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Introduction

This short book gives an introduction to algebraic and abelian functions, with
emphasis on the complex analytic point of view. It could be used for a course
or seminar addressed to second year graduate students.

The goal 1s the same as that of the first edition, ﬂlthcugh I have made a
number of additions. I have used the Welil proof of the Rlemar}n-Ruch the-
orem since it is efficient and acquaints the reader with adeles, which are a very

seful tool pervading number theory. o |
Ihmrlf}liue pruul;eﬂf the ibel-lacnbi theorem is that given by Artin In a 5em{par
in 1948. As far as I know, the very simple proof for the Jacobi inversion
theorem is due to him. The Riemann-Roch theorem and the Abel-Jacobi
form a one semester course. )
[he'?‘;:nR{i:;;fnn relations which come at the end of the tr'eatmen‘t of Jaca}ai S
theorem form a bridge with the second part which deals with abella?n fﬁnctmm;
and theta functions. In May 1949, Well gave a boost to the basmlt ea;yhci}s
theta functions in a famous Bourbaki seminar talk. I have fol DW: L
exposition of a proof of Poincaré that tD‘EHCh divisor on a cnmpl}eix if;’:ﬂ b
corresponds a theta function on the universal covering space. udEd fn;' -
correspondence between divisors and theta functions 1S IZE](‘ neeﬂf A
linear theory of theta functions and the projective embe %r;g L e
when there exists a positive n;::n-ﬁega;lera?ﬂl;f{::;i:; {Eﬁg‘;‘:{g m:re:ﬁri:1 k.
| f existence of a theta functi ‘
igrivtitilestp E{;lz;?er, so that it does not interfere with the self-contained treat-
inear theory. | s
me’;l:a; flitr?:a;l theory gi?es a good introduction to abellaqb;rar:;t:;se, r:;daer:.
analytic setting. Algebraic treatments become more ECCBSISIK Eumbers, v
who has gone through the easier proofs over the cm;sf ey s
includes the duality theory with the Picard, or dual, abehan :
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Introduction

[ have included enough material to give all the basic anulet{c facts E;c;:};
iplication | ' -Tantyama,
' lex multiplication in Shimura-1d _ |
B e . the s ied to make this topic
t. and have thus tre s
more recent book on the subject, | o E ¢
accessible at a more elementary level, provided the reader IS willing

assume some algebraic results.
I have also given the example of the

results of Rohrlich. This curve is both o

setting for the general theorems proved 00]
both the theory of periods and the theory of di
example should make it easier for the reader to read

papers listed in the bibliography.

Fermat curve, drawing on some recent
f intrinsic interest, and gives a typical
in the book. This example illustrates
visor classes. Again this
more advanced books and

New Haven, Connecticut SERGE LANG
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CHAPTER |

The Riemann-Roch Theorem

§1. Lemmas on Valuations

We recall that a discrete valuation ring o is a principal ideal ring (and there-
fore a unique factorization ring) having only one prime. If ¢ is a generator
of this prime, we call 1 a local parameter. Every element x #+ 0 of such a
ring can be expressed as a product

x=1"y,

where r is an integer = 0, and y is a unit. An element of the quotient field
K has therefore a similar expression, where r may be an arbitrary integer,
which 1s called the order or value of the element. If r > 0, we say that x
has a zero at the valuation, and if r < 0, we say that x has a pole. We write

r=uvy(x), or o(x), or  ordy(x).

Let p be the maximal ideal of 0. The map of K which is the canonical map
0 — 0/p on 0, and sends an element x & 0 to oo, is called the place of the

valuation. | .
We shall take for granted a few basic facts concerning valuations, all of

which can be found in my Algebra. Especially, if E is a_ﬁnite extension of
K and o is a discrete valuation ring in K with maximal ideal D, then there

exists a discrete valuation ring © in E, with prime %3, such that

0= NK and p=PNK.

If u is a prime element of O, then 1O = u*D, and ¢ is called the ramifica:
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2
o (or of R over D). If I'c and ', are the value groups
over .

e : 1) =€ - -
gs, mﬂ*ﬂ‘)(li;s ab;*'ﬂ (0,p), or more briefly that 3 lies

| . ﬂ 2 PRREY b

iy T’\?; tifypta};at( (£,%) is anramified above (u,p).hm[ _that 15115

. S _ . iy . L . ‘ ﬂ IS t} _ |
:z::;iﬁ]‘ied above D, if the ramification index 18 equal to [, t

nd ¢ transcendental over XK. Leta € k. Leto

-
tion index of L '
of these valuation rin

Example. Let k be a ﬁe!d a
be the set of rationai functions

f(n/g (1), with f(n), g(1) € k[7] such that g(a) + 0.

Then 0 is a discrete valuation ring, whose m:aximql ide.al CO”HS;S of ;’ﬂl 1ngh
quotients such that f(a) = 0. This 1s a t}’Plf:ul snuatl'cm. sln kact, ;: 3
algebraically closed (for simplicity), and consider the extension ,(I), obtaine

with one transcendental element x over k. Let 0 be a discrete valuation ring
in k(x) containing k. Changing x to 1/x if necessary, we may assume'that
v €p. Thenp N k[x] # 0, and p N k[x] is therefore gt.:nerated by an irre-
ducible polynomial p(x), which must be of degree 1 since we a{;sgmed k
algebraically closed. Thus p(x) = x — a for some a € k. Then 1t 1s clear

that the canonical map
0 — 0/p

induces the map

f(x) = f(a)

on polynomials, and it is then immediate that 0 consists of all quotients
f(x)/g(x) such that g(a) # 0; in other words, we are back in the situation
described at the beginning of the example.

Similarly, let 0 = k[[7]] be the ring of formal power series in one variable.
Then 0 is a discrete valuation ring, and its maximal ideal is generated by 1.
Every element of the quotient field has a formal series expansion

.I'=£I,_mf_m+ SRR A ﬂ—]f_l + Qg + a;t + ﬂjfz o

with coefficients a; € k. The
a pole.

In the applications, we shall stud
d transcendental extension k
ranscendental over k. Such a
If that is the case, then the
0 containing k is equal to k

place maps x on the value a, if x does not have

y a field K which is a finite extension of
(x), xﬁrhere k is algebraically closed, and x is
ﬁ_eld 1s called a function field in one variable.
residue leass field of any discrete valuation ring
itself, since we assumed & algebraically closed.

Pru L. . .
Position 1.1, Let E pe 4 Sinite extension of K. Let (,') be q discrete

§1. Lemmas on Valuations

valuation ring in E above (0,p) in

the root of a polynomial f(Y)=0
cient 1, such that

K. .Suppﬂse that E = K(y) where y is
having coefficients in o, leading coeffi-

F(y) =0 but f'(y)s 0 modp.

Then S is unramified over p.

"r"'-l I_' rﬁ.l

o TN

Proof. There exists a constant Yo € k such that y =y, mod ‘8. By

h.ypothesis, f'(¥) # 0 mod B. Let { Y=} be the sequence defined recur-
sively by

Ynil = Yn — fj(.}’n)_lf(}’n)-

Then we lea}ve to the reader the verification that this sequence converges in
the cmqplatmn K, of K, and it is also easy to verify that it converges to the
root y since y = y, mod * but y is not congruent to any other root of f and

3. Hence y lies in this completion, so that the completion Ey is embedded
in K, and therefore ¥$ is unramified.

We also recall some elementary approximation theorems.

Chinese Remainder Theorem. Let R be a ring, and let p,, . . . , D, be
distinct maximal ideals in that ring. Given positive integersry, . . . , I',
and elements a,, . . . , a, € R, there exists x € R satisfying the con-
gruences

x =a;mod p* for alli.

For the proof, cf. Algebra, Chapter 11, §2. This theorem is applied to the
integral closure of k[x] in a finite extension.

We shall also deal with similar approximations in a slightly different
context, namely a field K and a finite set of discrete valuation rings 0y, . . .,
0, of K, as follows.

Proposition 1.2. If 0, and 0, are two discrete valuation rings with quotient

field K, such that 0, C 0,, then 0, = 0,. i iﬁ g, 5 thucpk
Proof. We shall first prove that if p, and p, are their ma};iyz{ ideals, then

P, Cp,. Lety € p,. If y € py, then 1/y € 0,, whence [y € P2, a con-

tradiction. Hence p, C p,. Every unit of 0, is a fortiori a unit of 03 An

element y of p, can be written y = j'u where u is a unit of 0, and 1S an

element of order 1 in p,. If 7 is not in p,, it is a unit in 0z, @ conlrad!ct;m. | ok

Hence 7, is in P,, and hence so is p; = 0;m. This proves p, = p. Finally, e
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and thus cannot be a unjt

. . ¥ ] “t EH J"'l‘.l'
ip ., 8 it in 02 and 1s not 1N ,D" then 1/
if u 1s a uni W proposition.

in 0,. This proves o

: . I‘i‘l‘ L] f - l ¥ # G ® 1 ’I) {IJ-{_J'
qssume that our valuation rings v (
n, W dbs.

Frﬂm nﬂ“‘r D i 4 - = J;f}rfr}’:l\‘.

distinct, and hence have no incluston I
I-l. | ]
: A F " ’ :: ¥ v(} I. ! .}

i0n 1.3, There exists anl clement y of K having a zero at Oy ane
Proposition 1.5. :

| = ;¢ M

apm’cafoj(j ™Y vy g M)
od by induction Suppose n = 2. Since there is
e - ‘ |
and 0., we can find y € 0y and y & o,

d - ¢ 0,. Then z/y has a zero at 0, and a

Proof. This will be prov
no inclusion relation between 0,
Similarly, we can find z € 0, an

t 0, as desired. g .
pﬂﬁ aw si:ppmc we have found an element y ol K having a zero at 0, and a
0 .

Let z be such that z has a zero at o, and a pole at o,,.
Then for sufficiently large r, y + 2 satisfies our rﬂ(]}llrcllijczth, Ii{:c.;fuh; WhL
have schematically zero plus zero = zero, Z€ro plus p{_::. L' = 'thL; ,Lﬁfn t] f
sum of two elements of K having poles nfl(yﬂ'crcnt (}ftfu 'd%dm .;1-5 a p? e,

A high power of the element y of PI‘DpDSlIiIGI] I.3 has fl‘hl}_:‘_’,'l Zero dt\Ui fmd
a high pole at v, (j =2, ..., n). Adding | to this high power, and

considering 1/(1 + y") we get

pole at 0z, . . . » Dau-1-

Corollary. There exists an element z of K such that z — 1 has a high zero
at 0, and such that z has a high zero at v; (j = 2, . . ., n).

Denote by ord; the order of an element of K under the discrete valuation
associated with 0. We then have the following approximation theorem.

Theorem 1.4. Given elements a,, . . . , a, of K, and an integer N, there
exists an element y € K such that ord,(y — a;) > N.

Proof. For each i, use the corollary to get z; close to | at 0, and close to
q at 0; (J # i), or rather at the valuations associated with these valuation
nngs. Then zya, + + * * + z,a, has the required property.

In particular, we can find an elemen

. o t ¥ having given orders at the valua-
tions arising from the o,

This is used to prove the following inequality.

(i‘:' ollary. Lf’f E be a finite algebraic extension of K. Let I be the value
ﬁu ;g of a'drscrlete vaiuqﬂon of K, and T i the value groups of a finite
er of inequivalent discrete valuations of E extending that of K. Let

L

T : o T T T T el L L el e I v e

§2. The Riemann-Roch Theorem

Proof. Sclect elements

y‘“"'"‘.}’]ﬂﬁ"'!}?ri*r-.-*r.}r

'rl."r

of £ suchthaty, (v =1, .. . ¢
have zeroes of high order at the ot
the above elements are linearly
relation of linear dependence

) represent distinct cosets of T in I';, and
.hcr valuations v; (J # i). We contend that
Independent over K. Suppose we have a

2, €Y = 0.

Say ¢j; has maximal value in I", that 1S, v(cy) = vley,) all i, v. Divide the
equation by ¢,,. Then we may assume that ¢;; = 1, and that v(c,) < 1.
Consider the value of our sum taken at vi. Allterms yiy, ciaya, - . . » Cley Ve
have distinct values because the y’s represent distinct cosets. Hence

Ui(yn + * + + + Cle, Yie,) = U1(y11).

On the other hand, the other terms in our sum have a very small value at

vy by hypothesis. Hence again by that property, we have a contradiction,
which proves the corollary.

§2. The Riemann-Roch Theorem

Let k be an algebraically closed field, and let K be a function field in one
variable over k (briefly a function field). By this we mean that K is a finite
extension of a purely transcendental extension k(x) of k, of transcendence
degree 1. We call k the constant field. Elements of K are sometimes called
functions.

By a prime, or point, of K over k, we shall mean a discrete valuation ring
of K containing k (or over k). As we saw in the example of §1, the residue
class field of this ring is then k itself. The set of all such discrete valuation
rings (i.e., the set of all points of K) will be called a curve, whose function
field is K. We use the letters P, Q for points of the curve, to suggest geometric
terminology.

By a divisor (on the curve, or of K over k) we mean an element of the free
abelian group generated by the points. Thus a divisor is a formal sum.

a= z niP, = 2 npP

where P; are points, and n; are integers, all but a finite number of which are
0. We call
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z n, =, N
.l',

, derof aatf.
and we call n; the of . finite number of points P such that

Al
+ 0, then lhf.‘:['f.‘t'lhtﬂr_:i‘}e: () = 0 forall P. If x is not
Idfnk,( 0 at which x has a zero, n‘ncil one point

. s extends to only a finite number
Hence we can associate

the degree of @,
Ify € Kand x ), the _
ordp x # 0. Indeed, if x 15 €ONS

constant, then there 1s one pm:}t t; e
at which x has a pole. Each of the:

0 nts o which 1§ a nite exten on of k(x).
fPOI (s f K 1C iﬁ'ﬁlt tension O (
]

(x) = 2, neP

[ are said to be linearly equivalent if

: ivisors a and o s
where np = ordp(x). Divis pand b = = mpP are divisors,

i = s‘ ]
a — b is the divisor of a function. If a = &1
we write

q>0 ifandonlyif np=mp for all  P.

This clearly defines a (partial) ordering among divisors. We call a positive
ifa=0. s ;

If a is a divisor, we denote by L (a) the set of all Blt?mﬁl'll‘b X € K such -lhat
(x) = —a. If ais a positive divisor, then L(n)_ f::Dm‘;lsts of all the ﬁ.lnCtIOI'.lS
in K which have poles only in a, with multiplicities at most those of: a. It 1s
clear that L(a) is a vector space over the constant field & for any divisor a.
We let /(a) be its dimension.

Our main purpose is to investigate more deeply the dimension /(a) of the
vector space L (a) associated with a divisor a of the curve (we could say of
the function field).

Let P be a point of V, and o its local ring in K. Let D be its maximal ideal.
Since k is algebraically closed, o/p is canonically isomorphic to k. We know
that 0 is a valuation ring, belonging to a discrete valuation. Let ¢t be a
generator of the maximal ideal. Let x be an element of 0. Then for some
constant a in k, we can write x = gy mod p. The function x — ag is in b,
and has a zero at 0. We can therefore write v — a, = tyy, where y, 1s in 0.
Again by a similar argument we get y, = a, + ty, with y, € o, and

X =day+ at + yt*

Continuing this procedure, we obtain an expansion of x into a power series,

x=ﬂ{}+ﬂ|f+ﬂ212+...

§2. The Riemann-Roch Theorem

as follows. If x is in K, then for some power t°

the function #’x lies in
and hence x can be written ‘ =

ad_, a_,
"'+T+ﬂﬂ+ﬂlf+*'n

If 1 1s another generator of P, then clearly k((r)) = k((u)), and our power
series field dcpen({S only on P. We denote it by Kr. An element & of Kp can

be written &p = 2. . a,t’ with an #0. If m <0, we say that & has a pole

of order —m. If m > 0 we say that &r has a zero of order m, and we let

m = ordp &.
Lemma. For any divisor a and any point P, we have

(a + P)=l(a) + 1,

and [(Q) is finite.

Proof. If a = 0 then I(a) = | and L(a) is the constant field because a
function without poles is constant. Hence if we prove the stated inequality,
it follows that /(a) is finite for all a. Let m be the multiplicity of P in a.
Suppose there exists a function z € L(a + P) but z & L(a). Then

ordp x = — (m + 1).

Let w € L(a + P). Looking at the leading term of the power series ex-
pansion at P for w, we see that there exists a constant ¢ such that w — ¢z
has order = —m at P, and hence w € L(a). This proves the inequality,
and also the lemma.

Let A* be the cartesian product of all Kp, taken over all points P. An
element of A* can be viewed as an infinite vector § = (. . . , &, . . .) where
&p 1s an element of Kp. The selection of such an element in A* means that
a random power series has been selected at each point P. Under component-
wise addition and multiplication, A* is a ring. It is too big for our purposes,
and we shall work with the subring A consisting of all vectors such that £ has
no pole at P for all but a finite number of P. This ring A wilﬁi be called the
ring of adeles. Note that our function field K is embedded in A under the

mapping

i.e., at the P-component we take x viewed as a power'serie_s in Kp. In
particular, the constant field k is also embedded in A, which can be viewed

as an algebra over k (infinite dimensional).
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rve. We shall denote by A() the subset of 4
on our Cu[hrit' ords & = —ordp a. Then A(a) is imme-
; he sct of all such A() can be taken

W i .
diately seen 10 be a k-subspace e 1 A, and define a topology

: 5 {_}f 'D il

as a fundamental systcm of "mghb{th{ﬂl ring
- : X T hecomes a topo Og1C« e . Y
in A which ;l;crcb§ [[::{i'ﬂt:llﬂh hat (x) = — (1 1s our old vector space L (), and
The set of functions. \(a) N K.
. dv seen to be equal to A(@) TS R | T
is immediately _5*»:‘3:“ ml B -? n, P, and let > n, be its degree. The purpoge
Let a be a divisor, 4 = = and /() have the same order of

. ' ! A -[)

: . is to show that deg(( - s

o ml‘i ézﬂzﬂ o get precise information Ofl [(a) — deg(a). We shall evep-
magnitude, ‘

1l ve that there is a constant g depending on our ficld K alone such thgt
tually prove . !

Let a be a divisor }
. £ euch
consisting of all adeles & suc

() = deg() + 1 — & 1 5(a),
where 8(a) is a non-negative integer, which is 0 if deg(q) is sufficiently large

(> 2¢ — 2). _ o _
We now state a few trivial formulas on which we base further computations

later. If B and C are two k-subspaces of A, and B D C, then we denote by
(B : C) the dimension of the factor spacc B mod C over k.

Proposition 2.1. Let a and b be nwo divisors. Then A(a) O A(D) if and
only if a = b. If this is the case, then

. (A(q): A(b)) = deg(a) — deg(D), and

2. (A@) : A(D) = (A@) + K) : (A(D) + K))
+ ((A(0) N K) : (A(D) N K)).

