (this means D and
)haoe the same identity element), and let d, f, K, and V be as abore
;.-i- *‘ m is an integer, and Q, ® T)A is a direct sum of 2g/fd copies of

*' Fcomquentfy Tr(x) = (2g/fd) Trd(a) and deg(e) = Nrd(x)??7¢ for all
l;’ ;_

F. A ssume @, ® T,V becomes isomorphic to (PBm;V; over Q, m, >0,

‘”’* *bbthﬁ cmbaddmg of K into @ corresponding to V,. Then, for any

istic polynomial of « on V¥, is (X — g,2)%, and so P,(X) =

# As P.(X) has coefficients in @, it follows easily that the m,
he ¢ “:-'l 1 U

e

b , The group NS(4) is a functor of A. Direct calculations shos
RS ldmtltv on NS() for all a in A(k) (because ¢, = ¢ ) and
: ase —1 acts as 1, and so n*.% = 2" in NS(A) b} (6.6))

1Z: ‘H ons and the Cohomology of

"ﬂheaves

-m higher dimensional analogue of an elliptic
Jf but a polarized abelian varicty.
= ‘ n variety A is an isogeny A: A = A’

| ‘ q: D 'hear‘(_z? on Ar Thﬂ- degr{fﬂ' (}r a Iji_j:d:::j'l'
1sogeny Anabehan variety together with a po /

+ -
- g

such that

.ﬁm Aism, there are only finitely many abelian 1
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wled a polarized abelian variety; there
_ohism of polarized abelian varieties. If 7 1 has degree l, then (

; 1S an obvious notion of g
t ang to the principal family and /. is said 1o be ;

A, 4) is said
4 principal polari- zation,

M 13.1. If A has dimension 1, thep NS(A) = Z. For each
mu a unique pOI:l.I'lLdlIDn of dLE!’EL d?; it is Py Where ¥ — J:{[E")*Ej:tzr .:;}
r

_myrgmuﬂ: divisor of degree d.

Remark 13.2. If A4 i1s a polarization, there need not exist an % on A such
lhat)-" @». Suppose, for example, that k is perfect and G = Gal( (k/k). By

assumption, there is an % on Ay such that ¢, = A5 AS Jg is fixed by the
Seiomet & on Hom(4;, 45), the class [2] of # in NS(A;) will also be fixed £

by G. Unfortunately this does not imply that [ ] hftc; to
Pic(A): there is a sequence of Galois cohomology groups

0 — AY(k) = Pic(A) » NS(4;)% - H'(G, A¥(k))

an element of

and the obstruction in H'(G, A¥(k)) may be nonzero. However, if & is finite,

an easy lemma [16, §21, p. 205] shows that H'(G, A¥(k)) = 0 and therefore
A= @g for some % in Pic(A).

There is an important formula for the degree of a polarization, which it is
convenient to state as part of a more general theorem.
Theorem 13.3. Let % be an invertible sheaf on A, and write
(&) =) (—1)dim, H(A, ).

() The degree of ¢ is 7(.2)

(b) (Riemann—Roch). If £ = L(D), then 7(£) = (D*)/q.

(€) If dim Ko, = 0, then there is exactly one integer r for which H'(A, Z) is
nonzero.

PROOF, Combine [ 16, §16, p. 150] with (4.2a) (]
Exercise 13.4. Verify (13.3) for elliptic curves using only the results in [10, 1V],

M 13.5. The definition of polarization we have adopted is the one that
Most useful for moduli questions. It differs from Weil's original notion (se¢

[1 2,p.193], [19, §57),

314, A Finiteness Theorem
M 14.1. Let k be alfin fi[ﬂi’,_‘-’d and let g and d be positive integers. Up [0

arieties A over K of dimen-

Mﬁ‘mg a polarization of degree d”.
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Yy

f 1
p |

”
£ Z".-_
=
W
R
_

First assume dim A = 1. Then A4 automatically hu§ a polarizatigy, of
" dearee 1, defined by & = Z(P) for any Pe A(k). The lincar system [3p)
" defnes an embedding A c P?, and the image is a cubic curve in P2y,
 ubic curve is determined by a palynomial of degree 3 in three variabley A
'I-,,ﬁ; an only finitely many such polynomials w:{h coellicients in k, we have
" chown that there are only finitely many isomorphism classes of A’s.
mprwf in the general case is essentially the same, By_{l3.2} we Know
 there exists an ample invertible sheal #" on A such that ¢ 1s a polarizayjg,
" ofdegree d2. Let £ = Z(D); then, by (13.3), x(¥) = d and (D*) = y(#)y) _
Lo As 20 = 20D), 1(2°) = ((3DY)/g! = 3d. Morcover £ is yop
i: (7.3)); in particular H(A, £°) # 0, and so (13.3¢) shows thy,
fim HO(A, £°) = 2(£*) = 3d. \The lincar system [3D| therefore gives ap

T % |If_1..-_;'-|.!. Liga and aetds f

E L
[k 1
- .F £

T = T

¥ 11
.d?l;"""
— 1 &8

&

embedding A o p3-t, : %
" Recall [21, 1.6] that if ¥ is a smooth variety of dimension g in P, then th
-';..F:':Lft;f, is (Dy, ..., D,) where Dy, ..., D, are hyperplane sections of |
Moreover, there is a polynomial, called the Cayley or Chow form of V,

.
e,
]
= i
N i
AR
L b -
]

o |

s darsnitt petiafe a4 Lhal g2z egnl

L] L] E]
Fy(ﬂtuu}, L ﬂfh?},__"ﬂ{ﬂﬂl'__,‘f.f‘#)

.

? ociated with ¥, which is a polynomial separately homogeneous of degree
f n each of g + 1 sets of N + 1 variables. If we regard cach set of

R By T

NS HY: a' X, + -+ + ai Xy =0,

. ‘ 2
I-'i.

' |2
=
4
- ¥

defined by the condition:
.-"-J-:f - A
- F(H?,...,H) =0 <= AnHP "' H? is nonempty.

theorem states that F, uniquely determines V.

eturning to the proof of (14.1), we see that the degree of A in P g
f) = 3%(g!). It is therefore determined by a polynomial F, of degree
% + 1 sets of 37d variables with coeflicients in k. There arc
nitely many such polynomials.

I r »
H L A,
..'|I :I.i. -I' f:;

W i _H

L i

l‘:

t‘-",‘ -. L e S . 2 - - . L : e
i course, Theorem 14.1 is trivial if one assumes the existence

_ _ However, everything used in the above proof (and much
| ﬁ' of moduli varieties.