Proof. The first assertion is trivial. Formula [ is easy to prove as follows.
If a point P appears in a with multiplicity d and in 0 with multiplicity e, then
ff = e. [f 71s an element of order 1 at P in K,, then the index (17K, : t °Kp)
18 t?bvmusly equal tod — e. The index in formula | is clearly the sum of the
finite number of local indices of the above type, as P ranges over all points
in @ or b. This proves formula 1. As to formula 2, 1t i1s an immediate

;ﬁgsiql;ence of the eleplemary homomorphism theorems for vector spaces,
ts formal proof will be left as an exercise to the reader.

From Proposition 2.1 we get a fundamental formula:
I ;
(1) deg(a) - deg(h) = (Al@) + K : A(b) + K) + [(a) — (D)

hthat a = (. For the moment we cannot yet

know t _ 10 two functions of a and s
hat (A : A(D) + K) i finite. This will e pr{}vgé ?;f;l.lse e

Lety be a non
-C : ; :
: onstant function ip K. Letcbe the divisor of its poles, and

Pi. The points P. in « .11 -
curve having functiop m [z Fiin ¢ all induce the same point Q of the rational
(¥), and the ¢i are by definition the ramification

§2. The Riemann-Roch Theorem o

indices of the discrete value group in k(y) associated with the point Q, and
the extensions of this value group to K. These extensions correspond to the
points P;. We shall now prove that the degree 2 ¢; of ¢ is equal to [K : k()].
We denote [K : k(y)] by n.

Let zy, . . ., z, be a linear basis of K over k(y). After multiplying each

z; with a ﬁulitublc polynomial in k[ y] we may assume that they are integral
over k| y], 1.e., that no place of K which is finite on k[y] is a pole of any
zj. All the poles of the z; are therefore among the P; above appearing in ¢.

Hence there is an integer w such that z; € L(uec). Let wbea large positive
integer.  For any integer s satisfying 0 = s = u — po we get therefore

y'zj € L(ue),
and so /() = (n — o + Dn.

Let N, be the integer (A(uc) + K : A(0) + K),soN, = 0. Puttingh =0
and a = uc 1n the fundamental formula (1), we get

,u(z ef) = Ny 4, 1(ue) — 1
(2) =N, + (g — po+ Dn — 1.

Dividing (2) by w and letting w tend to infinity, we get % e; = n. Taking into
account the corollary to Theorem 1.4 we get

Theorem 2.2. Let K be the function field of a curve, and 'y € K a noncon-
stant function. If ¢ is the divisor of poles of y, then deg(c) = [K : k()]
Hence the degree of a divisor of a function is equal to 0 (a function has

as many zeros as poles).

Proof. If we let ¢’ be the divisor of zeros of y then ¢’ is the divisor of poles
of 1/y, and [K : k(1/y)] = n also.

Corollary. deg(q) is a function of the linear equivalence class of Q.

A function depending only on linear equivalence will be called a class

function. We see that the degree is a class function.
Returning to (2), we can now write

,wlng—i-;.u:-pnn+n—l

whence
N, = pon —n + 1

and this proves that N, is uniformly bounded. Hence for large u,
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N, = (A(ue) + K¢ A0) + K)
- always a positive Integer.
is constant, because 1t 15 always a p Bt R e T — -

, v function of e ; .
Now define ‘d =n;:155 e10ctions, the former by Thu?mm 2.2 and the latter
deg(a) an;:l H?;;—;» or forz € L(0) ise & -isomorphism between L (a) and
because the m 7" 3

L(a - ().

The fundamental formul

0< (A(a) + K: AD) + K) =r(a) — r(b)

a (1) can be rewritten

(3)

for two divisors a and L such that @ = L, Put b =0 and a = uc, so

(A(uc) + K : AO) + K) = r(uc) — r(0).

This and the result of the preceding paragraph show that r () 1s uniformly

bounded for all large u. _ . ,
Let b now be any divisor. Take a function z € k[ y] having high zeros at

all points of b except at those in common with ¢ (i.e., poles of y). Then for
some u, (z) + uc = b. Putting a = uc in (3) above, and using the fact that

r(a) is a class function, we get
r(b) = r(uc)

and this proves that for an arbitrary divisor 0 the integer r(D) is bounded.
(The whole thing is of course pure magic.) This already shows that deg(D)
and /(D) have the same order of magnitude. We return to this question later.
For the moment, note that if we now keep D fixed, and let vary in (3), then
A(n} can be Increased so as to include any element of A. On the other iland
the index in that formula is bounded because we have just seen that r(q) i;
?vqnded. Hence for some divisor a it reaches Its maximum, and for this
VISOr @ we must have A = A(a) + K. We state this as a theorem.

me::; l:}l:; ;2;-}3' ?'kere exists a divisor a such that A — A(Q) + K. This
i€ elements of K can be viewed as a lattice in A, and that there

s a neighborhood A(q) whi
lattice covers A (@) which when transiated along all points of this

This result allows us to splj '
split t : .
of (A: A(a) + k) by S(H)_pl he index in (1). we denote the dimension

becomes We have just proved that it is finite, and (1)

deg(a) — deg(b) = 5(b)

= 0(a) + I(a) — 1(b
Or in other words ol
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(5) (@) — deg(a) — 8(a) = () — deg(b) — &(D).

This hnldsf ff:rr a = b. However, since two divisors have a sup, (5) holds for
any two divisors a and b. The genus of K is defined to be that integer g such
that

[(@) — deg(a) — 8(a) = | — g.

[t is an invariant {:_:fK. Putting a = 0 in this definition, we see thatg = §(0),
and hence that g is an integer = 0, g = (A : A(0) + K). Summarizing, we
have

Theorem 2.4. There exists an integer g = 0 depending only on K such
that for any divisor a we have

[(a) = deg(a) + 1 — g + 8(a),
where o(a) = 0.

By a differential A of K we shall mean a k-linear functional of A which
vanishes on some A(a), and also vanishes on K (considered to be embedded
in A). The first condition means that A is required to be continuous, when
we take the discrete topology on k. Having proved that (A : A(a) + K) 18
finite, we see that a differential vanishing on A(a) can be viewed as a

functional on the factor space
A mod A(a) + K,

and that the set of such differentials is the dual space of our factor space, its

dimension over k being therefore d(a).
Note in addition that the differentials form a vector space over K. Indeed,

if A is a differential vanishing on A(a), if £ is an element of A,: and y an
element of K, we can define yA by (yA)(§) = A(y€). The f_unct!onal ?ul 1S
again a differential, for it clearly vanishes on K, and in addition, it vanishes

on Aa + (). : _
We shall call the sets A(a) parallelotopes. We then have the following

theorem.

el k 1% l-..f-,,.n.,j

Theorem 2.5. If A is a differential, there is a maximal parallelotope A(Q)
on which A vanishes.

Proof. If A vanishes on A(a,) and A(q), and if we put

a = sup (ay, az)
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Hence to prove our theorem 1t will suffice tg Prove
e *’f‘(?'und{éd Ify € L(a), 50 () = —a, then yA vanjgpe,
fi1sbo B

.05 A(0) because @+ (N0 UV .o,y an
ain: .., yanA. Hence we get

then A vanishes
that the degree O

on A(a +(y)) which cont

5(0) = () = degan + 1 — & o().

Since &(a) = 0, 1t follows that

dega = 6(0) + 8 — 1,

which proves the desired bound.

fferentials for -dimensional K-space.
Theorem 2.6. The differentials form a |-dime I

Proof. Suppose we have two differentials A and w which are ]inearly

independent over K. Suppose x, . . ., and y;, . . ., y, are two sets of
elements of K which are linearly independent over k. Then the differentia]g
XA, ... XA VIl .., Vi are linearly independent over &, for other-

wise we would have a relation
z axiA + Z bivi =0

Lettingx = 2 a;x;andy = X b, y;, we getxA + yu = 0, contradicting the
independence of A, u over K.

Both A and w vanish on some parallelotope A(q), for if A vanishes on A(q))
and u vanishes on A(q,), we put a = nf (q,, a,), and

A(ﬂ) = A(ﬂ[) M A([Tg).

iI:;t b be jl\ﬂ arbitrary divisar. Ity € L(b), so that (y) = —D, then yA van-
Sin??la(;? (a + (‘y)) which contains A(a — D) because q +(y)=a-b.
- 31 VK vanishes on A(q — b) and by definition and the rem;rk at the

o(a@ — b) > 21(D).
Using Theorem 2.4, we get

l(a - b) — deg(a) + deg(b) — 1 4 8 = 2/(b)

2 (GEg([)) + 1 —-g + 5(D))
2 deg(b) + 2 — 2.

I

v

1Y
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If we take D to be a positive divisor of very large degree, then L(a — b)
consists of 0 alone, because a function cannot have more zeros than poles.

Since deg(a) i1s constant in the above inequality, we get a contradiction, and
thereby prove the theorem.

It A is a non-zero differential, then all differentials are of type yA. If A(a)
is the maximal parallelotope on which A vanishes, then clearly A(a + ()
is the maximal parallelotope on which YA vanishes. We get therefore a linear
equivalence class of divisors: if we define the divisor (A) associated with A
to be a, then the divisor associated with YA1s a + (y). This divisor class is
called the canonical class of K, and a divisor in it is called a canonical
divisor.

Theorem 2.6 allows us to complete Theorem 2.4 by giving more informa-
tion on 6(Q): we can now state the complete Riemann-Roch theorem.

Theorem 2.7. Let a be an arbitrary divisor of K. Then
(@) =deg(a) + 1 — g + I(c — ).
where ¢ is any divisor of the canonical class. In other words,
o(a) = I(c — ).

Proof. Let ¢ be the divisor which is such that A(c) is the maximal paral-
lelotope on which a non-zero differential A vanishes. If b is an arbitrary
divisor and y € L(b), then we know that yA vanishes on A(¢ — b). Con-
versely, by Theorem 2.6, any differential vanishing on A(¢ — D) is of type
zA for some z € K, and the maximal parallelotope on which zA vanishes is
(z) + ¢, which must therefore contain A(¢ — D). This implies that

(z) = -b, ie., z € L(b).

We have therefore proved that 8(¢ — D) is equal to /(D). The divisor b was
arbitrary, and hence we can replace it by ¢ — @, thereby proving our theorem.

Corollary 1. If ¢ is a canonical divisor, then I(¢) = g.

Proof. Put a = 0 in the Riemann-Roch theorem. Then L (@) consists of the
constants alone, and so /(a) = 1. Since deg(0) = 0, we get what we want.

Corollary 2. The degree of the canonical class is 2g — 2.

Proof. Put a = ¢ in the Riemann-Roch theorem, and use Corollary 1.
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: - 0.
Corollary 3. If deg(@) = 20 — 2, then 6(a)

Proof. 8(a)is equal to /(c — a). Since a function cannot have more zergg
roof. | L
if deg(a) > 28 — <

than poles, L(c — @) =0

§3. Remarks on Differential Forms

A derivation D of a ring R is a mapping D: R — R ot K into itself which s
linear and satisfies the ordinary rule for derivatives, 1.¢.,
D(x +y) = Dx + Dy, and D(xy) = xDy + yDx.
As an example of derivations, consider the polynomial ring k[ X ] over a field
k. For each variable X, the derivative d/dX taken in the usual manner is 5
derivation of k[X]. We also get a derivation of the quotient field in the
obvious manner, i.e., by defining D (u/v) = (vDu — uDv)/v-.

We shall work with derivations of a field K. A derivation of K is trivia]
if Dx = 0 for all x € K. It is trivial over a subfield k of K if Dx = ( for
all x € k. A derivation is always trivial over the prime field: one sees that
D(1) =D(1-1) = 2D(1), whence D(l) = 0.

We now consider the problem of extending a derivation D on K. et
E = K(x) be generated by one element. Itf€ K[X], we denote by g ‘

lynomial ¢ r ' W sy Y 9f /0x the
polynomi )f [0X evaluated at x. Given a derivation D on K, does there exij
a derivation D* on K (x) coinciding with D on K? If X o
polynomial vanishing on x, then any s -~ J(X) € KIX] is a
%, y such D* must satisfy

(1) 0=D*(f(x)) = f2(x) + D, (f Jax)D*x.

where f° denotes the '
polynomial obtained '
of f. Note that if refatior. (11 1. . rained by applying D to al '
generalorsent??ltletiézla}t{on ks Sa[.l sfied for GVery ele%nent iﬂaii E?l?;ﬁzznéi
polynomial of thjs id?: ;n K[‘{{]ﬁ’ams'hing on x, then (1) is satisfied b ever
derivations al. This is an 1immedjate ~ ; y Y
ions. consequence of the rules for

of a D* turns out to be
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there is one and only one derivation D* of K(x) coinciding with D on K
and such that D*x = y,. ;

Proof. The necessity has been shown above. Conversely, if g (x), h(x) are
in K'|x], and 2 (x) # 0, one verifies immediately that the mapping D* defined
by the formulas

D*g(x) = g°(x) + g(x)u

hD*g — gD*h
h*

D*(g/h) =

1s well defined and is a derivation of K (x).

Consider the following special cases. Let D be a given derivation on K.

Case J . X Is separable algebraic over K. Let f(X) be the irreducible
polynomial satisfied by x over K. Then f'(x) + 0. We have

0 =f(x) + f'(X)u,

whence u = —f°(x)/f'(x). Hence D extends to K (x) uniquely. If D is trivial
on K, then D is trivial on K(x).

Case 2. x is transcendental over K. Then D extends, and u can be selected
arbitrarily in K (x).

Case 3. x is purely inseparable over K, so x? — a = 0, with a € K.
Then D extends to K(x) if and only if Da = 0. In particular if D is trivial
on K, then u can be selected arbitrarily.

From these three cases, we see that x is separable algebraic over K if and
only if every derivation D of K(x) which is trivial on K is trivial on K(x).
Indeed, if x is transcendental, we can always define a derivation trivial on K
but not on x, and if x is not separable, but algebraic, then K(x”) # K(x),

whence we can find a derivation trivial on K (x?) but not on K(x).
The derivations of a field K form a vector space over K if we define zD for

z € K by (zD)(x) = zDx.

Let K be a function field over the algebraically closed constant field &
(function field means, as before, function field in one variable). It is an
elementary matter to prove that there exists an element x € K such that X is
separable algebraic over k(x) (cf. Algebra). In particular, a derivation on K

is then uniquely determined by its effect on k(x).
We denote by % the K -vector space of derivations D of K over k, (deri-

vations of K which are trivial on k). For each z € K, we have a Paiﬂﬂg

(D, z) — Dz
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g, K) into K Each element z of K gives therefore a K-linear functiona]
of (%, K) 1nto A. ' T e
of E.Ea This functional is denoted by dz. We

d(r:) —] _}-’df 5 Zf{}’
d(y +2) =dy + dz.

- B ROV ;. 1e dual space of 9, if we
These linear functionals form a subspace J of tl al sp

define ydz by
(D, ydz) — yDz.

Lemma 3.2. If K is a function field (in one variable) over the algebraic-
ally closed field k, then 9 has dimension | over K. An element t € K is
such that K over k(1) is separable if and only if dt is a basis of the dual

space of & over K.

Proof. If K is separable over k(r), then any derivation on K 1s determined
by its effect on t. If Dt = u, then D = uD,, where D, is the derivation such
that Dyt = 1. Thus % has dimension 1 over K, and d! is a basis of the dual
space. On the other hand, using cases 2 and 3 of the extension theorem, we
see at once that 1f K is not separable over k(¢), then dtr = 0, and hence cannot
be such a basis.

The dual space # of 9 will be called the space of differential forms of

K over k. Any differential form of K can therefore be written as ydx, where
K 1s separable over k(x).

34. Residues in Power Series Fields

Thf:dresults of tlf]is sectiﬂn will be used as lemmas to prove that the sum of the
residues of a differential form in a function field of dimension 1 is 0

Let k((#) be a power series field the fi '
) _ , eld of coefficients being arbi
il;}t t?:ces*sanly algebraically closed). If u is an element of that ﬁgel{; vﬁiﬁ
Abewntten u = a;r + g2 + - - . with a; #+ 0, then it is clear that

The order of ap eleme
cal

nt of k((¢ ' -
st ((1)) can be computed in terms of u or of ;. We

der | a local parameter of k((7)).

Our power ser; :
manner. Indeed, if y — 3 o 1» IS a derivation D, defined
jl’

ately that Dy =3 g 471
= 1,1 1S
dy/dr. There j

| in the obvious
- :

a ;dn elc?ment of k((1)) one verifies immedi-
it erivation. We sometimes denote D, y by
on D,y defined in the SdMe manner, and the
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classical chain rule D,y -D,u = D,y (or better dy/du - dujdt = dy/dt) holds
here because 1t 1s a formal result.

If y = 2 a,t”, then a_, (the coefficient of t ') is called the residue of y
with respect to ¢, and denoted by res,( y).

Proposition 4.1. Let x and y be two elements of k((1)), and let u be another
parameter of k((1)). Then

dx dx
res,| y 1) = res, *E :

Proof. 1t clearly suffices to show that for any element y of k((r)) we have
res,(y) = res,(y dt/du). Since the residue is k-linear as a function of power
series, and vanishes on power series which have a zero of high order, it suf-
fices to prove our proposition for y = t" (n being an integer). Furthermore,
our result is obviously true under the trivial change of parameter t = au,
where a is a non-zero constant. Hence we may assume t = u + a,u* + - * -,
and dt/du = 1 + 2a,u + - - We have to show that res,(t"dt/du) = |

when n = —1, and O otherwise.
When n = 0, the proposition 1s obvious, because t" dt/du contains no

negative powers of r.

When n = —1, we have
1 dt 1 + 2a,u + - - - _1_+
tdu U+ aut+ - u ’

and hence the residue is equal to 1, as desired. it
When n < —1, we consider first the case in which the characteristic is 0.

In this case, we have

d 1 n+l
res, (1" dt/du) = res, ( e (” 1 t ))

and this 1s O forn # —1.
For arbitrary characteristic, and fixed n < —1, we have for m > I

1 dt | + 2aou + * * -
t"du  u"(l + azu + )
_Flanan.. ). i
u

) is a formal polynomial with integer coefficients. Itis

where F(ay, as, . ber of the coefficients

the same for all fields, and contains only a finite num
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in that case nomial
haracteristic 0, because W¢ have just seen thatn that case, our poly ¢
: C , L [ ] L]
;{1 (; 31: ) is identically 0. This proves the proposition.
2y 43y + * 7

f type ydx (with
at field and the
be the residue

' 1t hall call an expression O

In view of Proposition 4.1, we sha/ _
X anr::l v in the power series field) a dl[‘ferenu‘al l‘urmj qf th
residure res( ydx) of that differential form 1S defined to

: : arame f our field.
/) taken with respect to any parameter 70 <@ .
I‘ES;LJ;d:h/:“) need a more general formula than that of Proposition 4. Given

a power series field k((x)), let ¢ be a non-Zero element of that huld.n[:}‘f order
m = 1. After multiplying r by a constant if necessary, we can wrile

g “m + blnm-i'[ s blum"ﬁ'z SR
== u”‘(l T b|H - bguz i i )

Then the power series field k((1)) is contained 1n k((«)). In fact, one sees

immediately that the degree of k((1)) over k((n) is cxact*ly equal to .
Indeed, by recursion, one can express any element y of k ((«)) in the following

manner
y = fold + fi(Du + + =+ + fua (DU,
with f;(1) € k((7)). Furthermore, the elements 1, u, . . ., u™ " are li_nearly
~independent over k((1)), because our power series field k((1)) has a discrete
. valuation where u« is an element of order 1, and ¢ has order m. If we had a

relation as above with y = 0, then two terms fi(nu' and f; (1) u’ would neces-
.~ sarily have the same absolute value with i # j. This obviously cannot be the
~ case. Hence the degree of k((«)) over k(()) is equal to m, and is equal to
- theramification index of the valuation in k ((7)) having ¢ as an element of order
1 with respect to the valuation in k((«)) having u as element of order 1.
The following proposition gives the relations between the residues taken
in k((w)) or in k((r)). By Tr we shall denote the trace from k((«)) to k((1)).

Py
-

- Proposition 4.2. Let k((«)) be a power series field, and let t be a non-zero
3 - element of that field, of order m = 1. Let y be an element of k((u)). Then

res,, (y g—é du) = res, (Tr(y) db).

._ , =

* 0f- We have seen that the powers 1, u, . .., u™ "' form a basis for

% “E k((t)), and thﬂ: trace of an element y of k((«)) can be computed
AL EAE matrix representing y on this basis. Multiplying ¢ by a non-zero

T
-

m change the validity of the proposition. Hence we may

-|'u
s
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t=u" + bymt
T 0 =
I (l + b]ll -+ bluz 4 o o )

1

with b, € k. One can solve recursively

um = ol 1) + H(Du + - - . + oy (D=1

where f;(f) are elements of
polynomials in b,, b,,
be written

fi(h) = 2 P (b)”

where each P, (b) is a polynomial with
finite number of b’s,.

The matrix representing an arbitrary element

Integer coefficients, involving only a

8o(H) + gi(Du + - - - 4 Em- 1™

of k((u)) is therefore of type

llllllllllllllll

Gm—]*ﬂ(f) tT Gm—l.m—-l“)

where G"f‘“) E k(( 1)), and where the coefficients of the G,,. (1) are universal
pﬂlynﬂmtz_ﬂs with integer coefficients in the b’s and in the coefficients of the
g;(1). This means that our formula, if it is true, is a formal identity having

fmthin g to do with characteristic p, and that our verification can be carried out
In characteristic O.

This being the case, we can write t = v™, where v = u + cu + * * -
s another parameter of the field k((«)). This can be done by taking the
binomial expansion for (1 + byju + * + +)'™. In view of Proposition 4.1, it
will suffice to prove that

res, (y j—i dl}) = res,(Tr(y) db).

By linearity, it suffices to prove this for y = v/, —o0 <j < +oo. (If y has
a very high order, then both sides are obviously equal to 0, and y can be
written as a sum involving a finite number of terms a;v’, and an element of

very high order.)
If we write

j =ms +r with Osrsm -1,
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). We have trivially

{mf*‘ if j = ms

_ ) = ITI' v
then o/ = *v" and Tr(C ) = 1*Tr(

Tr(o") = {0 if "7&3 whence Tr(t)) = 0 otherwise.
r(v”) = o

mif r #

Consequently, we get

| mif j = —m
res, (Tr(v?) dt) = o otherwise.

on in terms of v is equal to
On the other hand, our first expression in terms of v 15 equi

res, (v/mv™ ' dv),

which is obviously equal to what we just obtained for the right-hand side.

This proves our proposition.

- In the preceding discussion, we started with a power series ﬁf;tld {c((u)) an_d
. a subfield k((r)). We conclude this section by showing that this situation is

typical of power series field extensions. |
Let F = k((1)) be a given power series field over an algebraically closed

field k. We have a canonical k-valued place of F, mapping ron 0. Let £ be
a finite algebraic extension of F. Then the discrete valuation of £ extends 1n
at least one way to £, and so does our place. Let « be an element of £ of order
1 at the extended valuation, which is discrete. If e is the ramification index,
then we know by the corollary of Theorem | thate = [E : F]. We shall show
that e = [E : F] and hence that the extension of our place is unique.

An element y of E which is finite under the place has an expansion

y=ay+au+--+a,u"+ty,

where y; is in E and is also finite. This comes from the fact that u¢ and ?
have the same order in the extended valuation. Similarly, y, has also such
mRExpansion, y; = by + byu + -+ - + b u"! + ty,. Substituting this

msmon for y, above, and continuing the procedure, we see that we can

i
. Y =Jol) + ilhu + - - + f._,(Hue!

. are clearly linearly independent over k( ' Lis
A e : (!)), this pr = ;
d that the extension of the place is unique. VS

| 5.‘_ 0 every element of £ we can ass

- wherefi(nis a power series in k((7)). Since the powers 1, u, . =

L]

- .
Ry g .1_.\_-| -_._: ;
TR o TR
=it f'-"- .
e L F e SR,
B
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and we can therefore solve recursivel

e — |

A y for a linear combination of the powers

with coefficients in k (( ). Summarizing, we get

Prupusi}iun 4.3. Let k((1)) be a power series
closed field k. Then the natural k-val

extension to any finite algebraic ¢
extension, and u is an eleme

field over an algebraically
ued place of k((1)) has a unique

ut of ‘25”5150” of k((1)). If E is such an
| _ ' OJ order | in the extended valuati
E may be identified with the power series field k((u)) andw[l; ?I:c?r ,:h:n

§5. The Sum of the Residues

We return to global considerations, and consider a function field K of dimen-
sion 1 over an algebraically closed field k. The points P of K over k are
identified with the k-valued places of K over k. For each such point, we have
an embedding K — K, of K into a power series field k((n) = Kp as in §2.

Our ﬁrsF task wil} b{’f to compare the derivations in K with the derivations in
k((1) discussed in §3.

Theorem. S.1. Let y be an element of K. Lett € K be a local parameter
at the point P, and let z be the element of K which is such that dy = zdt.

If dy [dt is the derivative of y with respect to t taken formally from the power
series expansion of y, then z = dy/dt.

Proof. The statement of our theorem depends on the fact that every dif-
ferential form of K can be written z dr for some z, by §3. We know that K
Is separable algebraic over k(r), and the irreducible polynomial equation
f(t, y) = 0 of y over k(¢) is such that f,(z, y) # 0. On the one hand, we have

0= fi(t, y) dr + f,(¢, y) dy,

whence z = —f,(1, y)/f, (1, ¥) (cf. Lemma 2 of §3); and on the other hand, if
we differentiate with respect to ¢ the relation f(¢, y) = 0 in the power series
field, we get

d
0 = fi(t, ) + f (1, 9) = .

This proves our theorem.

Let w be a differential form of K. Let P be a point of K, and ¢ a local
parameter, selected in K. Then we can write @ =y f'ff for some y € K.
Referring to Proposition 4.1 of §4, we can define the residue of w at P to be

the residue of y dr at ¢, that 1s

resp(w) = res,(y).
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If wis written X dz 1 f this section.

now state the main theorem O ‘
tion field of a curve over an algebraically
c

Theorem Let KD n 1 ,
/ ;i'an.ss;czi;:r;;!d kE !E?}ﬁiu be a differential form of K. Then
close :

Z reSp ({U) = 0.
P

points P, but ic actually a finite sum sSince the

is taken over all 1
o finite number of poles.)

differential form has only a

Proof. The proof is carried out in two steps, first in a rational function field,

' ‘ ' ing Proposition 4.2.
en in an arbitrary function field usl _ | s
anc(llu[hnsider first the case where K = k(x), where x is a single transcendental

quantity over k. The points P are inll — | correspﬂndepce *.:wth th;: m;p; ?:
x in k, and with the map 1/x — 0 (i.e., the place se:ndmg xX— me. g 8
not the point sending x to infinity, but, say the ant x=a a& if e

© — acan be selected as parameter at P, and the residue of a d1ft"eren_tla form
ydx is the residue of y in its expansion in terms of x — a. The situation is the

same as in complex variables.
We expand y into partial fractions,

: E cuif(x — by)' + f(x)

where f(x) is a polynomial in k[x]. To get res, ( ydx) we need consider only
the coefficient of (x — a)~' and hence the sum of the residues taken over all
P finite on x is equal to 2, c,.

Now suppose P is the point at infinity. Then s = 1/x is a local parameter,

b and dx = —1/t* dt. We must find the coefficient of 1/ in the expression
E —y1/t*. It is clear that the residue at ¢ of (— 1/t*)f(1/1) is equal to 0. The
2 other expression can be expanded as follows:

TN

% | __]_ . E 1 ! = — Z Cmf 2(1 + Ib” i ,):
" -. t2 . ( i bp)

i and from this we get a contribution to the residue only from the first term,
L whlch E::lf:: t[;{ﬂ;:::izl‘y ~2 ¢, This proves our theorem in the case of a purely
" -. _-;N_l:xt. Suppose we have a finite separable algebraic extension K of a purely
field F = k(x) of dimension 1 over the algebraically closed
;. w'* it field k Let O be a point of F, and ¢ a local parameter at Q in F.
| point of K lying above Q, and let u be a local parameter at P in
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K. Under the discrete valuation at P in

K Extending thatof QO in F w %
R t

field k((u)) is a finite extension of

2 g C get an embedding of K i '
algebraic extension of k((r)), and the place on K at p if induc:::l ab;inllliz

{:unfnic;ll(pluccl of the power series field k((u)).

et =1,...,) be the points of K lyin

algebraic cﬂlnsurc of k((7)). The discrete valuati?:m Efaﬁ? iI(:]h(T)I) E}lc.tek;; in?e ﬂ;E
to a valElz%tmn of A, Evhich Is discrete on every subfield of A finite over El(j(er)ﬁ
(PI"_GPG_S“IG“ 4_-3 of §4). Suppose K = F (¥) is generated by one element y
satisfying the irreducible polynomial g (Y) with leading coefficient 1 over F*
[t splits into irreducible factors over k((1)), say |

(1) g(Y) = g(Y) - g(Y)

of degrt::cs di(j =1,...,7r. Lety,be aroot of g;(Y). Then the mapping
y — y; induces an isomorphism of K into A. Two roots of the same g; are
conjugate over k((1)), and give rise to conjugate fields. By the uniqueness
of the extension of the valuation rin g, the induced valuation on X is therefore
the same for two such conjugate embeddings. The ramification index relative
to this embedding is @}, and we see from (1) that 3 d; = n. By Theorem 2.2
of §2 we now conclude that two distinct polynomials g; give rise to two
distinct valuations on K, and that s = r. We can therefore identify the fields
k((0)(y:) with the fields Kp.

Foreachi =1, . . ., r denote by Tr, the trace from the field Kp to Fp.

Proposition 5.3. The notation being as above, let Tr be the trace from K
to F. Then for any y € K, we have

Tr(y) = S Tr(y).
i=1

Proof. Suppose y is a generator of K over F. If [K : F] = n, then Tr(y)
is the coefficient of Y" ! in the irreducible polynomial g(Y) as abﬂve.. A
similar remark applies to the local traces, and our formula is then obvious
from (1). If y is not a generator, let z be a generator. For some constant
¢ €k, w=y + czis a generator. The formula being true for cz and foriw,
and both sides of our equation being linear in y, it follows that the equation

holds for y, as desired.

The next proposition reduces the theorem for an arbitrary function field X
to a rational field k(x).

Proposition 5.4. Let k be algebraically closed. Let F = k(x) be a purely

transcendental extension of dimension 1, and K a finite algebraic sepa-

rable extension of F. Let Q be a point of F,and P, (i = 1, . . ., r) the




. K with the differentials introduced in
E A of adeles which vanish on some A(a) and on K. This is done in the

__Mnliaj form of K. Then the map

l Ricmunn-ﬂn}ch Theorem
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-- & (

trace from K 10 F. Then

reso (Tr(y) dy) = E resp, (¥ dx).
i=1

dx ;
S resp, (Y dx) = Y, resp, () - dr

dx i du)
= 2, ™5a|) dt du,

and using Proposition 4.2 of §4. we see that this is equal to

Since dx/dt is an element of k(x), the trace is homogeneous with respect to
this element, and the above expression is equal to

dx . _
E resg (Tr,-(y) - dr) = Z resg (Tr;(y) dx)

= resg (D Tri(y) dx)

Il

resp (Tr(y) dx)
thereby proving our proposition.

Theorem 5.2 now follows immediately, because a differential form can be
written ydx, where K is separable algebraic over k(x).

Our theorem will allow us to identify differential forms of a function field
82, as k-linear functionals on the ring

following manner. Let ¢ = (. . . » &, .. .) be an adele. Let ydx be a

At E > resp (&nydy)
-

hngar map of A into k. Here, of course,
- one views y and x as elements of K. It is also C
Ol term: of our sum are 0,

In the expression res p (&pydx),
lear that all but a finite number
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Our k-lincar map vanishes on some A(), becaus
only a finite number of poles. Theorem 5.2
is therefore a differential, and in this way we obtain an embedding of th
K-vector space of differential forms into the K -vector space of diffc%eﬁt" l“:
Since both spaces have dimension 1 over K (the latter by Theorem 2.6 of 1525)“
this embedding is surjective. | |

Let ydx be a differential form of K. If Pis a point of K, we can define the

order of y:lzl.r ﬂ} P easily. Indeed, let t be an element of order 1 at P. In the
power series field k((1)), the element

e the differential form has
shows that it vanishes on K. It

ds
dt

is a power series, with a certain order mj, independent of the chosen element .
We define mp to be the order of ydx at P, and we let the divisor of ydx be

(vdx) = 2 mpP.

Suppose ordp( ydx) = mp. 1If ordp(&) = —mp, then

ordp (& ydx) = 0,

and the residue resp(& ydx) 1s 0. Hence the differential A vanishes on A(q),
where a = (ydx). On the other hand, if A(D) is the maximal parallelotope
on which A vanishes, then A(0) D A(q),and b = a. If b > a, then for some
P, the coefficient of P in D is > mp, and hence the adele

(..0.0 10,0 )
lies in A(D). One sees immediately from the definitions that

I‘ﬂ‘hv?y(f_m'“]#l }’d.l') % 0’

and hence A cannot vanish on A(0). Summarizing we have

Theorem 5.3. Let K be a function field of dimension 1 over the r:dgeb;:a-
ically closed constant field k. Each differential form ydx of K gives rise

to a differential

A E 2 resp (&pydx),
P

and this induces a K-isomorphism of the K-space of differential forms onto
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the divisors (ydx) and (A) of §2

entials. Furthermore,

the K-space of differ

are equal. - “the space of differenti

. r §(q) is the dimenston of the space of differential
; he intege :

Corollary 1. T

forms @ such that

(w) = Q.

ia] form w 1S said to be of first kind if it has no poles, that is if
A differential 10

< b d e da rdfk. Forany divisor
_ .  of first kind is denoted by ;
Th? fp;f; E’;;Igi:::“:;ﬂcfs lf::!r::':;Iifft::r:.:nliul forms w such that (w) = —a. Then
a,le

dim Diff () = 8(—q).

If @ = 0 it is clear that Diff (a) contains the space of differentials of first

kind.
Corollary 2. For any divisisor a > 0 we have

5(—a) = degn — 1 + g

and
dim Diff (a)/dfk = deg a — 1.

Proof. Since I(—a) = 0 because a function which has no poles and at least
one zero is identically 0, the formulas are special cases of the Riemann-Roch
theorem.

§6. The Genus Formula of Hurwitz

The formula compares the genus of a finite extension, in terms of the ramifica-
tion indices.

Tpmrem 6.1. Let k be algebraically closed, and let K be a function field
With k as constant field. Let F pe g finite separable extension of K of degree
n. Let g¢ and gy be the generq of E and K respectively. For each point

P h Doi s
“{( K, ‘_I”d each point Q of E above P, assume that the ramification index
€0 IS prime to the characterisic of k. Then

285 - 2 = n(2g,; - 2) + 2 (EQ - 1).
Q
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Proof. If w 1s any non-zero differential form of K. then we know that its
degree 1s ?__g,q — 2. Such a form can be written as }'c;.r, withx, y € K a\’ls’z
can also 'TJ’IL':\!:’ X, y as elements of E; we can compute the dt;glree n E and
compare 1t with that in X to get the formula, as follows. Let Pbe a point of

K, ;_m_d ]{.:l t be a local parameter at P, that Is an element of order 1 at P in
K. If wis a local parameter at (, then

r

! = u‘vy,

where v 1S a unit at Q. Furthermore, dr = u* de + eu"'v du. Hence

ordy (ydx) = e, ord, (ydx) + (ep — 1).

Summing over all Q over P, and then over al] P yields the formula.

§7. Examples

Fields of genus 0. We leave to the reader as an exercise to prove that k(x)
itself has genus 0. Conversely, let K be a function field of genus O and let

P be a point. By the Riemann-Roch theorem, there exists a non-constant
function x in L(P), because

[(P)=1+1-0+0=2,

and the constants form a I-dimensional subspace of L(P). We contend that
K = k(x). Indeed, x has a pole of order 1 at P, and we know that [K : k(x)]

1s equal to the degree of the divisor of poles, which is 1. Hence we see that
K 1s the field of rational functions in x.

Fields of genus 1. Next let K be a function field of genus 1, and let P again
be a point. We have 2g — 2 = 0, so the Riemann-Roch theorem shows that
the constant functions are the only elements of L(P).

However, since deg(2P) = 2, we have
I(2P)=2+1~-1=2,

so there exists a function x in K which has a pole of order 2 at P, and no other
pole. Also

IBP)=3+1-1=3,

So there exists a function y in K which has a pole of order 3 at P. The seven
functions 1, x, x?, x3, xy, y, y? must be linearly dependent because they all

lie in L(6P) and
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f(ﬁfﬂ)=6+’“l:ﬁ'

dence, the coefficient of y~ cannol be O, for
x ol B[ cnee, IR——— : 1_. g ‘
o vof lmcurdd;PLfiL impossible, as 0N sees from the parity of the
y and this 1 S!
nee y E k(-t) an

otherwisc ) L taia g P
oo of foneSwe - ii isor of poles
Since the degree of the €I

| of x is 2 we have

[K s k()] = 2

Similarly,

1K 2 k()] =3

n h [} .I

in k(x), it follows that
K = k(x, »)-

. — = 3 N Tars qtween ll*lc rlb{]VE HEVEH
Furthermore, the relation of lincar dependence bet ‘

functions can be written

3 i i, ;
1.:’. —_ {:-I 1!. + ("2'1'}" —+— {:‘]_,rl 'i"' {4-1 + {5.-1 + {.ﬁ.

-

In characteristic # 2 or 3, we can then make simple transtormations of

variables. and select x, y so that they satisty the equation
2 3 s
y* = 4x° — ©2X — Cy,

familiar from the theory of elliptic functions.

Hyperelliptic fields. Let K = k(x, y) where y satisfies the equation
y? = f(x),

and f(x) is a polynomial of degree n, which we may assume has distinct
roots. Let us assume that the characteristic of k is #+ 2. Then the genus of

K 1s
n — |
—'——2 .