L+
v 1 I
: ;i

-
. |
c b A 'p B e, ]
= i "

» The assumption that A has a polarization of a given degre
Al wnla I ¢L i ) (

tﬂ above proof. Nevertheless, we shall sce 1n (18.9)
an be removed from the statement of the theorem.

v i

= L

> . =
i P

le Cohomology of an Abelian Variety

;:h ¥

v
- ;
o "'_"'"'-"":'_'5: 5 -;_1
= 1 fi 1
R T |

1(A(C), Z) of an abelian variety arc described

x, ‘:l'

gL

0 .' s
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wation ol A('l':?_) as a quotient A(C) = ¢
(@ ism H (A(C), Z) > Hom(L, 7).

o= iy '.". .
’
[

e g?_ i'_-__Prod““l pairings define isomorphisms

tﬂ'ils i.l11 ( ':'-i

SR A'H'(A(C), Z) S H"(A(C), 7)

H;L d s 1
I|I ] 7 o
L[Ermlﬂﬂb an 1so-

for all r.

e
.

.
-~

I‘“L a), note that €’ is the universal covering space of
4 I ‘i"!.! :‘."-1""..‘"\-".'. i - ¥ L] - i .
._—14-! e D_"cﬂ?ﬂrlng lrdnbfﬂfmﬂllﬂnﬁ. ]h'l.'.'l"l..'f[-f.."lll'ﬂ. H][

o ) :

v nointed manifold (M, m), H'(M, 7) = Hom(x,
’9“"’“’ by observing that A(C) is homeomo
ﬂd using the Kunneth formula (see [16,

A(C), and that [
A(C),0) = L, and for
M, m), 7). Statement (b)
| rphic 1o a product of 24
§1, p. 31), or by using the

i rmumcﬂ‘ as that given below for the étale topology.

rheorem 15.1. Let A be an abelian variety of dimension g over

an algebraically
wm is a canonical isomorphism H'(A_, 7,) 5 Hom; (T 4, 7).
| Mm cup-product pairings define isomorphisms
‘] e ArHl[,xlc” ZI} —::1- f‘fr[r{ﬂ, E,] _ﬁ’”‘ all r.
ar, H'(A.,, Z;) is a free Z,-module of rank (*?).

T |

Prook. If 7§'(4, 0) now denotes the ¢tale fundamental group, then H'(A, 7)) =
Hom ops(71'(A, 0), Z,). For each n, [§: A — A is a finite étale covering of
A with group of covering transformations Ker(l) = A,.(k). By definition
n3(4, 0) classifies such coverings, and therefore there is a canonical epi-
phism #§'(A4, 0) —» A,.(k) (see [13, 1.5]). On passing to the inverse limit,
H]&l an epimorphism n§'(A4, 0) - T;A, and consequently an injection
Hﬂmxt('ﬂA, Z)a H'(A, Z)).

To proceed further we need to work with other coeflicient groups. Let R
hzhfh or Q,, and write H*(A) for (P, H (A, R). The cup-product
Pli!'iﬂl makes this into a graded, associative, anticommutative algebra. There
IS a canonical map H*(A) ® H*(A) —» H*(A x A), which the K inneth formula
she _;ﬁ"._._-tobe an isomorphism when R is a field. In this case, the addition map
m:A X A — A defines a map

m*: H*(A) » H*(A x A) = H¥(A) ® H¥(A).

MMVG!‘, the map a+(a, 0): A - A x A identifies H*(A) with lh-::.dir::cf
u d H*(A) ® H°(A) of H*(A) ® H*(A). As mo(ar—(a,0) = id, ”’“j
s OfH*(A) ® H*(A) onto H*(A) ® H?(A) sends m*(x)tox @ L. AS
“e8ame remark applies to a— (0, a), this shows that

Hl"'(x) B X @ 1 AR @ x + le_ ® Vi, dCf._I[-"'f.'}- dug[_'l,'l-:l > (.

algebra over d

M 15.2, Let H* pe a graded, associative, anticom ;:mm}‘; + catisfying the
e ; Y - 3 . t .!'l{ . -
CHUECt field K. Assume that there is map m*: H* = H* @ e
pmseentity. If H® = K and H" = 0 for all r greater than s

ome integer d, then



_—

"

P

shen equality holds, H* is isomorphic to the

5 ")
e, L B

“Xlerior -::vahm

RS < T

1 structu thwrﬂm for Hopf algebras [3, Th

Ln
L - L k-,
el i...-'—.lr.-':';_:‘_l.-'ln IS

al BY s assc siative algebra generated by

qgual 10 UL da9 CCrig)
,,”ff.q tions imposed by the anticommy, : o Gl
sotence of each x;. The product of the x; has degrec v
llows that Y, deg(x;) < d. In particular, the nump,
« as this number is equal to the dimension of 44!
sion is < d. When equality holds, all the x; mus 1
o mus lllbﬂ zero because otherwise ther

CO rem 6 |

lvity o
tlug{ml
| of X, of
» this Shows
dve 'JL'EFL':: I.

quares must e C Would b, 4
. f‘"’ d + l. Hence H* s ]duﬂliﬁu{] i

: =T, ¢ H—
aona . M

|
e |

or F. the conditions of the lemma are fulfilled with ¢ =) |
- et Sty T -

' :.. f‘ has dimension < 2g. But y'(4 :;1;
5o the earlier calculation shows that f7'(.

na >0 L Ld “-'!lrl has

The lemma now shows that H"(A, Q) = A"(H' (4, Q )}, ung

At *; This implies that H'(A, Z,) hus rank (4,
equence [13, V, 1.11]

NS H (A, Z) » HI(A, ) - H™ (A, Z,) 5 H ™ (4, 7, -

PR L
| ‘nh’ﬁl{ , B)) = 2g, and so the lemma implics that (b
als 2 *1[’]: F)) = (*?). On looking at the exac
e see thaf H’(A, Z,;) must be torsion-free for all r. Con-
! r{i Z,) is injective because it becomes so when
3, and it is surjective because it becomes so when tensored
it R

tes the proof.

F

r- I

- ]
L s

5

LR T
e P above proof, we have shown that the
| _h 0) is isomorphic to T, 4. In fact. 15
.I: IE““ ere TA = liI_P A, (k). In order to prove ths
. “*1 ‘etale coverings of A are isogenies. This s
1- : :w ([14, §18, p. 167]): Let A be an abelian

atreanllvy o~ - o Kl
--__,__l::,s-..{_iﬁ_‘._.,.- and !Et f: B_* A b‘:; (l j””“ el

st ad: 3Y
ed: the

o Hadasidy is possible to define on B the structure o/ 4
WHIER ] 1S an isogeny.