IS fr:;ﬁiﬁt;lﬁ?r? L - @) .whﬂfﬂ the elements q; are distinct. Then K
o i aad diae ({)blat all points ¢xcept the points P; corresponding 0
ramiﬁga e [:"'GE}S&.I y at those points lying above x = 0. At P; the

€X 18 2. Suppose first that n is odd. Letr = 1/x so that t has
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order | at oo in k(x). We write

fG)y =111 A = ta)).

Each power series | — ra; has a square root in KI[AL, witle foi'n odd. the

square root of 17" shows that k(x, y) is ramified of order 2 at infinity. The
Hurwitz genus formula yields

26tk —2=220-2)+ > Q2-1D+QR2=-D=—-44+n+ 1.

Solving i:ur‘ 8k yﬁictds g = (n — 1)/2. If n is even, then the ramification
index at infimty is 1 and the Hurwitz formula yields gy = (n — 2)/2. This
proves what we wanted.

§8. Differentials of Second Kind

In this section all fields are assumed of characteristic 0. A differential form
w 15 called of the second kind if it has no residues, that is if

respw =0 forall P.

[t is called of the third kind if its poles have order = 1. The spaces dsk and
dtk of such forms contain the differentials of first kind.

The Riemann-Roch theorem immediately shows that the differentials of
first kind have dimension g, namely 8(0) = g, equal to the genus.

A differential form is called exact if it is equal to dz for some function z.
[t 1s clear that an exact form is of the second kind. We shall be interested in
the factor space

dsk/exact.
Theorem 8.1. Assume that K has characteristic 0. Then
dim dsk/exact = 2g.
Proof. We define dsk(a) and dtk(a) just as we defined Diff (q), that 1s,
tforms of the prescribed kind whose divisor 1s = —a.
Let P,, . . ., P, be distinct points, and let N be a positive integer such

that (N — 1)r > 2g — 2. If a differential form is exact, say equal to dz, and
lies in

dsk(N S P)),

| If!.l""' E

- g LR .-.;q..l_’."l.-"_'_""' TR
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¢ at the points P, of orders at most N, (hey
0S

f it has poles at ! Note that

. o J dﬂ,i sreel Y.
in ntiit-(“(;”r s p), and conversel
: E R
* — 132 P),
(= U dsk(V 2 P LN = D) )
dsk /exacl = -
N as above, and all choices of points
¢ will suffice to prove that cach factor
quse if that is the case, then inereys.
further contribution to dsk fexacq.

. Ll " ¥ & = U"’Cr ;lil

» nis [‘ILLH s

! rﬂ [hL un][} * L " I
whe p To prove the [IILDI’L!]II B
B E P has dimension 28, D¢

N » riehl : —
space on the righ cannot }ucid any

ing N or the set of points

This will then also prove:
p be distinct poinis, and let N be a positive

Theorem §2. Let Py, - Ve - 5 Then

integer such that (N — Dr >

dsk fexact = dsk(N 2 P)/dL (N-1)2P).

Note that

dimdL(N - 1) EP) =N - 1) Y p) - Iy

because the only functions z such that dz = 0 are the constants. On the other
hand, also note that

dfk N exact = 0,

because a non-constant function z has a pole, and so dz also has a pole.
By Riemann-Roch (cf. Corollary 5.7) the dimension of the space of dtk

having poles at most at the points P, modulo the differentials of first kind has
dimension

O(-ZP)—g=r—1.
Putting all this together, we find,
dim dsk(N X P)/dL((N — 1) 2 P)
= dim Diff(N 3 P)/dL((N

= 1) 2 P) — dim dtk(Z P)

=0(=NZP) - [I(N - BER) 1]« G 13
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2g—2+Nr+I—g

‘{N“'l}!‘—l+g+l—(r-1)
20,

This proves the theorem.

§9. Function Fields and Curves
For technical simplicity, we assume again that k has characteristic zero

Let K be a function field in one variable over a field k. This me;ms 'that
K 1s of transcendence degree 1, and finitely generated. If we can write
K = k(.}', ), with two generators x, vy, then we may call (x, y) the generic
point of a plane curve, defined by the equation f(X, Y) ='{J, if fis the
irreducible polynomial vanishing on (x, y), determined up to a constant
factor. A point (a, b) lies on the curve if and only if f(a, b) = 0. We shall
say that the point is simple if D, f(a, b) + 0.

[f 015 a discrete valuation ring of K over k (i.e., containing k) and mt its
maximal ideal, then m is principal, and any gencrator of 1m is called a local
parameter of 0 or . Assume that the residue class field o/m 1s equal to k.
Let @ 0 — o/ be the canonical map. It K = k(x, y)and x, y € o, then
we let a = e(x), b = ¢(y). We see that (a, b) is a point on the curve
determined by (x, y). Ifz € K, z € 0, we can extend ¢ to all of K by letting
¢(z) = 0. We call ¢ a place of K (over k). We say that the point (a, b) is
induced by the place on the curve.

Local Uniformization Theorem. Let K be a function field in one variable
over k.

(1) Let K = k(x, y) where (x, y) satisfy an irreducible polynomial
fX, Y) =0 over k.

Leta, b € k be such that f(a, b) = 0 but D,f(a, b) #+ 0. Then there
exists a unique place ¢ of K over k such that ¢(x) = a, ¢(y) = b,
and if v is the corresponding discrete valuation ring with maximal
ideal m, then x — a is a generator of m.

(2)  Conversely, let v be a discrete valuation ring of K containing k, with
maximal ideal, M, such that ojm = k. Let x be a generator of m.

Then there exists y € 0 such that K = k(x, y), and such that the
point induced by the place on the curve is simple.

Proof. To prove (1), we shall prove that any non-zero element

g(x, y) € k[x, y]
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ceeny in LHE fc
B e S A(x, V)

B e

o(x, ) =&~ 4" B(x, y)

.—,4: 0. 'I'hiﬁ pnwuﬁ that lhf..'! l'il]g 0

‘ﬂ.l-i’;m . - v)fesly, ¥ "t"r"ith sl i
re A, B arc polynoi f }o[ynnmmlﬁ gi(x. /82 e | "i‘j.( h? # 0
|l quotients © [d it ¢ il is a generator of its maximal ideg).
and that. __ e
done, S0 qssume 8 (d, h = 0. Write

and B(d, h)

whe :

sisting of all qUOT="~

;?‘;D;I: discrete valuation ring.

| If g(a. b) # 0, we art .
(a, V) = (Y — !J}g;(}’} ¢ (1Y)

LL. fi(P) € kY]

fla, y)= (¥ - h) fi(Y)

Then f,(b) # U since D.f(a. ) + 0. Henee

o(a, VAW) = fla, Y)&i(Y).

It follows that
g(X, NAT) -

Hence

f[-r":. }"}EI(F} — [:\r - ”}A](.;Y, }.r)

for some polynomial A;.
e(r, y) = (x = A YA y).
If not, we continue 1n the same way. We

If A,(a, b) # 0, we are done. . '
ise, we know that there exists some

cannot continue indefinitely, for U[hﬁl"ﬂ.:
place of K over k inducing the given point, and ¢ (v, y) would have a zero of
nfinite order at the discrete valuation ring belonging to that place, which is

impossible. o

Conversely, to prove (2), let K = k(x, z) where z 1s integral over k[x].
Letz =z, ...,z (n=2)be the conjugates of z over k(x), and extend 0
to a valuation ring £ of k(x, z;, . . ., z,). Let

Z=0+ X+ +ax" +
be the power series expansion of z, with @, € k, and let

P(X)=ap+ "+ +ax"

Fﬂrf=1,...,r:lcl
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[f we take r large, then y, has no pole at O, but Y2, - . ., y, have poles at ©
The r.:lel:munl:-i Wiw « .y Ynoare conjugate over k(x). Let f(X, Y) be the
irreducible polynomial of (x, y) over k. Then

S, Y) = ()Y + - - + ().

Furthermore, 4(0) # 0 for some i, otherwise we could factor out some
power of X trom f(X, Y). We rewrite f(x, Y) in the form

S Y) = () yr. .. yu(Y - y,)(—l*- Y — l)* : -(l Y — 1)-

b y. Y
In the valuation determined by £, we see that the coefficient
W=y, (x)y: ...y,
camnut‘h:wc a pole (otherwise divide the two expressions for f(x, Y) by this
coefficient and read the polynomial modulo the maximal ideal m of o to get

a contradiction). If we denote by a bar the residue class of an element of o
mod 1, then

O0#f& Y)=(-D""ay -y).

By definition, ¥ =a =0. Welety =y, and ¥ = b. Then
D:f(a, b) = (=1)""u # 0,
as was to be shown.

Corollary. Ler K be finite over k(x). There is only a finite number of
valuations of k(x) over k which are ramified in K.
Proof. There exist only a finite number of points (a, b) such that

fla, b) =0 and D,f(a, b) =0,

and there exist only a finite number of valuation rings of K such that x does
not lie in the valuation ring (i.e., such that x is at infimty).

If K = k(x, y) and f(x, y) = 0 is the irreducible equation for x, y over &,
then one calls the set of solutions (a, b) of the equation f(a, b) = 0 an affine

plane curve, which is a model of the function field. If all its points are simple,
the curve is called non-singular. The totality of all places of K (which are

k-valued) is called the set of points on the complete non-singular curve




[. Ricmann-Roch Thegrey,

34 . - :
2 ay of course not be g single

function field A- . an affine model always excludes

: o pl hich map x to co.  This coulg
[ _, L - . . | i - b i s
. infinity currﬂﬁpqndm"’ . oive models of the function ficld. For
“points at 1n considernng projectiv™ A1l k-valued places the complete
as the curve.

qces W

SE'-'H ! - . s L \"’illl Ih'i:'; : ‘ - 1 * Tin 1. et
our plijn”g}ﬂulﬂf model, and 0 dm:jr 1 curve is defined to be the genus of jig
non-$ .~c the genus UL«

es, the £
r our purposes: R T el :
Fﬂ_ f‘]d ,  The q_:]::lﬂﬂ““" of R arc 1n l)lJLLIIt}Il With
funcolt = t of PUE'“S of A- .uf he constant ficld k. We speak of
Let R be the s¢ ings of K containing the ;; ~ ingular model. W
. a LY l]_]ll[lﬂﬂ n ‘ i Eulllp c[c n':”].-h ) L " [:""'
the discrete vd - the above
nts on

forence ['U K-
. Y Ihc ﬂ""ﬁ"rL“L . it !
if we wish 10 specify . F. Then the inclusion £ C K giveg

K is a finite extension of

write R(K)
Suppose tha
rise to a mapping

o R(K) —> R(!)

JJuation ring 0 of K associates the ring 0 M F of F. This
which to each ‘;}M resenting on the points of an affine model. Indeed, if
' ~an e ) i R ; .

. bm”P with irreducible equation f (X, ¥) 03 and (a, b) is l_he
K = k(x, v) as above, (u, v), where i, vare o and the point

| ' candif F =k '
int corresponding to 0, | ol WHE S
?I::::iuces the values (c, d) on (&, ¢), then we may W

u = @ (x, ), v = @(x, ¥)

where ¢, ¢, are rational functions whose denominators do not vanish at

(a, b). Then
¢ = @la, b and d = ¢l(a, D).

§10. Divisor Classes

Let %, be the group of divisors of degree 0, and %), the subgroup of divisors

of functions. The factor group
(8 - %u/gﬂ;

1s called the group of divisor classes.
Suppose that K is a finite extension of F , and let

¢:R(K)— R(F)
be the associated map on the curves. Then ¢ induces a homomorphism

¢, 6(K)— C(F).

.-‘ . _”_ I'E;.. ..p'n_'_';“--'.r .
A8 TR g

._-F‘ 3

i - | . I .. X " .L_.i _IH'.!P." '-' - ;
3 ﬂt .i- - .:’é.':{. f 1
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Indeed, ¢, 1s defined to be ¢ on points, and is extended by Z-linearity to
divisors. It1s an clementary fact of algebra that ¢, maps divisors of functions
to divisors of functions. In fact, if z € K then

¢, ((2)) = (N 2),

in other words, the image of the divisor of (z) under ¢ is the divisor of the
norm. Fora proof, cf. Proposition 22 of Chapter 1 [La 2].
The map ¢ on divisors also induces a contravariant map

©*: G(F) = 6(K)

as follows. Given a point Q of F, let P;, . . . , P, be the distinct points of
K lying above @, and let e; be the ramification index of P, over Q. Then we

define

r

e*(Q) = D, ei(P).

i=1

Then ¢* also maps the divisor of a function z in F to the divisor of that same
function, viewed as element of K. This is obvious from the definition of the

divisor of a function.
[t 1s also immediate that

Pre™ =[K:F],

because 1f z € F then Ny (z) = z" where n = [K : F]. Or, alternatively,
because in the above notation,

i e; = n.
i=1
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where the product is taken over all ¢ € wy (N-th roots of unity). If x is set
equal to an N;fh root of unity, then we obtain a point on the Fc:rmu-l cur;.r .. ith
y = 0, and K is ramified of order N N

The Fermat Curve AT SR over this point, as is clear from the above

[K i k(l)] = N'

and the ramification index of K over the point x = s N
On the other hand, let 1 = l/x. Then o

e

. ].|lr J"Ir
; r I g I
{ N { ) y

3

—
—

- - r.'ll . : i & *
A1 £ IS a unit in k[171]. Hence x = o (or ¢ = 0) is not ramified in
K, and there exist N distinct points of F(N) (or K) lying over x = oo, called

the points at infinity in this section. If w :
. : - Cputz = ty, then these N -
coordinates ] points have
Th of this chapter 1$ 10 give a significant example for the notions ang z=¢ for (€ uy
e purpOSE : ) bz
- irst chapter.
ems proved in the first ¢ha T T ——— ; oo -
me’{I]";lc reulz!cr interested in reaching the Abel-Jacobi as fast as possible can of 8y the Hurwitz genus formula, if we let g be the genus of F(N), we get:

» omit this chapter.
course O 23h2=h_2N+Z(€p_l)=_1N+N{N—l).

§1. The Genus Hence:
¥ ve defined by the equation B
We consider the curve Y | Theorem 1.1. The genus of F(N) is g = N — DIV - 2)
' 2 :
¥4 y¥ =1
. 2. Diff i
over an algebraically closed field £, and assume that N 1s prime to the 3 erentials
characteristic of k. We denote this curve by £ (N ) and call 1t the Fermat curve Fiie-imbenrs & & sk st |
of level N. We suppose that N = 3 and again let K be its function field, gCrs r, s such that 1 = r, s we let
K — k(wr: Jl)- (v . 1.!' T I {I'TN
Tl = 9 } N .YN}JH :
We observe ti?at Ii?e cquation defining the curve is non-singular, so the We canalse witte
discrete valuation rings 1n K are precisely the local rings of points on the
curve, including the points with x = oo, arising from the projective equation 2%
— pr—lys-
v : wrj gy -rr }I ,a"h'-t
bl - }, N —_ N }
withz = (. Since

We have the expression

e S I/
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4 es of wy,s lic AMONE the points with x =
+ that © (P) i finite 7‘: O then the CXpression
h l '*[ [f P is a point such that x(py _ 0
has no pole 4 * shows that dx /y" " has no pole 4 p

s for the differentials of first kind is given by w, \yinp
SIS
Theorem 2.1 A ba gt}

——

|<r, S such tharr + 35 = |
) ) = © Put 1 = [/x. ['hen

proof. Suppose that x(7

I
dv = — 73 40,

¢’

and ordp ¥y = ordp x = L. Then

1 —1\ dt
Sl g e v—1
Wrs = A ) [ : }Ih I

— 1thenordp w,; = 0. This proves

hich it i rthatifr + s =N i :
from which it s clea at the differential forms as stated are

it i lear th
rem, because 1t 1S also ¢ - ‘" :
ILP:E ;l;f;indepe”dem over the constants, and there are precisely g of them.
1

where g is the genus of F(N).
We observe that these forms have an additional structure. The group

iy X py acts as a group of automorphisms of £ (N) by the action

(x, y) — (&hx, Gy

where {y is a fixed primitive N-th root of unity. Over the complex numbers,
we usually take &y = e’™". Then the form w,, (without any restriction on

the integers r, s) is an eigenform for the character X, such that

X;_;({f, g;) - gn-i",rj‘

The linear independence of the differentials of first kind in Theorem 2.1 can
tharefure‘alsolbe seen from the fact that they are eigenforms for this Galois
group, with distinct characters.

EJSWhﬁ.n e vhiew Hy X My as a group of automorphisms of F(N) we shall
hios n\:*ntr; 1;] a8 G = G(N), and call it simply the group of natural automor-
psms of the Fermat curve, or also the Galois group of F(N) over F(1).

Theorem 2.2, 74, forms w, . with

I—Er,sgN—-landr-H*#Omt}dN

Constitute q pagjs Jor dsk fexact.
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Proof. Let

N
w0 = E (20,)
1=}

be the divisor of points above v —
. ) A = oo On F(N . [akc : L
First we note that the space ) N with multiplicity |

dtk(co)/dfk

has dimension N — 1 by the Riemann-Roch theorem (Corollary 2 of Theo-

rem 5.3, Chapter I). Checking the order of pol infini
rt x
forms ¢ at infinity shows that the

s With r+s=N and | </ s

are of lht? thi.rd kind, and obviously linearly independent from the differentials
of first kind in Theorem 2.1. Since they have the right dimension, they form
a basis of dtk(eo)/dfk.

Given any differential w, it follows that there exists a homogeneous

polynomial A(x, y) of degree N — 2 such that

dx
w — h(x, y) —
,}’H |

is of the second kind. We apply this remark to the forms w. ,Withr + 5 £ 0
mod N. ‘v\:’e operate with ({, {) on the above difference, and note that the
automorphisms of F (N) preserve the spaces of dsk. Subtracting, we then find
that

(I — " )w,, with r +s5 £0modN

s of second kind, whence w, , is of second kind.

Finally, we note that the forms w, ,;withl = r, s <N — landr + s £ 0
mod N, taken modulo the exact forms are eigenforms for the Galois group
My X wy with distinct characters, and hence are linearly independent in
dsk/exact. Since the number of such forms is precisely the dimension of
dsk /exact, it follows that they form a basis for this factor space, thus proving

the theorem.

§3. Rational Images of the Fermat Curve

Throughout this section, welet 1 =r, sandr + s = N — 1. Such a pair
(r, 5) will be called admissible. We shall consider rational images of the




II. The Fermat Cyy
Ve :
§3. Rational Images of the Fermat Curve

41
) llowing Rohrlich [Ro] af
g owing after ;
bfields of 1ts function field) fo We note thaff G (r, 5) is the kernel of the Character X, ,, and that K (r, 5) over
Fermat cur‘*’ﬂzgsu K (1) 1s cyclic, of degree M. It is in fact a Kummer extension.
Faddeev [Fa <J-
We put d o xry Special case. Consider the case when N — p is prime = 3 and
N oan - Jh
u =X
r=s =1,
We let 3 W ND so the intermediate curve is defined by
. ¢ N) an - |
D= g.ﬂ-d-("' $
vl = u(l — u),
We write s M) = which is therefore hyperelliptic. The change of variables
/ ! O tha g A8 o -
r=r'D,s=8D $
t = 2u - 1

Then u, v are related by the equation

changes this equation to
oN = u' (1l = u),

IE =1- 4ﬁpa
which, in irreducible form, amounts to

which 1s often easier to work with.