= r
ek gl R L P
L |
i i
1
LR
£ i e

- : 'mowiug three algebras arc isomorplic

R fct structure;

A
-

F

4 Lo

s

S W i ge-product structure.

r
e TA

X H Z;) —Z,
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, then the pairing

i r :II;’:\T. =}
,-'|1- e i 3

by ¢
js determined by

gemark 15.5. Theorem 15.1 is still true if k is op
11,3.17]). 1f A is defined over a field k, then the is

A'TiA x H'(4, Z,) - Z,

B A a0 U b - det({aylb,y)

Y separably closed (see [13
omorphism )

A*Hom(T;, Z,) - H*(4, , 7,
is compatible with the natural actions of Gal(k,/k).

§16. Pairings

As we discussed in Section 11, if M and N denote the kernels of
and its dual [, then there is a canonical pairing M x N - G_ which id
tifies each group scheme with the Cartier dual of the other. In lTw case th;ﬂj_’
is multiphication by m, m,: A — A, then [¥ is my.: A" — A", and so the
general theory gives a pairing ¢,: A, x Am— G, If we assume further that
m is not divisible by the characteristic of k, then this can be identified with a
nondegenerate pairing of Gal(k/k)-modules

e A (k) x AY (k)= k*.

an isogeny f

T!iispairing has a very explicit description. Let ae A,,(k) and let a'e A% (k) c
Plc":'[A;). If @’ is represented by the divisor D on A, then m'D is linearly
cquivalent to mD (see the paragraph following (9.2)), which is linearly equi-
valent to zero. Therefore there are functions J/and g on A such that mD = (f)
and my'D = (g). Since the divisor

(fomy) =m((f)) = m;*(mD) = m(m;'D) = (g™
We see that g™/f o m, is a constant function ¢ on Ag. In particular,
g(x + a)" = cf(mx + ma) = cf(mx) = g(x)™

that ; l?m g/got, is a function on A; whose mth power is one. This means
It --'t itis an mth root of 1 in k(A) and can be identified with an element of k.
'S shown in [16, §20, p. 184] that &, (a, a') = g/g° ..

i 16.1. Let m and n be integers not divisible by the characteristic of k.
nforall ae A, (k) and a’e AY. (k)

e,..(a, a') = e,(na, na').

‘OOF. Let D represent a’, and let (mn), (D) = (9) and m3'(nD) = (¢) Then
(g'o ng) =n;'((g') = n;'(m;'(nD) = n(mn);H(D) = (9"),



ﬁ'f;{i M\ iy e

Oy

e ﬁ E_C."l} and let Z,[l)—-hm“
ractel “' > of k. (Warning: We sometimeg
ik g tn'ﬁl}’) The lemma dllﬂws us
E s { ﬂ"ﬂ &
r E‘:.-.-- '; '1~". I.'.L

'E'?.-I"-l.tflr_. 1._ |

(q, @)~ &.(a, Ad),
(a,a’)—ea, Ad').

md e’ for e} and e}

ok
B e v =, oo ,.7-,.1*”_,
i it

| 1"=
5 i -r._l. r'-lll' -I'T
B - g &

formulas: for a homomorphism [ A — B

fa, by 50 e,
fla), b), fH -‘a:beTB'
, f(@), adeTA, ieHom(B, B);
ol a'e*'I‘A & e Pic(B).
"~
": —+Hom(A’TA Z,(1)).

‘nJ‘

', 'i:f(a)) for all x. On the nther hand,

27D = f"'mz'D = (gof), and so
* s proves (a), and (b) and (c) follow
MEL ® [*L 7 = [Hs(fa)

/. Finally, (¢) follows from the fact that

iet; ﬂﬂ!r C. The exact sequence of

d' holomorphic functions OF
._ '_;;i".

- !t ',‘.P' :

— O a::a-O

m e

42(A(C), Z) — H2(A(C), O)

.' ABELIAN VARIETIES
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‘IT PIE(A) and HI(A(C) @)/HI(A['C] 7) =
' ;‘.L” this an exact sequence

_u-_mS(AHHl(A(ﬂZJ Z) - H*(A(C), 0,).

:"-_-i"..?l'f-.f?:f d let E* be its image in H*(A(C), Z). Then (
regarded as a skew-symmetric form on H (A(C),
R ssmann form if and only if 7 is ample. As was ¢

lll-"- #

J%‘ ‘ng eit, and it is shown in [16, §24, p. 237] th
* EMH (A, Z) x H(A,Z)-» 7

| ! !
et T A x TA -z,

A™(C) (see (9.4¢)),

see Section 135)
Z). 1t is a non-

Xplained above,
at the diagram

. ._._ _, a minus sign if the maps H'(A(C), Z) — T, 4 are taken to be
ious ones and Z — Z,(1) is taken tobe m— " { = (..., ¥ Y} ip

.ﬁ’(a, g) =",

?

__:"_-. der of this section, we shall show how étale cohomology can
1'6 short proofs (except for the characteristic k part) of some
sults concerning polarizations. Proofs not using ¢tale cohomol-
__ nd in [16, §§20, 23].

family of exact sequences of sheaves

.ﬂl (}_.'u.l""'_l"G‘m_"lﬁJ 0

3

, ““ 1, plays the same role for the étale topology that the ex-

ponential s ucncc in (16.3) plays for the complex topology. As Pic(A) =
(4.G.) (ot cohomology), these sequences give rise 10 cohomology

0- *"‘PIG(AI)/’" Pic(Ag) = H2(A, ) = H(Ar Gl =0

~ Note Pic®(A;) = A”[k) i« divisible, and so Pic(Ag)/l" i _}1:-:
NS {Ag)/I" L IE) On passing to the inverse limit over these sequences,
. ,4:: _, ( ue nce

-_L NS(A;) ® Z,—

b rﬁ’ or any group M is lnn M.
2 a3 } the above example, an element 4 0
. ," 11 n 'El TA X TA LB Z,(l) and onc €
? ::3_ --E; (in fact, this provides a conven
he case that 2 arises from an element of NS(Az))-

W assume that k is algebraically closed

ﬂh , characteristic
h. ;lﬁ QR T ¥ ffﬂﬂrf” P”""* ) :rfj l;;d only if, Jor
NS(A) Then 4 = f*(X') for some 4

T H?(Az, Gm) = U,
M is always torsion-
[ NS(A;) defines a skew-

an show as in the previous
ient alternative definition

HI[AE, Zl“)) -~
Note that T,
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m ;m exists an e, in Hom(A* T, B, Z/(1)) such that e}(q |, N
e/ f(a), /1 (@) all a,a' € TA.

Pr Hr; ; mmw is obvious from (16.2c). For the converse, conside, for
; £ char(k) the commutative diagram
0 NS(4) ® Z,— HX(A, Z/(1) = T(H*(4, G,))

00— NS(B) ® Z,— H3(B, Z/(1)) - T,(H*(B, G,,)).

-:;; ﬁ” t,hand vertical arrow is injective because there exists an ISogeny

- A such that fo f* is multiplication by deg(f) on B (se¢ Section §) 4
J;? LG )ﬁ torsion-free. A diagram chase now shows that 1 is ip .

.'*r; ,...3‘ S(B) ® zl — NS(A) ® Z, for all Idw:dmg deg(/f), and the existence
that it is in the image for all remaining primes. This implies th,
m:m of NS(B) — NS(A) because NS(A) is a finitely generayed

a

Coro . Assume | # char(k). An element j of NS(A) is divisible by I if
"ﬁ? f“Mm:bk by I" in Hom(A*T; 4, Z/(1)).

e
' r'- 'I"

."_

*Lthcpmposmﬂn tolj: A— A 0]
.: .Amm char(k) # 2, . A hamamarph:sm Av A= AY is of the
' 2’ € Pic(A) if and only if e} is skew-symmetric.

s il iﬁembgroup NS(A) of Hum(A AY), we already know that
' 1 Conversely, suppose e is skew-symmetric, and let
¢ the " u ,7‘"“} bofﬂlc Poincaré sheaf 2 by (1, 2): A - A x AY. For all

-"

S ,..-l-'_
H'-

-J‘J'# |
i ﬁ»ﬂr)' el ((a, 2a), (a', 2a"))

(5

L
an
1 _..

(by 16.2d)

(see the next lemma)

 =efa i) —e(d, la)
Ry e T'f'
,4 = ej'(a, a’) — ef(a’, a)

a’)  (because ¢} is skew-symmetric)

Po aré sheaf on A x A". Then
(la b ‘)tej(d,b)_‘el(ﬂ b)

..F

: ABELIAN VARIETIES

se Z,(1) is torsion-free, it suffices 1o S—_—
1  of finite index in T,4Y. Therefore hta
;ome polarization 4 = ¢, of 4 an i Eleme

-

-

),(ﬂ b))=£““” F((u o), (@', ¢ }}

=e¢’(a+c, a +¢') — ¢

ﬁ ,i“- a4, d') ~ e (¢, )
a8 =¢j’(a,¢') — e (', ¢
= ¢/a, b') — ea’, b). 0
e*: Ker(4) x Ker(4) — U,
Ihkfi ppose m kills Ker(4), and let @ and 4’ be ip Ker(Z); choose a b
that mt =a', and let e¢*(a,a’)=¢,(q, /b), this makes sense because
a{‘*f ):: 0. Alsn it is independent of the choice of b and m because if

: d HC ﬂ, lhﬂﬂ

...

Enn(a' Ab') = e, (c, Ab")" =€, (a, inb')  (by 16.1)

3'-5_Ia, Ab')/en(@, Ab) = €n(a, A(nb’ — b)) = & (a, nb’ — b
A einb’ — b, a)™!

|

=1 as ia=0.

f;‘ a'=(a,) bein T)A. If 2a, = 0 = Ja_, for some m, then

-.--j-'!T rrl F
}"_ ) ia;) B EI"‘(ﬂmr ‘lﬂlm] = LIJ"I{”"'mE ’Ja}m)! = Ji {ﬂ—m‘ ul'ﬂ}'
L

ath -'.r-r-r &

hi Bm:tphes that ¢* is skew-symmetric.

= = L S
ore W W *"|- g

oposition 16 Let f: A — B be an isogeny of degree prime to char(k), and
"' ‘bea polarization of A. TF!EH 4 = [*()) for some polarization g
b "?"H"-'-:‘Fu‘ iy if Ker(f) < Ker(A) and e* is trivial on Ker(f) x Ker(f).

i
'-u—-

ne Wlll assume the second condition and construct an ¢ In
Zl{l)) such that el(a, a’) = ¢, fu, fa’) lor all a, a' in T;A; then
SN Show the existence of A'. Let b, b’ e T, B; for some 1l there will exist
’Frﬂr L_1 .} that lmb f{ﬂ) and {mb __j a } If we write d = {H } and
thar 2 the thm equations imply that f(a,) =0 = f(an) and therefore
‘are in Ker(4) and that e’(a,, dn) = 0. The calculation pn.-
H tment of the proposition now shows that ¢ nr(“"lm*“’r:i} I?nu
Y e that ei'(a, a’) is divisible by [*™ We can therefore d:{mn
; ----- #f‘ (ﬂr a’). This proves the sufficiency of the second con -
| fiecessity is easy.

. i-l-r'a.-
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W e The ol' A and A" are related by deg(l) = deg(;).

4 ‘. Let A be an abelian variety having a polarization of (q,,,,
s o ﬂk). Then A is isogenous to a principally polarized abelian variegy,

| dividing the degran
v ,_.. - Let A be a rization of 4, and let [ be a prime g the LETL
_T['-' I&t a ;u$up N of Ker(4) of order [, and let B = A/N. A .

w-symmetric, it must be zero on N X N, mill:.‘l2 so the last pmpmllmn
ﬂm B has a polarization of degree deg(4)/1; 0

; i,:- o
-; o 1‘. 11. Let A be a polarization of A, and assume that Ker(}) ¢ A,
:‘f ;  to char(k). If there exists an element o of End(A) suc) tha

E"~'= »g:: Kﬁﬂ] and a¥odoa = —4i on A,;, then A x A” is p””“'n””‘

,u':;

:‘.”*

I
r

gl ;"‘1 H- {(a, xa)| aeKer(d)} € 4 x A. Then N < Ker(4 x 4), and for
) and (a', 2a’) in N

'j 1, aa), (@', aa') = e*(a, @) + e*(aa, aa’)

e = 2,(a, Ab) + &,(a, a0 Aoa(b)) where mb =
= ¢,(a, Ab) + e, (a, —Ab)

= 0.

efore, (16.8) to A x A—(A x A)/N and the polarization /4 x 4
-u; th.'lt (A x A)/N is nnmpally polarized. The kernel of
_' a’)*A x A — (A x A)/N is Ker(4) x {0}, and so the map
?’ phism AY x A — (4 x A)/N. O

__".""_"--"_:*"fi’*__. ""s Trick). Let A and A be as in the statement of the
'y '.'-."_i'-;;-. :13"-: e always exists an « satisfying the conditions for (A%, /%)
?ﬁe‘f / **"‘)‘ is pnnc:pally polarized. To see this choose integers

+ d? = —1 (mod m?), and let

Bla - —c -4
' —C
| EM4(Z) < End(A).
a1 b
F-b a
Ker(/ _}),Mﬁ:mvam can be identified with the tran®
trix), and so
3 4 _' r¢__ o = ). o ©d.