M g O] —it) s |
v Letm € Z(M). We say that m is (r, s)-admissible if (mr) and (ms) form
We let F(r, 5) be the “non-singular curve” whose function field 1s k (i, v), so an admissible pair, that is

that we have a map | = (mr), (ms) and (mr) + (ms) = N — 1.

F(N)— F(r, s),

Theorem 3.1. A basis of dfk on F(r, s) is given by the forms
given in terms of coordinates by

N e Wemr) (ms)
(x, y) = (4, v) = (x", x"y?).

for all (r, s)-admissible elements m.
Ift €ZM) =7Z/MZ, we let (1), be the integer such that

Proof. It is clear that x*" y lies in the function field of F(r, s), and
0=ty =M -1 and (t)y =t mod M. hence that the forms listed above are of the first kind on F(r, s). Conversely,
suppose w is a dfk on F(r, s). Write

i g S

If M = N we omit the subscript M from the notation. If we let K (N) and

K{(r, 5) be the function fields of F (V) and F(r, s) respectively, then K(N) is
Galois over K (r, s). Let G(r, 5) be the Galois group. W= Chuwy

- K(N) = k(x, y)) where the sum is over all admissible pairs (g, ). Since w,, is an eigenform
‘ | ¢ G(r, s) of wy X wy with eigencharacter X,..» and since the factor group
r, s

G = puy X py - K('r, $) = k(u, v), (v X py)/ Ker X,

L K(1) = k() is cyclic, it follows that if ¢q: F 0 then

LR | L
2™ ok SR
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AN

X = r.s ’ , . . .
" . Theorem 3.2. If N = p is prime = 3, then for every admissible pair
and 1 = (ms), as desired. (r 5) the curve F(r, 5) has genus (p — 1)/2, and K (r s) = K(1, s%) for

= (mr) T S e
- some integer M But then ¢ ( a uniquely determined integer s* such that the pair (1, s*) is admissible

r, s)-admissible. Then (e

* Ilnd Ill;l[ !Il iH ( ¥ * ko . T * 3 oy 3 * .
Suppose that m € Z)(ﬂ’lf n)d ,F((mr) (ms)) arc equal, for mstance becayge f; :, flfg: I:; é.‘_::nuh (,.ilrnhclth{.,r be computed directly as we did for the Fermat
: , 8) i ’ urve, an usc¢ ‘Theorem 3.1. Th ;
n fields of F (1, $ L o s ¢ number of m such
fnctio is admissible is trivially computed to i

_ Ker Xonr)ims- . be (p — 1)/2, using the remark d-
Ker Ar.s > ing the theorem. The statement that K (r, s) = K(1, S*g) is ‘eleit. B

o5 in terms of coordinates is given yq

»en the cury ourse, 1ns N *
cen Of course, instead of (1, s*) we could also have picked a representative in

The correspondence betw '
the equivalence class of (r, 5) to be (r*, 1).

llows. -
fﬂ[‘i‘:tl <m=M -1 be prime

is (r, 5)—admi55ible. Write

(o M and such that its residuc class mod p
Remark. If we define F(p — 1, 1) by

((mr), (ms)) = m{r, 5) + N(. J) v"™ = wPTN(1 — w),
b some pair of integers i, j. Then we have a commutative diagram: then F(p — 1, 1) has genus 0, since it is also defined by
with so -
F(N) | — u
wl = —
4 N U

F(r, s) — F({(mr), (ms))
where w = v/u, and (1 — w)/u is a fractional linear transform of u, so a

where the bottom arrow is given by generator of k(u). The function field of F(p — 1, 1) is therefore equal to

| | k(w).
(u, v) = (u, v"u' (1 — w)'),
realizing the automorphism of the function field corresponding to the two §4. Decomposition of the Divisor Classes
models F(r, s) and F({mr), (ms)).
Two admissible pairs (r, s) and (g, 1) are called equivalent if there exists Let F, = F(1, k) for k = 1 p — 2 and let
m € Z(M)* such that ¢ = (mr) and t = (ms). It is clear that inequivalent ’ S )
pairs correspond to distinct subfields K (r, s) and K(q, 7). On the other hand, fi: F(p)—> Fy

if (r, 5) and (g, 1) are equivalent, then
be the associated rational map. As we have seen in Chapter I, §10 there is
K(r, s) =K(q, 1. an associated map f; . on divisor classes, as well as an inverse map fi*. Let
- o _ € = €(F;) be the group of divisor classes on Fj, and let
| Gw;n the admissible pair (r, s), and m € Z(M)* we observe that there p-2
lfs precisely one value of m or —m such that ({mr), (ms)) is admissible. This f=Bfi: €—> D G
ollows at once from the fact that for any integer @ ¥ 0 mod N we have !
be the direct sum of the f;. Also let
(ﬂ) ¥ ("ﬂ) =N, p-2
f* ; k@l (gk — (6

We shall now 2 ' : :
i peime > 3. pply this to the most Interesting special case when N =P o
map
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Ll gﬁ*-

ly over ko= (.
f the nexl l
prﬂﬂf 0

we shall give the |
We have f* ° =P id.

Theorem 4. 1. |
the automorph!

LetAﬂﬂdec

sms of F(N) induced by (x, y),
he same letters for the induceg

of . : use
.F 3 fnd (x, {y) respectivel. ws For any divisor a of degree ()
G f the divisor class group- * and i > im: : - OR
aummorp:]lﬁmﬁ l?lry definitions of the direct image and Inverse image give yq
F(p) the element
the formi's S (47*BY(a)
j;i* Dﬁ*(ﬂ) 3 Jgn
Hence 5wl
bl ~kj pJ
* — A B .
pes=5 8

We wish to show this is equal to P~ id on divisor classes. ;\:’e I'IEE‘d‘ th_e fact
that this is equivalent to showing this same relation whﬁx? ll E map is viewed
as being applied to differentials qf ﬁrst‘ kind. Any general theory will prove
this fact. The reader can deduce It for instance from the duality of Theorems

5 5 and 5.6 in Chapter IV. We assume this fact. Then it suffices to prove

the desired relation when the map 1 applied to the differential forms w, , with
r+5 <p — 1. Since such forms are eigenforms for the Galois group of

F(p) over F(1), we see that the above relation 1s equivalent to the relation

-2 p-1
PZ FZ Cﬁ,—-rﬂ =p*
k=1 j=0
Since r + s = p — | we see that for each pair r, s there exists a unique k
satisfying
ks = r (mod p).

F:lr this value of k, the sum over j is equaltop, andp — p = 0. For the other
values of k, the sum over J1s equal to 0. This proves the theorem.

The theorem gives us a sequence of maps
/ p=2 f*
€ — k@] C@k — €

whose co Sancrea L
divisor ct?sE:: l:::;g < ld-' In Chapter IV, we shall prove that the group of
omorphic to a complex torus, and it is clear that f, f* &

§4. Decomposition of the Divisor Classes
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complex analytic homomorphisms, over the complex numbers. From Theo
rem 4.‘1_ we conclude that f *‘ > f has finite kernel, and from the fact that the
dimension of the group of divisor classes is ¢qual to the genus, we see that

Thus f must be surjective, and up to such a homomorphism with finite kernel
we have a ducamp951l1ﬂn of € into a direct sum of factors corresponding u:l
the curves Fywithk =1, ... p — 2,

For more general results, cf. Koblitz-Rohrlich [Ko-R].




chapter is to show how to give a structure of analytic

SB Of thls o 3 » e
The purpo f points on a curve In the complex numbers, by our

: et 0 . .
manifold to the s€ | , . :
reatment also applies to more general fields like p-adic numbers. We are

rincipally interested in the complex case, in order to derive the Abel-Jacob;
P

theorem in the next chapter.

§1. Topology and Analytic Structure

Assume now that & is locally compact. It can be shown that k is the real field,
complex field, or a p-adic field. A point P of K is called k-rational if the
residue class field o/p of its valuation ring 1s equal to k itself. The local
uniformization theorem shows in fact how to interpret primes as non-singular
points on plane curves. We let R be the set of all k-rational points of K over
k, and call it the Riemann surface of K over k. We can view the elements
of K as functions on R. If P € R, we denote by 0p the valuation ring

associated with P, and by m, its maximal ideal. If z € Op, then we define
z(P) to be the residue class of z mod Mp. Thus

z(P) € k.

:ifo;fa?]? 'hen we define z(P) = 0. The elements of k are constant func
: has’mrf‘z;‘;fﬂft the only constant functions. If z(P) = 0, we say that
e and if 2(P) = oo, we say that z has a pole at P. '
fowelet T, = g, oo} be the Gauss sphere over k, that 15,

by adjoining to £ a point at infinity. We let

[' = l_[ F.t-

1EK
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We embed R in I’ iq the obvious way: An element P goes on the product
I1x(P). We 'mpuluglze R as a subspace of ", which amounts to saying that
the 1qpulﬂgy s the one having the least amount of open sets such that all the
functions x € K are continuous.

The product 1" is compact, and we contend that R is closed in T'. This
implies that R is compacr.

Proof. Let (a,).cx be in the closure. Let 0 be the set of elements x in K
such that a, # co. Then 0 is a valuation ring, whose corresponding point Q
is such that x(Q) = a, for all x. This s easily proved. We first note that
k C o because a(P) = a for all ¢ € k and P € R. Letx, y €0. Then
a,, a, ¥ oo. By assumption, there exists P € R such that x(P), y(P), and
(x + y)(P) are arbitrarily close to Ay, dy, ey Tespectively. For such P, we
see that x(P) and y(P) # oo, whence (x + y)(P) # . Hence x + y € 0.
Similarly, x — y and xy lie in 0, which is therefore a ring. Furthermore, the
map X — a, is a homormophism of 0 into k. and is the identity on k. This
follows from a continuity argument as above. Finally, o is a valuation ring,
for suppose x & 0. Thena, = . Lety = x~'. There exists P € R such
that x(P) 1s close to a, and y(P) is close to ay. Since x(P) is close to infinity,
it follows that y(P) is close to 0. Hence ay, = 0,s0y € o. This proves our
assertion.

Let P be a point. Let 1 be a generator of the maximal ideal Mp, 1.€. a lo-
cal uniformizing parameter at P. We shall now prove that the map

Q—1(Q)

gives a topological isomorphism of a neighborhood of P onto a neighborhood
of 0 in k.

According to the local uniformizing theorem, we can find generators ¢, y
for K such that the point P is represented by a simple point with coordinates
(a, b) in k, and in fact a = 0. Split the polynomial f(0, Y) in the algebraic
closure k* of k. Then b is a root of multiplicity 1, so we have

JO,Y)=( —b(Y — b))%+ -+ (Y — b,).

The roots of a polynomial are continuous functions of the coefficients. There
exists a neighborhood U of 0 in k such that for any element 7 € U, the
polynomial'f (7, Y) has exactly one root in k*, with multiplicity 1, and this root
1s close to b (in the algebraic closure of k). However, using, for instance, the
Newton approximation method, starting with the approximate root b, we can
refine b to a root of f(7, Y) in k itself, if we took U sufficiently small. Hengg
the map Q — ¢(Q) is injective on the set of Q such that (¢(Q), y(Q ?) lies in
a suitably small neighborhood of (0, ). Since the topology on R i1s deter-
mined by the functions in X, and since k is locally compact, we conclude that
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I the map @ ((Q) gives a topological isomorphism
fficiently small, Hes =

for U sufficient hborhood of 0(51) i< a disc on the r-planc. We observe thy
We can choose {/ such [:]itnfg the ]Lgcul uniformization theorem showsg that
if O is close 10 P, then d'rt{gr?niziﬂg parameter at Q, bu.c:ulfsc‘lh{: conditiop
t—1(0Q) 1s 8 e umrtiul derivative 15 satisfied b}i coniniity. Indeed, if
concerning the Sﬂﬁﬂndgi(ﬂ' by 4 0 for all (@', b") suthciently close tq

then D2/
D.f@a, b) # 0

(a, b).

Theorem 1.1. Taking as chai
the maps given by local paran

1o K.

s discs on t-planes as above, together wih
reters, gives an analytic manifold strucyye

arameters at P, then r has a power serijes
and 7, 1 are two pardn
Proof. If P € R, and/,

expansion 1n terms of u, say
f = au',
=0

and since ¢ is algebraic over k (1), simple estimates show that this power series

is convergent in some neighborhood of the origin. Hence

1Q) = D, au(Q)

for Q close to 0 in the ¢-plane, and we see that the functions giving changes
of charts are holomorphic.

Theorem 1 is valid for any field k which is real, complex, or p-adic. From
now on, we shall assume that k = C is the field of complex numbers.

We have the notion of a meromorphic function on R, that is a quotient of
holomorphic functions locally at each point. If fis such a function, we can
write it locally around a point P as a power series

f@@)=) bit(Q)

where 1 is a parameter at P,
occur. In this way, f may

Ky = C((1)), and thus can
number of poles

and a finite number of negative powers of t may
be viewed as embedded in the power series field

an be viewed as an adele because it has only a finite
on R since R is compact.

T 0
heorem 1.2, Every meromorphic function on R is in K.

Proof.
roof. Let L be the field of meromorphic functions on R. If L # K, then
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the degree (L : K)¢ of the factor space of L mod K over

infinite. We have: the complex is

(L:K)e= (L + AWO): K + AWO)e + (L N A(0) : K N A0))c.

The first term on the right is finite as was shown in Weil's proof of the
Riemann-Roch theorem. The second is 0 because a function having no pole
is a constant (by the maximum modulus principle). Contradiction.

Theorem 1.3. The Riemann surface is connected.

Proof. Let § be a connected component. Let P € S and let z € K be a
function having a pole only at P (such a z exists by the Riemann-Roch
theorem). Then z is holomorphic on any other component, without pole,
hence constant, equal to ¢ on such a component. But z — ¢ has infinitely
many zeros, which is impossible since R and S are compact.

Theorem 1.4. Let z € K be a non-constant function. The points of K
induce points of C(z), and thereby induce a mapping of R onto the z-sphere
S., which is a ramified topological covering. The algebraic ramification
index ep at a point P of R is the same as the topological index, and the
number of sheets of the covering is

n = [KC2)])

Proof. Let P be a point of R and ¢ a parameter at P. Then P induces a
point z = a on the z-sphere, and ¢ 1s equal to z — a times a unit in the
power series ring C [[7]]. Since one can extract nth roots in C, we can find
a local parameter « at P on R such that u“ = z — a, where a = z(P). The
map

u( @) u@)y =:z2(Q) —a

gives an e to 1 map of a disc V, around P onto a disc V, in the z-plane. We
shall call such a disc regular for P. We have shown that the topological
ramification index is equal to e. As to the number of sheets, all but a finite
number of primes of C (z) are unramified in K and, therefore, split completely
into n primes of K (by the formula % e; = n). Hence n is the number of
sheets.

Theorem 1.5. The Riemann surface is triangulable and orientable.

Proof. We shall triangulate it in a special way, psad lalier in a::uother
theorem. Let z be a non-constant function in K. Consider a tnangul_auon of
the z-sphere S, such that every point g of S; ramified in K'1s a vertex (just add
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. neulation). A cufficiently high subdivision of (e
i iven triang _ rias
ints to a gl i | | i
ang hieves (e bollcnd £ ge Vertces IS ramified, then A 1S

»f who

triangulation ac .
d of

If Ais a triangle
in some regula

in 3; none ¢«

, point, with ramification ipnde
- hoo d | CX
r neighbor

contained o
equal to 1. 1 a ramified vertex Q. then 0
IfAilsa triangle with @ . First, cach vertex lifts to a certajy

. of whose vertices 1s ramified |jfyg

number of vertices 0n 1% 2
uniquely to 7 triangles 1 7t 0 S., we letm be its ramification index

IfQ .S a pﬂiﬂ 'lbﬂve q imn
1

t of R ramified i ,
v pet a4 ma
and ¢ a parameter al O on K. We get a map

by

IHIFII:‘_:_(I

¢ we choose ¢ suitably. Each pointz — @ = re'’ has m inverse images
if we ¢ .

¥ j "
o "myg) v=1,...,m.

| /m =
p— X +
b =T EXp (m m

Hence each triangle A with a vertex at ¢ lifts in m ways. |
As to orientability, we can assume that two triangles of our triangulation,

none of whose vertices are ramified and having an edge 1n common, are
contained in some regular disc. Secondly, if A has a ramified vertex g, and
A, has an edge in common with A, then A, A, are both contained in V.

Now we can orient the triangles on S such that an edge receives opposite
orientation from the two triangles adjacent to it. If A on R covers A, we give
A and its edges the same orientation as A. In view of our strengthened
conditions, we can lift the orientation, so R is orientable.

Let V, E, T be the number of vertices, edges, triangles on the z-sphere.
Then denoting by a prime the same objects on R, we get

E'=nE T =nT.

On the other hand, let  be the number of primes p of C (z) which are ramified,

%£n= co. Let n, be the number of primes P of K such that P lies above p-

V":-_”(V__r)_*_znpr
P

the : .
sum being taken over ramified p or infinity. We have
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V'=nV—nr+ZnF
p
= nV + E (”p — n)
Irl
=nV—22(g,,_ 1)
p Plp
=nV — > (ep — 1)
.tl

where this last sum is taken over all primes P of K.
Let X; be the Euler characteristic of S, and X, that of R. We shall prove:

Theorem 1.6. Let g be the topological genus of R. Then
260 — 2= =2n +2(E’p— ki
P

Proof. We have X, = By — B, + B, where B, is the i-th Betti number.
We have B =B, = 1. ButalsoX. =V —E + T, soX. = 2.
Now Xz = V' — E' + T' and by our previous result, this is

nvy — 2 (ep — 1) — nE + nT

:“‘E(EF_I)-

But By = B5 = 1 and B] = 2g. Hence Xz = 2 — 2g, whence

I

[
~

2g—2=—2n+2(ep—l)

as desired.

Corollary. The algebraic genus is equal to the topological genus.

Proof. Both satisfy the same formula.