F
'-1'1.-
.-":--

EL ¥
iu.- L e
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j_n [16, §§20, 23] there is a different and much
;11 gbovr. theory using finite group scheme more profound

ve the restrictions on | or d dﬂgrcc ;1:11: Pﬂrllcular 1t is
the results (16.4) through (16.12). B prime to the

| i
I"!

somn of the above results extend 1o fields

closed. For example, il A is an abelian variety o

5 plies immediately that a polarization /. of 4 Cdn be written ag |™

sation if and only if ¢/ is divisible by ™  similarly (16, H}lmdsh

_ mult holds over a perfect field. On the other hand [IE 1?}5}

, J- m unless one allows a field extension (roughly speaking, it is
1 fdl?ldc out by half the kernel of the polarization ; /, which need

rational over k).

that are ot alge-
YCr a perfect field,

Rosatl Involution

"I‘-‘"

.,” Eon Aon A. As A is an isogeny A — AY, it has an inverse in
= Hom(AY, A) ® Q. The Rosati involution on End®(A4) cor-
lin; jo Als

arol =21 togVo

ﬁe :'?_'fallﬁwing obvious properties:
) =o'+ !, @D =P, o' =a
] f m’eTA ® Q. | # char(k),

"' lf‘(aa, a') = e|(aa, Aa') = ela, a” o ld’) =

from which it follows that o'" = «.

‘_5

for aeQ.

eta, a'a’),

J The second condition on « in (16.11) can now be stated as
i‘m A (provided o lies in End(A)).

l
:;|I .—'ll-
T.

Propos "‘ Assume that k is algebraically closed. Then the map

L2 topy,, NS(A) @ Q- End®(A),
N - olements fixed by T.

idey :% ) ® Q with the subalgebra of End’(A) of

ar(k). According (0

QEEndn(A). and let [ be an odd P“mﬂ # & 4oa(a’, a) for all

2 ,Gftbc form ¢ if and only it ¢f** (@ d)=""*%
). But i(a))

I , '’ ""rnﬂ_ 1)),
ﬂtﬂ)hﬂf(ﬂ aa’) = —EEI(D!H’. a) = —ela, ( i

T
":-*_-.1;.. - = ol
-'.-j-T-"-' ivalent to Aoa = a¥o4, that 1s, 10 &



md a’(D) is effective, the intersection NUmbe,
i. Thmthnmond statement implies the first, CJ,.

thl;dpbrﬂmll? closed. -

'-F

l |F I

) |
. Bg an abelian variety over an algebraically ¢|ygey
fﬁff Fz,(l)af Then there is a canonical generaror . of

» Dy are divisors
CA E'E is the multiple

e

Ho T A), Z E” ) ) with the following property: if Dh 2
A and ;= e’ -:*f Hmwm, Z,(1)), then e, A -

16, §20, The: m‘ 3, p. 190]. (From the point of view of étale
onds to the canonical generator of H*(A, 7 (g))
1 he cohomology class of any point on A. If ¢; is the class of

(. Z,(1)), then the mmpatlbillt)' of intersection products with cup-
,ﬁ {B””H ')8 = ¢, U *uc,. Consequently, the lemma

t},‘} . 0

- I,'II --.__ I Hh
"1.
5 ; L

*“the l@mma, we find that
' (D)e,
= (D*"! - a*(D))e.
efore o sh that.for some basis a,, ...,
KA A '.'Siﬂ.a,l.ﬁ; Y eﬁ) "2

‘l h”'ﬁﬁl

a,, of TA ® Q,

Tr(xoal).

f= Is 21”'191

G | 1f1-},1 ’Js
—1 ifi=j,i'=J
L 0 otherwise.

;‘F‘:
e ABELIAN VARIETES
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'|

I
‘t
-
I---'

Bt 1> = o g
1 1g "‘:Q'

@y A A aglel A el A ey

: ILII . 1
h(’ﬂ — 1) s. ep(aay_y, aay)
3 (=1

e 1)
! I':, ,-'L"'""z_—_Z(El‘l{ulf—l y ﬂ'*ﬂﬂzi) + Ef‘{m.' 1“21-11 HII)}

g!
= Tr(a'a),
¢ T2

pltes the proof

" ,Ji;f Let 2 be a polarization of the abelian variety A.

":"""'phism group of (A, ) is finite.
y i 4. eger n > 3, an automorphism of (A, }
al to the identity.

.I—.

F_|ll u k 4 il o

L] i P

.'ta’..} A -
" -‘l. -

N
i

) acting as the identity on

ratisey

) ' )€ an automurphlsm of A. In order for « tn be an automorphism
------- *“?gn have A = aYoloa, and therefore 'o = I, where 1 1s the
ny ”'”rﬁ'f ion defined by 4. Consequently,

. ae End(A) N {xe End(A4) ® R|Tr(z'«) = 2g},

*Z these sets is discrete in End(A4) ® R, while the second 1s
ot T‘“ s proves (a).

| u‘f ther that « acts as the identity on A,. Then « — 1 1s zero on A,
the form nf with fe End(A) (see (12.6)). The eigenvalues of «
| %* raic integers, and those of a are roots of | because it has finite

_I

er. The next lemma shows that the eigenvalues of « equal L.

“ SR

" ¢ is a root of | such that for some algebraic integer 7y and
Lintegern > 3,{ = 1 + ny, then { = 1.

—

i at it is a
;13 then after raising it to a power, Wwe may assume that ]

— p. and so the
L root of 1 for some prime p. Then Nﬂmmtl ~0 lb!i:bi : :zsﬂ :
‘= —py implies p = +n”'N(y). This is imposs L

a
"'".
.,h
P o
e |

By ) — ] = Hlj 15
ve shown tent and therefore that 2

'?#'-;-:* t;:?lhil; L';‘I}':EI?E ﬁfﬂ 7& 0, bepauoe Tr(ﬁt-{f}?g}ﬂo;lsj
is implies that Tr(f'?) > 0 and so f° # 0. Similarly, = 7%

B ok O
ch cor _tradicts the nilpotence of /i
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Remark 17.7. Let (A4, 4) and (A, ') be polarized abelian varieties oy, a fiel

k, and assume that 4 and A" have all their points of order n rationy] nn,-._.L “?
for some n > 3. Then any isomorphism a: (A, ) — (A, ') defined over lrlk
separable closure k; of k 1s automatically defined over k because, [or .]|L
o € Gal(k,/k), 2" o ga is an automorphism of (A, ) fixing the points of urdl:_-rl

n and therefore is the identity map.