§2. Integration on the Riemann Surface

As before, K is a function field over C and R its Rierqann surface.
If U is an open subset of R, we can define the notion of meromorphic

differential on U, namely an expression of type fdx where fisa meromorphia_;




IL. The Riemann Surf;ee

52
dv ~ g dyit [/g = dy/[dx. We

whenever £ 1s a parameter

. e S that f _
[/ and x lies 10 K. We p]':;ic Pl

jon on e
e differential 1S holomor

say that the

P, and
dx

fdx = f dr dr

: has no pole at £ We say that the differentjy

at every point of U.‘ |
H meromorphic function on U such thy
primitivcs differ by a constant, 4

ot P, then the function f'.:b.l‘(d‘
is holomorphic on U if 1t 1s mzf d

A primitive § of fdxon U E me
dg jdx = [. If U is connected, then

always. -~ diff, i 1 disc V, then w has a primitive g apg
is . differential on & disc¢ V.,
If wis a holomorphic
' omorphic on V. | ‘ o
y li:tﬂ; be fl-simpiex contained in a disc V, let = fdxonV, |let

{:}'}’:P'_QI

and let g be a primitive of w on V. Then we define

f w=_gP)—-gQ)
S

This number is independent of the choice of V and g. Indeed, if supp (y) is

contained in another disc V,, and g, is a primitive of fdxon V|, thenV NV,

contains a connected open set W containing v, and ¢ — g, 1S constant on W,
If subd, ¥ = ¥, + 7y, has one more point A, then

dyy=P — A, dp=A - Q0 and fm=J m+f w.
Y Y Y2

Hence if vy is contained in a disc V, then

[o=]
Y subd; y

If — - (T T : . ' :
Y = 2 n;0; where o, is a I-simplex contained in some open disc, we

define the integral of w over : : _
y by linearity. We get again th: 1
does not change by a subdivision y ¢ get again that the integra

If yi -chai
vis any l-chain, for r large enough, each member of the r-th subdivision

1S contained j '
"l Some open disc, and we can define the inte gral over a 1-chain,

iﬂdﬁpendemly of the subdivisi
. 1S10n ch : .. .
A cycle v is called homﬁlogf: oo Sublect to this condition.

subdivision of v s the bo _
say that vy itself is the undary of a 2-chain By abuse of language, we also
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Cauchy’s Theorem. Ler w be holomorphic on an open set U of R. Let vy
be a 1-cycle on U, homologous 10 0 on U. Then

Jw=0.
y

Proof. Wf: hﬂ_\’{: Y = dmn where 1 is a 2-chain. For some r, Sd"y has
ecach one of its simplices contained in a disc. We have

Sd"y = Sd"dn = aSd’,

whence 1t suffices to prove Cauchy’s theorem under the assumption that 7 and
y are contained in a disc. But then w has a primitive, and the result is trivial.

Corollary. If U is simply connected, then w has a primitive on U.

The pairing

(}',m)*—}jm

y
gives a bilinear map

H\(R, Z) x Q(R) — C,
where (), is the space of differentials of first kind.

Theorem 2.1. The kernels of this pairing on both sides are 0. In other
words, if w is a differential of first kind whose integral along every cycle
is 0, then w = 0. Conversely, if vy is a cycle such that the integral along

y of every dfk is O, then y is homologous to 0.

Proof. As to the first statement, fix a point O on R. Under the hypothesis
that w is orthogonal to every cycle, it follows that the association

P
P*—}J’ W
0

is a holomorphic function on R, whence constant, and therefore that = 0.
The converse is harder to prove and will be done later, Theorem 5.4 of

Chapter IV.




CHAPTER 1V

The Theorem of AbeI—JaCObI

§1. Abelian Integrals

A differential will be said to be of the first kind if it 1s holomorphic every-
where on the Riemann surface. Such differentials form a vector sp_uace over
the complex, and by the Riemann-Roch theorem, One secs that the dimensijop

of this space is equal to the genus g of R. ‘
From topology, we now take for granted that our Riemann surface can be

represented as a polygon P with identified sides (Fig. 1).

~&;= —di+y

€
/ P wE

Ap

'Hl=airg \{F:I,...,g

(which s simply connected), we defipne

.1 Abchan Integrals
Bl £ <s

where Ap 1s any path from O to P lying entirely inside th |
is single valued and holomorphic inside % y ¢ the polygon. Then f

If 4, 1s an arbitrary path on R, not necessaril

frﬂn‘] O 1O P [hcn y lb'lng inSidE: thﬂ pﬁlygﬂn‘

The numbers
ai (@) = a; = J Q

generate an abelian group which will be called the group of periods of o.

An integral taken from O to P along any path is well defined modulo periods.
The integral over the path A as shown in Fig. 2

s also a period, and we write

L@ = ().

Consider one of the cycles a;. We can find a simply connected open set
U containing a; minus the vertex v. We can now define a holomorphic
function f on U as follows. Given any point P on a; — v, we take a path
Ap lying entirely inside the polygon except for its end point. For any point
Q in U we then define

fi@) = L; ¢ + f @,

"
A
g
-

vz e
e
ﬁ
-.Ii_
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s

from —
m-_i'! i holomorph ,
' differential ¥

“t
Jid
P,
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vertex as ind
nproach the
as Pr'r Q‘ ﬂpp
a,
; —> ; »

fine f; as the similar object on the side —a;. We gg

[ frw==]fiw

Similarly, we de

Let

e

a;

ai(¢p) -‘—“‘f P-

Then for P on a; we get

T

filP) = fi(P) = —ai(¢).

SEPTROR Y CFN

We can now define the symbol

RE
P
for any differential holomophic on the polygon P by
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where

is a period of w.

Theorem 1.1. Let w be a differential holomorphic on 9. Then
28
Lfm == S wa =27V_1S resy(fo)

where the sum over P is taken over poles of w.

Proof. Our function f i1s uniquely defined inside the polygon. To get the
integral over the polygon itself, where f has been defined separately for the
two representations of the same side, we approximate the polygon % by a
polygon &’ as indicated (Fig. 3)

Figure 3

such that all the poles of w lie inside #'. Then

lim | fw =wa,

e PN

the limit being taken as the vertices of P! appruaf:h the vertex af ap.
polygon %' is homologous to the sum of small circles taken with positive
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TR gp’ is, therefore,
' und the poles of w, and the mngMl';rmﬁircqu-ﬂity Sifice
BeRIO" ﬂmi to the exprcssinn on the right-hund side 0 s ruvin e
5 - quthe integral around P, 1t is equal to 1t, thereby P B
it approaches

theorem. ; ”
. venerally as follows:
late our preceding results more ;,L.nt..mlly l'-:#f st
e ;‘;‘”"L; @,) be 2 basis for the dfk. We consider the Ve
Let = (Ply» + 74k
integral

f‘p:(f qjlt**'ij’@g)z(ﬂ'h'"‘ﬂlg):ﬂ!

ector period, or simply period, from now on. Similarly,

f~¢=(ﬁl|‘-'.

.., Ay, differ by a permutation.

and call itav

Note that A|, - - - A, and Ay, .
For P inside the polygon, W€ let

F(F)= (D:UI(P)!-J(;:(P))

Ap

the f, corresponding to integrals of ¢,. Wedefine Fand Fina similar way,
so that for P on a; (and # vertex) we have

Ft(P)-Fi(P)= sy,

We can now define the vector integral [ Fw, and Theorem 1 can be formu-
lated vectorially.

Theorem 1.2. If w is holomorphic on P, then
- > wiA; =27V -] > resp(Fw),
P

the residue being the vector of residues, and the sum over P is taken over
all poles of w.

§2. Abel’s Theorem

We have fixed a point O on the Riemann surface. The vector integral

[o-((o [

it |l
R . .
.

§2 Abel’s Theorem

59

4 P varies over the Riemann surface, taken
¢ well-defined modulo periods. In this way
Ricmann surface R into the factor group C* '
can be extended by hinearity to the free abelig
group being called the group of cycle
SuIm

along some path from O to P,

We obtain a mapping from the
modulo periods. This mapping
- n gI:Dl.IP gcncratgd by points, this
N, ordivisors. A divisor is a formal

= 2 ”f'fj

with integers np, almost all of which are 0. Its degree is the sum of th
A : 1 _ . e np.
Those of degree O form a group %y, and for these it is clear that the re%tricli;n

of the above homomorphism is then independe et
- . nt of the ori ,
thus obtain a homomorphism gin chosen. We

P
ar— S(q) = 2 Nnp J ®  mod periods,
0

from &g INtO C”{(perinds). This factor group will be denoted by J and is
called the Jacobian of R. The main theorem is the following statement.

Abel-Jacobi Theorem. The preceding homomorphism from %y into J is
surjective, and its kernel consists of the divisors of functions. It establishes
an isomorphism between the divisor classes (for linear equivalence) of
degree 0, and the Jacobian group C* modulo periods.

The statement concerning the kernel of our homomorphism 1is called
Abel’s theorem and will be proved in this section. The surjectivity 18

postponed to the next seciton.
We first prove that divisors of functions are contained in the kernel. In

other words, if z is a function with divisor
(Z) = 2 HPP,

we have to show that

S npF(P)=0 mod periods.

ion of R such that z has no pole on

Then resp(Fw) = npF(P). Indeed,
t ata point P. Then

We can always find a polygon representat
2, and we let w = dz/z in Theorem 1.2.
for any holomorphic function fconsider a local parameter

fw = f(dz/dt)z™" dt. Also,

Im T
E S
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order k at P. Thus

if z has
dz <Y L
res: (f” | dr) 4

By Theorem 1.2,
raV/ TS mF(P) = = 2 Wi

But it IS casily shown that w;
| 27V —1 and we gel

=27V -] m; for

-
where w; = [o, 27 4z LR
some integer m;. Hence W can

L

N' ., F(P) = — ﬁf”f;{j
S mF(P) =~ 2

as was to be shown.

For the convenience of the reader, we recall the proof that 1f z 1s a function

which is holomorphic on a cycle a, then

f e — integral multiple of 27V — [
a £

We may assume that a is a closed path. The integral 1s defined by analytic
continuation along the path, over successive discs, say Do, . . . , Dy starting
from a point Py and returning to Py. Let L, be a primitive of dz [z over the
disc D,. Let P, be a point in D+, N D, so that

d
f?z =Lo(Py) = Lo(Py) + Ly (Py)) — L (P) + + - - .

All terms cancel except Ly(Py) — Lo (Py). But Ly and L, are two primitives
fnr\d/zgover a disc around Py, and so they differ by an integral multiple of
2wV —1. Since Py = Py, this proves what we wanted.

In order to prove the converse, we need some lemmas.

Lemma 2.1, Ler x, (i = L, ..., 28) be complex numbers. Then

Ex,-A; = () r_'fandan!yff Xi =B-A;

§2. Abel’s Theorem b

for some complex vector B = (b,, . . . v by). The vectors A A
‘ ] ¥ H ] & 'I . ' L]
span a g-dimensional space over the complex numbers | -

pr”fd”: We prove first that the relation X 'A; = 0 for all i implies that
X = 0 (for a complex vector X). Let w = X- . Then

J‘W’:J.X'(p:XJ. (l):X.A£=0

a,

by hypulhuﬁi?. Hum:'c all the periods of w are 0. Hence the Integral E W 18
a holomorphic function on R without poles because w is of first kind. It is
therefore, constant; hence @ = 0 and X = 0 because the @, are linearly
independent over C.

This shows that A,, . . . | A,, generate C?.

Letw =byg + -+ + b, ¢, be adfk. Then Fw has no poles and hence
by Theorem 1.2,

0=— > resp (Fo) =

— 1 -
i Aj
v P

where

K
wW; = 2 b,,J 0, = z b,a;, = B-A,.
=

¥

This proves half the first assertion.
Conversely, we want to find the space of relations

L i

,T1A1+"'

We know from the fact that A4,, . . . , Ay, generate C® that the relations

X=(B‘A1,...,B'A3£)

form a g-dimensional space, which must therefore be the whole space of all
relations. This proves the lemma.

A differential w is said to be of second kind if its residue is 0 at all points.

It is said to be of third kind if it has at most poles F’f order 1 at all points.
The next lemma concerns such differentials, abbreviated by dtk.

Lemma 2.2. Let a = 3 np P be a divisor of degree 0. Then there exists
a differential of third kind w such that resp @ = np for all P.




for some integers i, by

[V. The Theorem of Abel.j
i ill.':{:.hi

certion ﬁ;.}r the case ‘tht.’:ru ul! COctficieny
(ndeed, by induction :’i“f’f:f”“ it proveq g,
are zero excep! L O be a new point unﬂquiéﬁ 1{}:{&:’5“ Points. |,

ints Pr» « - P Lef. les only at P “.nd _Q A el e
pranecs ) have pO A" obviously has the required Propery

.0 of the space of differentials @ such thay
nsio ‘

we get d(@) =8 1 | and hence there exists a dik |,
+ P & p,. But the sum of the residues is 0, so j

f order | at P or £ g oy oo
le at both, with opposite residues. Multiplying ¢ by 4

s what we want.

Put a = P

having a pole 0
actually has a poi
suitable constant gIve

he kernel of our map. Leta = 2. np P be a divigo

ermine ‘ Vi
We can now det _ 0 We have to show that a1s the divisor of

of degree 0 such that S (1)

ction. ‘ ‘ | '
t’unw; contend that there exists @ dtk o such that ¢ has poles at P with residyeg

np, and such that

j W = Zw\/———ln,-

for suitable integers n;. By the lemma, there exists a dtk w having residue
np at P for all P. For any P, we have

resp(Fw) = np F(P).

We are going to change w by a dfk, so as to change the periods but not the
residues.

By Theorem 1.2 we get

——-Z wiA =27V -1 2 resp (Fw)
=27V-1 npF(P)
= 271' V —1 E m;Xf

hy pothesis. Hence
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E (w, — 27V -1 mt)ﬁ:; -0

By Lemma 2.1, we have

w, — 27V =1 m, = B-A,

for some vector B. We let ¢y =

w — B-®. Then  has the same poles
residues as w. Furthermore, poles and

J:; ¢=L {L]'—-J B-(D:w,-—B-AI:gww_lm“

thereby proving our contention.
To construct the desired function z we take essentially

P

z(P) = exp f Y,

)

O being as usual a suitable origin inside our polygon. For any point P which
1s not a pole of ¢, and any path from O to P, the exponential of the integral
gives a function which is independent of the path and is thus a well-defined
meromorphic function. For a pole of ¢, expanding ¢ in terms of a local
parameter around this point shows at once that we get a meromorphic function
around the point, whose singularity can only be a pole. Abel’s theorem is
proved.

3. Jacobi’s Theorem

We must now prove that our map from divisors of degree O into the factor
group C# modulo periods is surjective.

A divisor a is said to be non-special if d(—a) = 0, that is if there exists
no differential w such that (w) = Q.

Lemma 3.1. There exists g distinct points M, . . . , M, such that the

divisor M, + + + + + M, is non-special.

Proof. Let w, # 0 be a dfk, and M, a point which is not zero of . The
space of dfk having a zero at M, has dimension g — 1 by Riemann*R?ch.
Let w, # 0 be in it and let M, be a point which is not a zero of ,. Continue

g times to get g points, as desired.

Theorem 3.2. Let My, . . . , M, be g distinct points such that the divisor
M, + - -+ + M, is non-special. Then the map
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P,
R b
{PI-**‘*P”)HZL.

ct of small discs Vi o » o
; e
eighborhood of zero in C*.

- % V

: : ; :
gives an analvtic isomorphism of a prodi
i nto an
around the points My, - - - M,o
we show how it implies Jacobi’s theorem.
e Jacobi's theorem for a neighborhood

f zero in C¥, that is, t0 prove local surjectivity- Indccfi, !Et Xthclzr:ilx:;i[{ir_
g z?ar en I'/n-X is in a small neighborhﬂud of zero so, by [Hij [ L 1211
u:rcangﬁnd'a divisor of degree zero such that F(a) = 1/n X modulo periods.

Then F(na) =X modulo pcriuds.
Using the notation of Theorem

our theorem,

Before proving '
P that it suffices to proy

First we note

3.2 let a range over divisors
P;+'"'*‘Pg—'(ﬂ’f|+'*'+ﬂifg)‘

with P, ranging over V,. Then clearly

P, _
F(a) = Z L <) (mod periods)

and the theorem implies what we want.

We now prove Theorem 3.2. Let 1, be local parameter at M;. We contend

that the determinant

@1 @i
—— [ ] & L R M
(M) g (M,)

is not zero. To prove this, consider the homomorphism

¢

= b
Qr— [dfl Aﬁf|)1j “ W W g dfg (Mg):|

;_’:_ of differentials of first kind into complex g-space. Any dfk in the kernel
e mld ild be special, so the kernel is trivial, and our map is a linear isomorphism.
W ‘ﬂmx our determinant is non-zero.

~ We write

L = hn(fl)dfh s, = hlz(‘g)dfx

$e = Mp(n)dr, . . ., @ = hy(1,)dr,

; '-.1. &_"I—--"-_ o T L T e o oy I3
A T T LR e oI TR R TR

- acobi’s Theorem
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where hi (1)) 1s holomorphic in V.. Let hj
ceries Ny (1;), normalized to vanish at 1
of our map:

(1)) be the integral of the power
i = 0. Then we get a representation

(P v = wiBy) SRR 4 = » -

= (H,(1,, . .

T hlzi‘(f,l.:)# . *)
& i I.E)' A ,HH(fh " s s pfg))

where each H. (1, . . . 1) is holomorphic in the g variables, on

Vi x X V.
Now
dH
E’j‘ = h;(t)),
and hence the Jacobian determinant evaluated at (0, . . . , 0) is precisely our

preceding determinant, and 1s non-zero. By the implicit function theorem, we
get our local analytic 1somorphism, thereby proving Jacobi’s theorem.

The theorem can be complemented by an important remark. We consider
complex g-space as a real 2g-dimensional space. We have:

Theorem 3.3. The periods Ay, . . . , Ay, are linearly independent over
the reals. Hence the factor space of C* by the periods is a 2g-real-
dimensional torus.

Proof. It will suffice to prove that any complex vector X is congruent to
a vector of bounded length modulo periods. By the Riemann-Roch theorem,
any divisor of degree 0 is linearly equivalent to a divisor of type

P+ -+ P)—80,

for suitable points Py, . . . , Py, which may be viewed as lying inside or on
the polygon. For P ranging over the Riemann surface, the integrals

P
i
o

i we take the path of integration to be

are bounded in the Euclidean norm,
he boundary. Consequently,

entirely inside the polygon, except if P lies on't
the sum

> [,
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. g the other bound). Combining this « . 67

that any veClor is congruent g ‘“Jnl With
ne

L]

d concludes the proof of *I*heurum '%W”h
3.3

norm (

'S suqcctivi n Hhow
iflﬂn?:llcd length modulo periods, al

| ~T _
_2_\7—1 }2', (@B, - B,a;) > 0.

Proof. This time, we consider the integral

§4 Riemann’s Relations

. e : | _
Ll pn . Y . sentation Of R 4 \ =R _ ;
: -4 consider the polygon represen C With « .Jff = left L

" c(l:-k-'—d? .., g) followng cach other (Fig. 4) \J::hlli'is 2i p = lelt hand side of inequality,

= J’ o and  Bi=| @

a;, bl"l — (s "'bl— i
and we prove that it is strictly positive. Write

x; b,
f=u + iv,

. ' B! those of ¢'. - : ;
of @, and a, ﬁ; ¥ in terms of 1ts real and 1maginury part. "l“ht‘::n)_r — G 7 -

: riods .
be the canonical pe iv, and

—b,
/’—-4 df = ¢ = du + i dv.
Then
fo =3d0? + v + i(udv — v du).
- > The first term on the right is exact, and the second gives
Figure 4 d(u dv — v du) = 2du /\ dv.

By Green's theorem, our integral can be replaced by the double integral

Riemann’s first relations state that
2i J j dii 7% di.