Remark 17.8. On combining the results in Section 12 with (17.3), we see thyy
the endomorphism algebra End®(A) of a simple abelian variety A is y gk u‘w
field together with an involution 1 such that Tr(zoa') > 0 for al| nonzero 4

§18. Two More Finiteness Theorems

The first theorem shows that an abelian variety can be endowed with 4
polarization of a fixed degree d in only a finite number of essentially differen,
ways. The second shows that an abelian variety has only finitely many nop.

isomorphic direct factors.

Theorem 18.1. Let A be an abelian variety over a field k, and let d be an integer:
then there exist only finitely many isomorphism classes of polarized abelian
varieties (A, A) with A of degree d.

Fix a polarization 4, of A4, and let  be the Rosati involution on End®(4)
defined by 4,. The map A 4;' o A identifies the set of polarizations of A with
a subset of the set End®(A)! of elements of End®(A4) fixed by . As NS(A[)is
a finitely generated abelian group, there exists an N such that all the ;' o/
are contained in a lattice L = N 'End(A)" in End®(4)". Note that L is stable
under the action

a—u'au, ueEnd(4)*,

of End(4)* on End®(A).

‘ Let A be a polarization of A, and let ue End(A4)*. Then u defincs an
1somorphism (4, u¥eldou)S(4,4), and A5 o(u¥oiou) = uo(iy'crilou
Thus to each isomorphism class of polarized abelian varieties (A, /), we can
_ associate an orbit of End(4)* in L. Recall (12.12) that the map « — deg(2)
s *mﬂ"ﬁ power of the reduced norm on each simple factor of End"(A) and
$0 Nrd is bounded on the set of elements of L with degree d. These remarks
. ﬂ"ft the theorem is a consequence of the following result on algebrds.

ae End®(A)

”'1' Let E be a finite-dimensional semisimple algebra iy -
i e sadan T, and let R be an order in E. Let L be a lattice in L that
saole under the action e—u'eu of R* on E. Then for any integ" ©

VEL|N E__:::"eﬁ._ 5#} is the union of a finite number of orbits.

i
ady ik

i proposition will be proved using a gene,

.
Sl

TR
S oup of G; let G — GI(V) be a representation, of G over O
: i, (

ABELIAN VARIETIES
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This PHi : al resy
 arithmetic subgroups. It from the reduction

. g g
:' i v & 'I}.. IIrI £

cem 18.3. Let G be a reductive group oper and |
» Uhd let T™ be gn arithmetic

ind let [ pe 4

H'J; is stable under I'. If X is 4 closed orpj of GinV. L
m - wnenLnX

Jr,wj of a finite number of orbits of T
proor. See [4,9-111

N

-1‘ ¥
_#H‘Il'l

- 18.4. (a) An ulgu:blruic group G 1s reductive if its Identity co s

b“}“mﬂn of a semisimple group by a torus. A rsuburuup-[" G?EDE.LT
ks if it is commensurable with G(Z) for some Lf.-stFucturu on G e
' (b) The following example may give the reader some ides of the nahtun: of
the above theorem. Let G =SL,, and let [ = SL.(Z). Then G acts In a
| way on the space V of quadratic forms in variables with rational
nts, and I" preserves the lattice L of such forms with integer coelli-
jents. Let g be a quadratic form with nonzero discriminant d. By li;-: orbit X
of ¢ we mean the image G - q of G under the map of ulgcb;euc varieties
g9 q: G-V The theory of quadratic forms shows that X(Q) is equal to
the set of all quadratic forms (with coefficients in @) of discriminant d. Clearly
mmqlmd, and so the theorem shows that X ~ L contains only ﬁmtcli.'
many SL.(Z)-orbits: the quadratic forms with integer coeflicients and dis-
iminant d fall into a finite number of proper equivalence classes.

Weshall apply (18.3) with G a reductive group such that
| G(Q) = {e€E|[Nrd(e) = + 1},

FSR*, ¥ = E', and L < V the lattice in (18.2). In order to prove (18.2), we

MShow

@) there exists a reductive group G over @ with G(Q) as described and
| h"ﬂﬂs I" as an arithmetic subgroup;
(-'?I_f':;;t,h"ﬁ@fbits of G on V are all closed;
fﬁ”ﬂf any rational number d, V, £ {ve V|Nrd(v) = d} is the union of &
finite number of orbits of G.

*xﬂ3-3) will show L n V, comprises only finitely many [-orbits, as 18
»efled by (18.2), |
| lll'ﬂt'c (a), embed E into some matrix algebra M,({). Then .thu i.:um]JI:
t Nrd(e) = +1 can be expressed as a polynomial r.:quui.mr} 1r'1]l11‘t:
Mﬂiﬂnts of e, and this polynomial equation defines 4 Iu;tidF ;: _i::—l |
'_ p G over @ SUEh lhﬂt G(S) — {L:E,J-_‘ @ S]Nl‘d{i.’] - i , Ol ¢

f matrix algebras

| S. Over @, E is isomorphic to a p{milllc‘; :‘J{ " 41, From
L)) co N) = {(e 3L, (Q)] jdette) = = 0
“:j}:%  Lonsequently, G(Q) = {{LI.}EI—[ GLy, | tension of ﬂ PGL,,

|
J-

cClear that the identity component of G 1s a1 €3

) .lhl . .-.
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by a torus, and sO G is reductive. It is easy O S€€ that I" is an arithmey;

beroup of G(Q). .
& 'lErn Pll':wc (b), we need the following lemma from the theory of algebry,

with involution.

mma 18.5. Let E be a semisimple algebra over an algebraically closed fie)
K of characteristic zero, and let T be an involution of E fixing the elements of
K. Then every element e of E such that ol = e can be written e = ca'a where

is in the centre of E and Nrd(a) = L.

Proor. Lacking a good proof, we make use of the classification of pairs (E, 1)
Each pair is a direct sum of pairs of the following types:

(A,) E = M,(K) x M,(K)and (e, e,)! = (¢4, eY);
(B,) E is the matrix algebra M,(K) and el = e';
(C,) E = M,,(K) and el = J~'¢"J with J an invertible alternating matrx.

(See, for example, [25].) In the cases (B,) and (C,), the lemma [ollows [rom
elementary linear algebra; in the case (A,), e = (¢, '), and we can take
¢ =d(l, I,)and a = (¢'/d, 1,), where d = det(e’)"'". 8

From the lemma, we see that if G, is the isotropy group at ¢ € V, then there
is an isomorphism g+ ag: G, — G, defined over Q. In particular, all 1sotropy
groups have the same dimension, and therefore all orbits of G in V have the
same dimension. This implies that they are all closed, because cvery orbit of
minimal dimension is closed (see, for example, [11, 8.3]).

It remains to prove (c). Let v, v'e V; ® C, and write v = cata, v’ =c'a’d
with ¢, ¢’ and g, @’ as in the lemma. Clearly v and v’ are in the same orbit
and only if ¢ and ¢’ are. Note that ¢ and ¢’ lie in ¥, ® C. Let Z be the
subalgebra of the centre of E ® C of elements fixed by t. Then ¢ and ¢ are In

Z, @d they lie in the same orbit of G if ¢/c’ € Z2. But Z is a finite product of
copies of R and C, and so Z*/Z*? is finite. (]

Corollary 18.6. Let k be a finite field, and let g and d be positive integers. Up

to fmfphf&:m, there are only finitely many polarized abelian varieties (A, /)
over k withdim A = g and deg 2 = d2.

:;EUF. From (14.1) we know that there are only finitely many possiblc A’s,
(18.1) shows that for each A there are only finitely many A’s. [

- We come now to the second main result of this section. An abelian varicty

A’ 1s said to be a direct : ; : ’ ARELE
abelian variety A", ¢t factor of an abelian variety A if A ~ A’ x A" [or 507

£ #m ll; Up to isomorphism, an abelian variety A has only finitely man
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& To each direct Ecl?r A" of A, there corresponds an i :_
Mdlk dgtcmﬁncd by e because it equals the kernel of | — ¢, | = e,
whh*lm End(A)*, then u(l — eju”™’ |

-y e = ueu
¢, and so e and e’ correspond to

Muc direct factors. These remarks show that the theorem is a conse
qm.al’ the next lemma. E]

Lemma 18.8. Let E be a semisimple algebra of finite dimension over Q. and let
- x - S :

R be an order in E. Then R”, acting on the set of idempotents of R by inner

automorphisms, has only finitely many orbits. |

proof. Apply (18.3) with G the algebraic group such that G(Q) = E*; take I
to be the arithmetic group R™, V to be E with G acting by inner auto-
morphisms, and L to be R. Then the idempotents in E form a finite set of
orbits under G, and each of these orbits is closed. In proving these statements
we may replace Q@ by Q and assume E 10 be a matrix algebra. Then each
idempotent is conjugate to onc of the form e = diag(l,..., [ 1 P 0), and
the stabilizer G, of e 1s a parabolic subgroup of G and so G/G, 1s a projective
variety (see [11, 21.3]) which implies that its image Ge in V' is closed. ]

Corollary 18.9. Let k be a finite field; for each integer g, there exist only
finitely many isomorphism classes of abelian varieties of dimension g over k.

Prook. Let A be an abelian varicty of dimension g over k. From (16.12) we
know that (A x AY)* has a principal polarization, and aamrding mU-LI], the
abelian varieties of dimension 8¢ over k having principal polanzations form
only finitely many isomorphism classes. The result therefore follows from

(18.7). L

§19. The Zeta Function of an Abelian Variety

4 : e e 4 'th
Throughout this section, A will be an abehan variety over & ﬁlllleli-lLlli‘jht :Itlhc
g elements, and k,, will be the unique subfield of k with 4 FlLmenhb; edarof
mﬁ of k,, are the solutions of ¢c¥" = c. We wnie N for Lhe
Ak).

024 such that:

Theorem 19.1. There are algebraic integers dy, -
(l) the polynomial P(X) = [ (X — @) has coefficients it £
(9; N:"" H(l —a™) forallm = 1; and

| mun hypothesis) |a;| = 4 e,

W particular, |N,, — g < 29¢""* + (2 =2~

m— 1

”3-!"1-: ' .o V. OVET k []]i5 1S
! e = , 'I:,, r]L_'-l"[ I- D‘TL" b |
‘?%pmof will use the Frobenius morphisi: For a varcty
> -7

i, S



o g e

wh is the identity map op .

prf' on 0. For eXample,
:d by the homomorphism, o

: "‘*k[xmn-: %l

ﬂlﬂt @omy = myop. Therefore,
ol' A, then m, induces the map
n ' ar, we see that the kernel of
_.ﬂlhﬁt m, Mmaps Zzero to zero, and
ome sm. Clearly n always defines the zero
(look ,:'LJ;‘t’ 'Z.‘r ion on the cotangent spacc) and so
‘j*‘ ?‘f" f.y‘mp. Therefore, 1| — n{ is étale, and
. ,',J,.? ﬁ‘uiaeqﬁlto its degree. Let P be the charac-
. It is a monic po ynmmal of degree 2¢g with integer
dewrin; h its roots, then (12.9) shows that
polynomial of #7§. Consequently,

*'I) == o).
mth the added information that P is
Part (c) follows from the next two

] 'E.a _'f

on End®(A) defined by a polariza-

3.2 = 12 tmn will be defined by an ample

E?J?#“'ﬁ =qPy- It follows from the
1erelo: for all aeA(k),

= (5.2 @ f.';;rr 1 é

IE '.- (]

.‘

- _q_:r H ﬁ
I

lh,-“ -

-u"_ _‘-I' ""'u-.

J' ”f* f Mhthatm o is an integer r; for

f. The argument terminating the prool
,_telcmcnts and therefore 1S d
.' ”R 15 a prOducl of CGPIES of B
¥ mt'Oiutlon of Q(x) @ R, and
 on a dense subset. It fol-
¢ under f and that f is the

bl
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i®
izl

o ‘i andf E complex cnnjugatinn il K is cofip)

H?. phism ¢ of Q(a) into C, («') is the complex plex. Thus,
othesis of the theorem therefore states that |2 conjugate of
*ﬁ e conclusion. = r, which, in

1 U
:"';.-;*;_u on of a variety V over k is defined to be
px - e the formal power

; L Lef- Pr(ﬂ g H(l — a; ), where the a; , run through the prod

ZUA. 1) = 1) I ()
PIE ”]

% iLPo(0).

iy ¥e
=

- ,x » logarithm of each side, and use the identity
.;: -'lug(l-—t)=1+f+f1/2+£3/3+'”. ]

( 19 (a) The polynomial P(f) is the characteristic polynomial of n
- .:r-’f“?ﬂ A.

et (| F V,s) = = Z(V, q*); then (19.1c) implies that the zeros of {(V, s) lie
,;) =1/2,3/2,...,(2g — 1)/2 and the poles on the lines Re(s) =

J'
F ’: and the above results

‘The isomorphism A'T}A = H'(A, &)

o &
+ -
e et

o

N, = ¥ (—1) Tr(r|H (A Q)

*.