8
Z (ﬂiﬁ; = ﬂ':B:') = 0.
i=1

In the neighborhood of each point, we may take a chart, and express the
_ functions u, v in terms of a complex variable z, with real parts x, y, that is
Proof. Let f(P) be the function defined before (integral from O to P, z = x + iy. By the Cauchy-Riemann equations, we get

suitably defined on the boundary of the polygon), and consider the integral
ou\* (o)’
L] = d'- A d |
du /\ dv ((é’x) +(&y)) X /\dy

ﬁ f¢'.

9 L]

‘ L g which shows that the integral is positive, as desired.
Since ¢’ has no poles, we get from Theorem 1.2

0=i1([ ¢ o] ¢ 0 §5. Duality

Which gives wh Lemma 5.1. Numbering the sides of the polygon as al the beginning,
g at we want. a. . . .. ax, and given an index i there exists a dfk @ with periods
] . .
| Riemann’s second relations sqre that satisfying
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P R"’f =0 lor g
Re] !
il
ri atrix
f. Consid the pmﬂd Nt
Prooj-
I, ar,
d|
¢ H} + U} uly + io)
|
l'__,__u—l-'-'_'-d'_____,_———'-"_
v} £ 8
@ u§ + 1) g, + vk,
K

| and imaginary parts of the periods, ang
jumn vectors of the above matrix
complex numbers

o are the red
Then the €O
We wish to find &

HI'E‘

I E ul‘ # %
where th 4re Our perjo.

Ah AR A:‘w

—— e
ar—

v th ,) and a dfk T T
:t=-rl_ + 'Fl‘ (L = ].., S ({)) I‘Pl -+ L_i.;qji.

A —
—

This amounts to solving, say for |

the requirﬂd peri{)dS. l, the

having |
system Of equations
" . S £
I B R L
& 1 ANs
Xz = M pY 4 o A Xl — YUy = 0

i solvable if the row vectors of the coefficient matrix are linearly

This
independent over the reals. This is indeed the case, because a linear relation
is immediately seen to imply a linear relation between A,, . . ., Ay, overthe
reals.

Lemma 5.2. A dfk cannot have all its periods pure imaginary.

Proof. The preceding system of linear equations cannot have a solution
when made homogeneous.

Th‘wrem 5.3. Given a divisor a = 2 np P of degree 0, there exisis
unique dtk w, such that
(1) resp w, = np for all P.

(2) The periods of w, are all pure imaginary.

a dfk ¢ having

Proof. Le :
roof. Let w be a dtk with resp w = np. It suffices to find W
d a;). Ths?

the same -
real parts for the canonical periods (integrals aroun

- o -
SRS A S TS ST VAR e RN

§5. Duality
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immediate from Lemm; . _
; ¢mma 5. 1. The uniqueness is clear. because the differen
; : ce

between two differentials saticfvi
o : hdllhf}-’m ' the conditiane
2 dfk contradicting Lemma 5.9 & nditions of the theorem would be

Theorem 5.4. If o is a cycle such that LLoe=0 for all dfk then o ~ 0

p I 1 >
Proof. Let o0 ~ nya, + - + - + N2 Q.

that Find a dfk ¢ having periods such

J L

Then

U = J ¢ = nm; + pure imaginary,
and so n; = 0. Similarly, n; = 0 all j.

Theorem S.5. The pairing

ml!

(o, a) — (o, Q) = exp J

ir

induces a bilinear pairing between the first homology group H,(R) and the
group of divisor classes of degree 0. Its kernels on both sides are 0, and
the pairing induces the Pontrjagin duality between the discrete group
H\(R) and the compact torus.

Proof. Let @, be the group of divisors of degree 0. Ifa € Dyand a = (2)
is the divisor of a function, then we may take w, = dz [z. All the periods of
dz/z are pure imaginary, of the form 27V —1 m with some integer m.

Hence (o, a) = 1 for such divisors, and all cycles o having no point in
common with a. Furthermore, if o ~ 0, then

J we = 27V =1 D resp wq
o
— 27V —1 times an integer,

so (g, a) = 1.

Our pairing is therefo
the circle.

If a is orthogonal to H,(R), then by
type 2V —1 m for some integer m.

re well defined as a bilinear map of H;(R) X J Into

definition, all periods of @, are of the
We can then define a function z by
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[V. The Theorem of Abel-Jacobi

letting
’

divisor is a. Hence the kernel on the

is function 15 visors of functions.

T.h sists precisely of the group of d”’”‘_mq cisely of these cycles o
e that the kernel on the left consists precise y - s

f [ Wy » . X F v

Tn show ﬂl stakea arbitrary cycle & ~ 2 n, a. We must show Ihfﬂ

which are ~ 0, I¢ T non-special points as in the proof of Jacobi's

., M, generality that these points do not

alln; = 0. LetM,, . . . pee
‘ » without loss ©

m, and let us assume wit oss of s e

:t?:zf the cycles a;. We consider d1visors of degree 0 of typ

meromorphic and 1ts

LT=P1+“'+RE_'A3"EI‘-F_#!‘”

., P, lie in small neighborhoods Vi, . -

where Py, - -
respectively. Thus

P, ... PYEVIX - xV, CCh

We put
w;(a) =f Wq

so that by Theorem 1.2,

@A, + - -+ + wi(@Ay = 20V =1 (F(P,) — F(M.))
=1

|

£ (P,
TN =] Z j b.
M,

=]
If {o, a) = 0 for all a, then

S n,-j we =3 mw(a) EZ- 27V 1.

Hence the points
(wi(q), . .., wy(a)) € iR*

lie in a denumerable union of hyperplanes defined by equations

2
Zﬂiﬁi=m‘2ﬂ\r’-l, me17Z.
=]

i Vyﬂth e ey MR

T S T ey, el g . M (ST

§5. Duality
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However these points form an open set in V(R 2
of of Jacobi’s theorem givin ,p' : f‘.[ NV —1R™, as one sces from the
pro gving a local analytic 1Isomorphism of

Vi Xoow o ¥

Ii:-

This is impossible unless n; = 0 for all i, because a h
* . : erplane has measure
0. and concludes the proof of Theorem 5.5, TP
We may also return to the duality of Chapter 11, Theorem 2.1, Theorem
5.4 proved the expected converse which we had to postpone before, but more

1s true.
Theorem 5.6. The bilinear map

Hi(R, Z) x (,,(R)— R
given by

(7, w}HRuJ W

.
induces a duality of real vector spaces, making H,(R, R) the R-dual of the

space of dfk.

Proof. By Lemma 5.2, the kernel of the pairing on the right, i.e. in the
space of dfk, is equal to 0. As a real vector space, the dfk have dimension
2¢, by Lemma 5.1. Since H\(R, Z) has real dimension = 2g, it follows that
its image in the dual space of €;(R) has to generate a space of real dimension
exactly 2g, and the spaces are in duality with each other.




the Fermat curve, and compute the period

the special case of . ‘ e : :
e 5 he differentials of first kind given

lattice explicitly 1n terms of the basis fort

in Chapter II. | e
The first two sections deal with general results on the universal covering

space, concerning certain integrals of third kind, of type dlog f where f1s a
nowhere vanishing function. These are then applied to the Fermat curve, and

we follow Rohrlich [Ro 1], [Ro 2]. .
On the other hand, as a preliminary to these more exact descriptions of the

period lattice, we can make a simpler analysis of the space generated by this
lattice over the rationals, as follows. Let

v : [0, 1] = F(N)
be the curve such that
e (1, (1 = 1)),

where the N-th root is the real N-th root. Then

f xr—rl‘,:"l f"xl = J’I rrﬂ(l . IN)[:*IH'N dr .
& . y - o (l - IN)[;"-’—I}:"H

- Making the change of variables u = r, du = Nt™ 'dr, we find at once that

I Py
mr.j='_B ST [t ’
[ e =585 %)

g§]. The Logarithm Symbol
13

]
(TRl

B(a, b) = J

] Ifi‘t.

L dmilN : 3 . :

morphisms of F(N) as indicated below € Y under the auto-

Then the chain
K = Y — (l, §)}q, -+ ((:..-. §}'}’u - {é‘ l)'}'ll

. in fact a closed path, 1.¢. a cycle on the Ferma curve
variables formula, one then finds at once '

J.‘”f-~ ~ =gt e - §’}lﬂ(£.i
K N N N

| ; ;
z(l-_é‘l')(l_i___ L‘i
§)NB(N N)

By the change of

This is a period of the differential form w, ,, and itis # 0if r, s #O0mod N
From this we shall prove: |

H\(F(N), Q) is generated by k over Q|G|, where G is the group of
awtomorphisms of F(N) which is naturally = py x puy.

Indeed, for each r:‘.huruclur Xof uy X uy, the idempotent e, lies in the group
ring QG ], and for every differential of first kind w, ; we have

J Wy = J ey w, ;.
Cy K K

A

Since ,, is an eigenvector for the operation of the group algebra with
character X,,, it follows from the period computation above that if w is a
differential form such that

J ©=0 forall X
CyK

then @ = 0. In other words, if w is orthogonal to the module generated over
Q[G] by k, then w = 0. Our assertion follows from Theorem 5.6 of Chap-

ter IV.

In the next sections, we develop the tools
the period module over Z.

necessary to get the structure of

§1. The Logarithm Symbol

ted with the function field K, a.nd let
which we shall call the points .at
S, then we say that fis a S-unit,

Let R be the Riemann surface ussucia‘
§ = S. be a finite non-empty set of points,
infinity. If f € K has zeros and poles only 1n
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We denote the group of S-unitg by

if § is fixed throughout.

or slmPI}' a unit L x Aut(U, p]“h — 7.,

E(S), or simply E. , curface obtained by deleting the points of § fron, N o
LetR =R - S be the S where Aut(U, p)™ = G*™ is the factor group of G by its commutator group,
R, and let namely
y: U— R .
d G*® = G/G".

, ‘€ E then fo pis holomorphje
" 7 211 HHCED{R' l[“f . s [”L » LI '..rn‘ *
be the universal covering 'EI*: " determination of log f o p such that Let mbe a posttive integer, and let f € £ be a unit. Then f- p has an
non-zero on U, so there X m-th root on U, given by

exp Iugfﬂ p :fﬂ P 1
exp — log(f - p).

LetG = Aut(U, p) be the group of covering automorphisms, and let o € .

The function If ¢ is any m-th root (any two differ by an m-th root of unity), then for any

o € G we get
z+> (log fe p)oz) — (log f o p)z2)

i
¥
i
i
&

¥

1

2mi -
] Y et o f.m) .
is constant on U. Indeed, g SR m L(f, 0)=¢ ,?
exp lﬂgfg. p({}'z) = fa IJ(UZ) =f‘u P (:)1 where é‘ — Elm'lfm‘ and hence '-;ET._-_.:
so (log f = p) ¢ o is another choice of a branch of the logarithm, so it differs 0 = (W E
by a constant since U is connected.
For any z € U, we have ;
" df §2. Periods on the Universal Covering Space -
log fop(az) — log fop(2) = j dlog fop = ? , B SP o
: Y ha
Let Q = (w,, . . ., w,) be a basis for the dfk on R. Again let f
where the integral from z to oz is taken along any curve (independent of the *'
curve since U is simply connected), and the integral over vy is taken on the p:U—R 7
projection of that curve into the Rieman surface. Therefore there exists an _ . _ oo
integer L(f, o) such that for all z, be the universal covering space as in the preceding section. For each &
lﬂgfﬂ P(UZ) — ]{}gfﬂp(z) = 2qﬁL(j: U') a & G = AU[(U, p) ﬂnd u € U
Lemma 1.1. The symbol L(f, o) is bimultiplicative in f and o. let [, be a path in U from u to ou. Then the hnn}nln*gy class of p e l5 1n
H,(R', Z)is independent of the choice of u. Indeed, if z1s another point, then
Proof. The formulas we have a “quadrilateral” in U as shown on the figure.

Lfg. ) =L(f, ) +L(g o) and L(f, 0o’) = L(f, &) + L(f, @)

are trivially proved from the definitions, and the fact that the integral of

dlog f s p between two poi | _ ‘
between the two I‘Miiints,ImlmS of U does not depend on the choice of paths

Thus we get a pairing
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[ts projection in R’ looks like:

pu

PY

pz
Figure 0

We have for any dfk @

(il *
.”“"ltr,hr J“"" g

But the integral around the quadrilateral of p*w is equal to zero, because U

is simply connected. Furthermore,
oru J’;luu f,u:
* e () = (w,
w
.L': P pr: Pt

so the independence of the homology class of p o [, follows by duality be-

tween cycles and differential forms.
The association

o> class of p o I, in Hi(R", Z)

gives an isomorphism

G/G~ H\R', Z),

where G¢ is the commutator subgroup. Since we have a surjective homomor-
phism

H(R',Z)— H(R,Z)— 0,

induced by the inclusion R’ C R, we can represent an element of H,(R, Z)
by a cycle p o I, for some o € G.
The period lattice of R is spanned by the vectors

Q:J;p*a=Jmp*Q

pilg

for any choi
y choice of u € U, where o ranges over representatives of G /G*.

§3. Periods on the Fermat Curve
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§3. Periods on the Fermat Curve

I:"-’ & },J"‘-' e l

Note that F(1) Is Isomorphic to projective 1-space P, by the function x. If
we delete the points {0, 1}, we obtain an affine curve (of genus 0). We let

A:U— C-{0, 1}

be ll]u universal n::u'uuring space. (The choice of symbol A is not accidental.
It arises because llllﬁ the classical symbol for the classical function generating
the modular function field of level 2—see later in the book.) We let

d = Aut(U, A).

We take the set of points at infinity on F(N) to be the inverse image of 0, 1
on F(1). This is therefore the set of points

(Oﬁ gji l)ﬁ (gj:- Ur 1}1 (é’j‘ E‘.:ji 0):

2mifN

where { = ¢ and € = e™". The above coordinates are the projective
coordinates (x, y, z) for the projective equation

k-

XN+

As before, we let F(N)' be the open affine curve obtained by deleting the
points of infinity as above from F(N). It corresponds to an intermediate
covering between U and F(1)’, and we let

OdN) = Aut(UJF(N)').
The relevant maps are shown in the following diagram.

U :
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We let -
i—— -"'.I"JIJ ﬂﬂd .) v

| — A m_qp{:c[ivcly on U. In the present

so T and y are N-th roots of A and

case, let us abbreviate

LA, o) = a(0) and LU= A o) = B(o).

Then by §1, for 0 € ¢ we have

—~ pla)

: — Y.

ros af ) and _}’LU é‘ :
Iﬂﬂ':g an

From these relations, W€ see that

set of o € @ such that a(o) = B(o) = 0 (mod N).

O(N) =

We take for granted from elementary topology that ® is a free group op
E * L
two generators, Say A and B. It follows that

i 2
®(N) = unique normal subgroup of & such that ®/P(N) = Z(N)~, and an

isomorphism is given by

o — (a(o), B(a)) mod N.
It follows also that
®(N) is generated by A", B" and @

Thus ®(N) is the smallest normal subgroup containing ABA ™' B!, Ay, By;
and therefore that ®(N) is also generated by all elements

yABA~'B~'y~!, with y € ®; A" and B".
But the elements yABA "' B! y~! are precisely those of the form
gpABA™'B~' p~' ¢,

with o € ®(N) and p ranging over a set of right coset representatives of
®(N) in ®. Hence we have proved:

Lemma 3.1. A set of generators for ®(N) mod ®(N)° is given by

A% BY, A'B'ABAT'BT'(WBY' wih 0s=j ksN-!

§3. Periods on the Fermat Curye
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For the applications, we have to determine two generators A, B
pmciﬁcly,_ We select a real point z, with O < Zp < |, and we let u = gﬂlf_ﬁ
above Zg, 1.€., Zo = A(u). We pick a closed path stani;mg at zo, in C — [1 )
having winding number 1 around 0 and lift it 1o £ slanir:E at the poi;rft’

Aol |
/\ A Aol
i ¢ ” B
ek TR B v TR == @
(a) (b)
Figure 7

Then the liflcq path ends at a point Au for some uniquely determined A € ®.
We denote this llhfr:d puth by I4, so that A - [, is homotopic to the path in
C — {0, 1} shown in Fig. 7(a). Similarly, we construct I, so that A o lg is the

path shown in Fig. 7(b). Then B is uniquely determined such that A o Ip 1s
contained In

C = (—Dﬂ, 1]:
and has winding number | around 1. We obtain:

L(A,A)=1,
L(A,B) =0,

L(1 —A,A)=0
L(1 = A,B)=1.

We know from Chapter II that the dfk’s are of the form

prw., = X7 Y —— with l=r,s and r+s=N -1

Hence
U*p* W, = gn{ﬂ}ﬁﬂmip*wr.,.

We recall the definition of the beta function:

B(a, b) = f' a1 (1 — 1) dt.
0

Theorem 3.2 (Rohrlich). The period lattice of F (N) relative to the basis
{w,,} is spanned by the vectors

( P = XL = s”)“l'B (L ) E‘), o)
S N \N N

for0=j, k=N -1l
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cal prngﬂdllfﬂ of §2 with the representatiyeg
‘ ¢ genele

low that th

proof. We fol above. W€ get:

of ®/P° that WE found

—ig-tAasah)

ABA st
e i+ sk prw,
J‘.uﬂhwﬁ"iﬂ‘ﬁ' prwrs = ¢ st
- — |
u ABATI BT
g.”'-#_l,.l f P Wy s.

of PN)/PWN)

for representatives

o =ABA_-IB‘I’

M

(T = AH:' F = B‘ :

- -] N
First let ¢ = ABA 1g~'. Letx

15N g VN
w SNyt = )P d(ET)
J; p wr.: s L:L,(

where

Aol =(Aol)Acolp)Ae L) "(Aolp) ',

m under the integral sign 18 the analytic continuation

and the differential fo | segment between O and 1. Then A,

of the real principal value on the rea
is homotopic to the sum of four pieces as shown.

Figure 8

The circles have radius e, tending to 0, so in the limit the final integral can
be taken to be that over the segment, properly oriented, with the appropriate
analytic continuations.,

After the first turn around 0, the differential form changes by a factor of
'¢ = {". After the turn around 1, it changes by a factor of {°, and thus

becomes {"** w,,. After the final turn around 0, it becomes {* ;. Ther
fore:

L‘d# mr,s(z) = ('_l + g’f £ gr'i-.t + g—_.;) Il I"[.r'—l]l.l".l"f(l . f)u“N'ﬂNd[I”N)'

0

§4. Periods on the Related Curves
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Making a change of variables in the integral on the

right immediately gives
the answer . ¥ BHES

|
< = FW == 8 { S
N8By N
as desired.
N ' o
If o = A% or o = B” then a similar argument shows that
praw,, = J (zNY =111 — \UNYS=N g 1IN
[ LG = ey gy

= (),
because the value 1s equal to the Beta integral times

1+§+...+§H—1=0-

This proves the theorem.

§4. Periods on the Related Curves

In Chapter II, §3 we had defined the curves F(r, s) by letting

N

U = X and g = X"y,

Then F(r, s) 1s the non-singular curve whose function field 1s
C(u, v).