Z(A, 1) = []det(l — mt|H'(Aq, @)

i
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ctive homomorphism f: % < A x §
Mvam:ty B of A (defined over k)

let B=3 ng en f, identifies B with a subvariety

p h: # <A x "f;"_"i'---:_‘._. ( Ff :-a}g S has fibre B, +» A — A/B, over §,
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' -:,__I . ‘ D
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aid !ﬂum that B extends to &b
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s 0B has the same Property for ap
thls shows that B is defined over k}' —
ws that the graph of « is defined over k.

““ ﬂ"] WE must

U

Let K/k be a regular extension of fields, and [e
Th‘“ there exists an abelian variety B over k ang 4 |
lomo-

. — A with finite kernel having the followin, g universa| property:

uariety B" and homomorphism [ By — A with finite 1, I
. '-':,f'l*' unique homomorphism ¢: B' - B such thai ['=fog,. e

t A be an abelian

r the collection of pairs (B, f) with B an abelian variety
homnmarphlsm By — A with finite kernel, and let A* be the
ubvariety of A generated by the images the f. Consider two pairs
1) and [Bi:fz) Then the identity component € of the kernel of
R X B,)x —A 1s an abclian subvariety of B, x B,, which (20.4)
ned over k. The map (B, x B,/C), — A has finite kernel and
'_f_f:;_ variety of A generated by f,(B,) and f5(B). It is now clear that
‘a pair (B, f) such that the image of f is A*. Divide B by the largest
p scheme N of Ker(f) to be defined over k. Then it is not difficult to

| “‘:! f) has the correct universal property (given f': By — A,
» that #a-suitable C contained in the kernel of (B/N), x By — A, the
,’“ 0 B/N — (B/N) x B’/C is an isomorphism). O

rk 2! T"" 6. The pair (B, f) is obviously uniquely determined up to a unique
- m by the condition of the theorem: it is called the K/k-trace of A.
nore details on the K/k-trace and the reverse concept, the K/k-image,

H@

;i'i;"q"'f \7. Let of be an abelian scheme of relative dimension g over 5,
| De eriphcntmn by n on /. Then n is flat, :.mjmru1[:';i u:r;f fi rnri
2l o/, is a finite flat group scheme over S of order n GFEU[;
efore its kernel) is étale if and only if nis not divisible by any of the

tics ;of the residue fields of S.

. x g d multiplication by n 1S
The map n, is flat because .«/ is [lat over § an
: P gas (For the criterion of flatness

ach fibre of .o/ over S (see Section 8).
, sec © [7,1V, 5.9] or [6, 111, 54, Prop 2.3]) Moreoer s 5 ;Er;:;pclr
:' with finite fibres, and hence is finite (sec, f;;:‘r;lul:iz‘sspﬂmﬂ "

i L vs that .7, is flat and finite, and (8.2) shows | [j

ining statement also follows from (8. 2).
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the ﬂefd of rational functions K of S.

e or S, and let n be an integer ®
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# w;ofd over S. The pull-back of (he
.- th,e section s is a finite ¢tale covering
Lét S, be any connected componep,
s of S contains k(n™'P), and S, is the

0]

integral Noetheriar scheme, and let A be an abelian
na e K. Choose a projective embedding
él'Am P§. Then n: .o/ — S is projective, and
t ;.iAa 0O - 0 is an isomorphism at the
mhcrent, there will be an open subset
d therefore over which 7 has connected
_‘_; C *ef a section implies the fibres will be
:-,-3*-'!*, 'ﬂ athcre will be an open subset over which
anopen subset where the group structure
st . T lsmﬂpcn subset U of S such that ./
ﬂ | nf iBedekmd domain, we can be more
~,.~ ding of A determines a unique extension
me 7 '-:_._---*S (see [10, III, 9.8]). The R-module

(because fproper) and torsion-free (because 713
projective R-module, and its rank is one becausc s
A, 0y *f :;,_ K. NW, as before, the geometric [ibres

>IN 800 ?};ﬂ : choice of a projective embedding
¢ extension o/ o @ to §; o/ will be an abelian scheme
ol' an elliptic curve, that the ¢x-
the choice of the projective embedding
L:::, fo U does not. The purposc of the
Y a “minimal” (nonproper) exter”
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- 1.--."-

J ?"'_ A
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r" (k), and let be A(k) be such that np — a.
ver k, define ¢,(d) to be ob — b. Then 41—, (,
' J’l? n(G, A,(k)). '
o(R) be an open s;:lset of the spectrum of the
{ extends to an abehian scheme ./ over g

1 be e the maximal abelian extension of k E?i}:}{]ﬂiﬁlnlsulnvertible
fin tﬂ set of prlrncs not corresponding to prime ideals D?ﬁm%izi

t(p. factors through the group Gal(k'/k) for all
m because k' is a finite extension of k. & L peaves

_;f * D
20.1 ;Using the theory of heights, one can show that for an abelian

| ﬂ Fa. number field k, A(k)/nA(k) finite implies A(K) is finitely
[23]) As the hypothesis of ("U 10) always holds after a finite
a8  - of k t]:us proves the Mordell-Weil theorem: for any abelian variety
o field k, A(k) is finitely generated.

-'l-
I.

For ¢ in the Galois
defines an Injection

ng of integers of k

Lct A and B be polarized abelian varieties over a number field
e that they both have good reduction outside a given finite set
}et | be an odd prime. If A and B are isomorphic over k (as
ian varieties), then they are isomorphic over an extension k' of

k unra ] "?putSIde S and | and of degree < (order of Gl,,(F,))*. (Because
e I-torsion points of A and B are rational over such a k', and we can apply

tﬂ abelian varieties, abelian schemes are not always projective,
ise scheme is the spectrum of an integral local ring of dimension

=1
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- scheme o7 is known to exist (see [8]); il &/ 1s nol projective then .o/~
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F,.4be the functor associating
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CHAPTER V]
he Theory of Height Functjopns
JOSEPH H. SiLvERMAN

“The Classical Theory of Heights

At Ej :il-te Values

lowing notauons and normalizations will be used throughout this

1-.

1*‘ a number field.
. the set of absolute values on K extending the usual

~ absolute values on Q. (That is, the p-adic absolute

. values are normalized so that [p[, = 1/p.)
| J.if |, |[ﬂl' :Q

3' ‘on Projective Space
q Pﬂmt J T [ S
P ” of the point.

x,] in P"(K) is a measure of the “arith-

"ﬂﬂht of P (relative to K) 1s defined by the formula

Hg(P)= [] max{llxullw---,II:‘-',II;:}-

|'J
' ve My

5 g
B » |-'-'

hoice of
e height of P is wel fleiec (mdepcnd; ts:}rfgu:;ﬂcproduct
0 l‘dlnatcs for P). This is easily checked U