Let A, B be the generators of ® which we selected previously, having winding
numbers 0 and 1 respectively around O and 1. We let

d(r, 5) = Aut(U/JF(r, 5)),

where F(r, 5)' is the affine curve obtained by deleting the points at infinity
from F(r, s). We have a Galois diagram:

U

|

F(N) k(x, y)
L O(r, 5)/PN)

F(r,s) kix", x"y)

!
F(1)' k(x, yV)
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ted by PWV) AM BMand A'B where
ra ,

Then ®(r, ) 15 8eN€
p =gcd. (s N

M = N/D and

| ce F(r, 5) Ly Ht’”frfufrd by
i . he permu’ lattice (Jf :
Theorem 4.1 (Rﬂhl‘llCh) ]

the vectors

1 [{rm) G‘Hf))
e évnﬂjﬂmat“ — gﬂﬂ)(l - {”")E,"B( N ! N $ * e )

— 1, components of the above vector are | ndexed

where 1 = J, k < M (r, s)-admissible (Chapter 11, §3), to-

by positive integers M which are

gether with the element
I (rm) {(sm)
..., (1-=-0 )EB(T*"——N ),)

Proof. The integral of @(ym).(sm) OVET I3 15" is the only new one, {ml “qlr”“d}’
considered in determining the period lattice on the Fermat curve itself. The
integral over /j 18 obtained by integrating over the path shown, letting € tend

to 0.
@i e i
8.-'; |1 —¢€ ]

Figure 9

The analytic continuation of @ = over /4 changes by a factor of {'™, and
this is repeated s times. Hence

|
L Om) (sm) = (=1 + ™) f principal value,
0

thus giving the extra element generating the period lattice.

CHAPTER VI

Linear Theory of Theta Functions

§1. Associated Linear Forms

Let V be a complex vector space of dimension n, real dimension 2n. Let D
be a lattice in V, that is, a discrete subgroup of real dimension 2n, so that the
factor group V /D 1s a complex torus. We define a theta function on V, with
respect to D (or on V/D), to be a quotient of entire functions (called a
meromorphic function for this chapter), not identically zero, and satisfying
the relation

F(x -+ ) sFje*iantiml, gllxEV.uED

where L is C-linear in x, and no specifications are made on its dependence on
u, or on the dependence of the function J on u. However, we note that we
can change J by a Z-valued function on D without changing the above
equation. Also, we shall see below that any such L and J must satisfy
additional conditions which can be deduced from this equation. We note that
the theta functions form a multiplicative group.

Example. Let ¢ be a quadratic form on V, such that
g(x) = B(x, x)

where B is symmetric and C-bilinear. Let c be a complex number, and let
A be a C-linear form on V. The function

¢ 2mile Ax)+cl

is obviously a theta function, which will be called trivial. Itis clear that the
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group. Furthermore, the trivial

. i r l .Cﬂlivu . . >
trivial theta functions form a multip the theta functions formed

theta function above 1s a product of a constant, and
tely with g(x) and A(x). e e
Sclﬁ?le t:{mt gx +y) — g(x) — q(y) = 2B (v, y). Hence

2mglx)

Fx)=e¢€¢"""

‘ an be selected to be
then the associated functions [ and J can be select

Le(x, u) = 2B(x, 1) and Jr () = qu).

[f

F(..l) - EImM.rJ!

then the associated functions L and J can be selected to be

Ly =0 and Jr() = A(w).

It will be useful later to multiply any theta function by a trivial one for

normalization purposes.

Remark. Let F be an entire theta function which has no zero. I“Ilm'] 'wu
can write F(z) = e>™®_ where g is an entire function. From the definition

of a theta function, we find that
g(z +u) —g(2) =Lz, u) + J(u).

All second order partial derivatives of this expression with respect to complex
coordinates vanish, and hence the second partials of ¢ are periodic entire
functions, whence constants. It follows that g is a polynomial of degree at
most 2, in other words that the theta function F is of the form considered in
the preceding example.

We shall now investigate the relations satisfied by L and J for an arbitrary
theta function F. Computing F(x + u + v)/F(x) in the obvious ways, we
find the following relations:

LO,u+0)+Jw +v)=Lx,u) + L(x + u, v) + J(u) + J(v)

(mod Z)
Putting first x = 0, we then find:
(1) JW + v) = J(w) - J(v) = L(u, v) (mod Z)
(2) | L(u, v) = L(v, u) (mod Z)
(3) L(x, u + v) = L(x, u) + L(x, v) (mod Z)

§1. Associated Lincar Forms
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The second relation comes from the fact that (he -

metric 1n u EII:H.I v. "I'h:.: difference between the t:n.L Eilpr{:ssmn i’.] (1) is sym-
Being lim:m: In x, It must vanish, and hence we :ahldcﬁ of (3) is an Integer.
by an equality in (3). We can then extend L(x )ﬂ replace the congruence
v x V which is C-linear in x and R-lipeg, iny. 2 .0 2 function L(x, y) on

' " . * s { b 10 ¥ ® -
rational multiples of elements of D, ypd ther txtf:du:udl, we do it first for
continuity.) 0 the whole space by

Theorem 1.1. Let

E(x, y) = L(x, y) — L(y, x).

Then E is R-bilinear, alternating, and reaj value

, donV x V. Further-
more, E takes on integral values on D x D.

Proof. The last statement follows from (2). Since [ i Rbitimear. it
follows that £ 1s real valued, so our theorem is proved. ,

Theorem 1.2. Let
S(x, y) = E(ix, y).
Then § is symmetric. Also the form
H(x, y) = E(ix, y) + IE(x, ¥)
is hermitian, so S is the real part of H.

Proof. We expand the value for S(x, y) — S(y, x) interms of L. We find
at once that

Sx,y) = S(y, x) =ilE(x,y) — E(ix, iy)].

Since the left-hand side is real and the right-hand side 1s pure imaginary, they
must both be 0. Hence S is symmetric, and also

E(x, y) = E(ix, iy).

One proves that

Hix, y) = iH(x, ),  H( i) = —H& ),

Hx,y) = H(y, )

' itian. i * shown.
by direct computation. Thus H is hermitian, as Was to be sho
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] called e
Two theta functions arc ¢< uivalent 1t 178 7
function. We ar¢ interested in finding a unique thet

> ' b
lence class (up to @ constant factor), determined DY

conditions.

’ »quations:
Suppose we have WO solutions L, L1 10 the equation

L(x,y) — LYy, v) = E(x, )
Li(x,y) — Li(y,Xx) = E(x, V).

Then L — L, is symmetric and C-linear in X,
by e*™® where g 1s 2 quadratic form, then
symmetric C-bilinear form. On the other hand, we have

E(x, y) = -21—! [HX: 3) = H(y, 0]
Therefore

l
Ll(-rr _}}) = 5}: H("T‘.I' y)

is a possible solution, differing from L by a C-bilinear synupﬂric form.
Changing F by a unique factor ¢2™) (up to a constant) makes it so that the

associated L satisfies

1
L(x, y) = 7 H(x, y).

For a further normalization, we still can multiply the function by the
exponential of a C-linear term. Define

K@) = J(u) — %L(H, .

We shall find a C-linear function A such that Im A = Im K mod Z.
From (1) we get

4) K(H+l})EK(H)+K(L})+'I'E(H, v)

: (mod Z).
This shows that Im X is additive on D, with values in C/Z. Since D is free,

we can lift Im K to a C-valued function which i :
‘ - n which is additi
. extend it to an R-linear function on V. Let g =Im Kl l;:d{iztD' nc ther

uivalent if their quotient is a trivial theta
: function in an equiva-
additional normalizing

<o C-bilinear. If we change F
the associated L changes by a

§1 mw.u-t:iulcd Lincar Forms
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A(X) = g(ix) + 18 (x).
Then

A(ix) = g(—x) + (g (ix)

—g(x) + 12 (ix) = iA(x),

« that A is C-linear, and K — A is real valued.
Wwe may now state our desired normalization

we shall say that a theta function is normalized if it car:
ed if it satisfies the i
{1ons: condi

|
L(-I'r }.I — E H(I‘ }';)

N 1.

N 2. The function K on V is real valued.

It is clear that the normalized theta functions form a subgroup of all theta
functions. For a normalized theta function, the basic relation takes the form

—

1 1
F(x + u) = F(x) exp (?.'m EH(I, i) +%H(u,u) + K (1) )

o

If we define a map : D — C, (complex numbers of absolute value 1) by
b(u) = ™,
then the basic property (4) for K can be written

Y(u + v) = ¢I(H)w(u)€1ﬂfﬂu.clﬂ‘

One sometimes calls i the associated quadratic character.
The previous discussion proves:

Theorem 1.3. In any equivalence class of theta functions, fhfrﬂr;«:lﬂ-? a
normalized theta function, unique up 10 @ non-zero constant factor.

i ad
Proof. We have shown existence. As to uniqueness, ‘-;8 1:“"?32::_ 1};
noted the uniqueness of the quadratic factor. For the ll}zn ‘i wi;ich
Im K = 0 then the C-linear function A in the previot discuss! !

shows the uniqueness.
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hat, becausc they give us an

In fact, the arguments . of theta functions as follows. Let Th(L, J) as

iSUNOFPhi ; +~ne of t (L, J). On the other hand,
before denote the space ¢ e )’pcd if Yr1s a function on D of

I il ~ciated with L, an
if H is the hermitian form associa "
absolute value 1, defined by the above equation, let

prove more than t

ctions which are normalized,

Thooem (H, ¥) = space of theta fun
2 ik

I 3 mik
with L = - H and Y =¢

iven (L, J) there exists a unique (up 10 constant factor)

Theorem 1.4. G
y that the map

wrivial theta function g sucl

F— gF

gives an isomorphism
Th(L, J) —— Thyem (H, ).

ion in the case of entire theta

The next theorem gives additional informat
functions.

Theorem 1.5. Suppose that F is a normalized entire theta function. Then:

(i) There exists a number C > 0 such that

F(z)| = Ce'™"=  forallz EV.

(i) The )assaciured hermitian form H is positive (not necessarily defi-
nite ).

Proof. As to the first inequality, let

g(2) = F(2)e( —(m/2)H(z, 2)),

where e(w) = e*. Then for u € D,
8(2 T “) o g(z)eifr[E(z,uHH{u}]_

The ex in bri i
ponent in brackets is real. Hence |g(z + u)| = |g(z)|. This means

that the function | g| is periodi
: : n|glis periodic, and conti . =2
inequality follows at once. ontinuous, so that 1t is bounded. Our

Now Supp{)Sﬁ th 0 0
) atH(Z{] Z ) <0f [hﬂ |U|1C"
. I ' y «() I Some Cﬂmplﬁ}( number Zu.

5 Degenerate Theta Functions
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0 0 at mhm;}’- f:?ﬂﬂf:t: It 1s constant, and this constant mus
H(z, 7) < 0 for all z sufficiently close to z,, we H‘L‘uhthm Fm.llhl be 0. Since
‘ " is equal to 0 in a

identically 0 T
s our theorem. y Y, which is impossible. This

pr{wﬂ

§2. Degenerate Theta Functions

we shall see that the theory of theta functions factors

of vV on which the hermitian form 1s ui:zr fd]f:r?/th:’:ugs tﬁt subspace
consisting of all z such that H(z, z) = 0. Then V i“.Ha e the 5u’ti::~;et of V
called the kernel of H, or null space of H. We n D:L l‘hmci?zplex subspace,
H(z, w) = 0 forallw €V, Indeed, for real 1 we have (z, z) = 0 then

H(w + 1z, w + 1z) = H(w, w) + 2t Re H(z, w)

Letting ¢ be large shows that Re H(z, w) = 0. Similarly, the imagina

is also 0, using it instead of ¢. This proves both that V; i&;a vﬂctﬂripag Iir;

that the weaker condition H(z, z) = 0 proves the stronger one as Slateri'l
Thus H induces a hermitian form on V/V},, and the above pm];eny %hg}ws

that on V /Vy, H 1S definite, that is, it has no null space. It H1s pmsitivt;, then

the induced form on V[V, is positive definite.

Theorem 2.1. Let F be a normalized entire theta function on the complex
space V, with respect to the lattice D, and let H be its associated hermitian

form. Let Vy be the kernel of H. Then:

(i) The image of the lattice D in V/[Vy s discrete.

(ii) The values of F depend only on the cosets of V.

Proof. Let zo € Vy and letx € V. By assumption, for any complex z, we

have

H(x + zzp, X + 220) = H(x, X).

The estimate in Theorem 1.5 shows that

|F(x + 220)| = Ce (gH(x, 3:)).

tion of z, whence constant, and

As for (i), let wy, - - - o u, be
generate V[Vy over R. For

Hence F(x + zz,) is an entire, bounded func
therefore equal to F(x). This proves (11).
elements of D whose residue classes #; (mod Vi)

all x € V sufficiently close to 0, we have




vI. Linear Theory of Theta Functions

| E(x, ;)| < i

of D such that S is close to 0, we must have

' * . 1) is an integer. Therefore E(v, 2) = 0

B gfﬂr;IL;‘nzcﬁﬁigbj:l?));;rﬂall z gf':' v. Hence v € Vi, and
i that the 1mage of D in V/[Vu 15 discrete. | |

From Theorem 2.1 we may View F as a theta function on V/ Lf;; wuh' rEhp??[

od Vy. Its associated hermitian form oOn V [V is that induced

3 i ' hich will be further analyzed.

is an element

and hence if ©

E(v,
for all z

§3. Dimension of the Space of Theta Functions

imension n, with a lattice

nsider a complex vector spact V of d
we mean a real-valued

Again we CO |
on V with respect to D,

D. By a Riemann form 2
bilinear form

E:-V xV—R,

satisfying the following conditions:

RF 1. The form E is alternating.
RF 2. It takes integral values on D X D.

RF 3. The form (x, y) — E(ix, y) is symmetric positive.

If this last symmetric form is also positive definite, then we say that E 1s a
non-degenerate Riemann form.

If we select a basis for D over Z, then it is also a basis for V over R. The
matrix representing a non-degenerating Riemann form E with respect to such
a basis has integer coefficients, and its determinant is a perfect square. The
square root of this determinant is called the pfaffian of £ with respect to D,
afld is independent of the choice of such a basis (the independence 1s clear
since the matrix of the form with respect to different bases changes by an
m'te,gral matrix and its transpose, of determinant 1). Actually the proof that
this determinant is a square will come out of the forthcoming lemma, where
we select a suitably normalized basis.

As a matter of notation, if u,, . . . , u, are elements of V, we denote by
luy, . . ., u,) the Z-module generated by these elements. In all cases to

arise, they will also be linearly independent over Z. They wi .
1 N ll L) il l
and hence independent over R. Sy Skl s o2

éf"l:lol:;ail. é,e;lf be an alternating non-degenerate bilinear form on a free
ute D, having values in Z. Then D is an E-orthogonal direct sum

: pimension of the Space of Theta Functions

§
01
D=[€1,Dul@“'@[€n U]

_Aimensional subm s P s . o
of 2 dimens odules [e;, v;1, such that Ele.
\ J} J

ger > 0, and d, | dy |« - | d,. ) = d; is an inte-

proof. The lemma 1s proved by induction.
u v €D WE select a least positive one, say dl‘f‘;‘;‘]?jﬂitalllaizl}les E(u, v) with
that E(ey, UI) = d,. We let [t‘:‘l, 01] = D, be the 2~d1m’cnzlg?}:1€i, Uy 5;;-1[‘.1'1
generated by i, vi. Let D7 be the orthogonal complement of . ~IH0 ule
respect O E. Then D, ﬁ D1 = {0}, because the only element Df.‘lf; " i
gicular to both e and vy is 0. To see that D = D, + D} we use thelsi};;gz[rtl

Gram-Schmidt orthogonalization process. Given u € D we can obviousl
colve for numbers a, b such that sy

u — aey, — bv,
. orthogonal to [e1, v] (with respect to £). For instance,
E(u — ae, — bvy, e)) = E(u, €,) + bd,.

Since Z is principal, and d, is the positive generator of the ideal of all values
of E, it follows that d, divides E (u, e,). Hence we can solve for b to make
the above expression equal to 0. Similarly, we solve for a, and thus prove

our lemma.

We observe that the lemma (due to Frobenius) gives the analogue of the
existence of an orthogonal basis for symmetric forms. An orthogonal decom-
position and a basis [e;, U1, - - -, €ns v,] as in the lemma will be called a

Frobenius decomposition and a Frobenius basis for D, with respect to E.
Let

L:VxV—=>C

be an R-bilinear map, C-linear in its first variable, and such that its associated

alternating form

E(x,y) = L&y =L

IS a Riemann form. Let

J:D—C

be a function satisfying (1), that is
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* V e C b{: "i I * . e

et B:V X symmetric and C.hilin...

L C blllnﬁdr, and lﬂ{

J(H) P _,'(1_;) = L(H, u) (nmd Z).
functions, with respect to (V'. D). L e B
f type (L, J) (together Wll‘h 0)
d Th(L, J). We are striving for a
15 1S s '
a trivial theta function of type (B, A) (formed by exp ‘
onentiat-

Ju + v) —

J) a type for theta

et of theta functions O
isomorphic to the space of entire theta functipps
) -+ A)’

Then we shall call (L,
S

; P the
It is obvious that de
ace denote
a complex vector Sp _ % at SHACE.
i whici will give us the dimension of that spa 1 we i define CLif G is
g ' form with respect (0 (V, D), then [ndeed, L | .
If E is a Riemann fo ng quadratic torm and a linear form), thep the association
hermitian form
- 'E(l' 'p) Fo— GF
H(x, y) = E(ix, y) + £ V)
gives an isomorphism between the two Spaces, 1ts inverse being given by

T - -1 ke
multiplication with G 7', which is of type (=B, —A). Hence to determine the

and then obtain a bilinear form
dimension of the space

]
L(x,y) = Y H(x, y).
B | . Th(L, J)
To getatype (L, J), we still have the freedom of choosing the fun;tmn J,' bu(;
i - i ourse, J 1s determinec . S
at least we see that L and H determine each other. Of course, of entire theta functions of type (L, J), we shall be able to adjust our L. J to
, 7. . t convenient. The dimension is | : |
Uﬂli S:S; function will be called non-degenerate if its associated form H 1s be most con COSIon 1s now given by the following theorem.
K : i its associated Riemann form £ 1s non- *
positive definite (or in other words, 1ts asso Theorem 3.1 (KFrobenius). Let (L, J) be a non-degenerate type with
degenerate). respect to (V, D). Then the entire theta functions on V with respect to D
having this type, together with O, form a complex vector space of dimen-
Lemma 2. Let [e;, v;] @ - - - @D [e,, v,] be a Frobenius decomposition of sion equal to the pfaffian of E with respect to D.
L, €n} s
Proof. We first observe that L 1s symmetric on (e, . . . , e,] (notation as
, ¢, over R. Conse-

D with respect to a non-degenerate Riemann form. Then {e),
above), and hence on the space V' generated by ¢y, . . .

quently, there is a symmetric C-bilinear form B on V such that L — B is 0

,¢,], whence 0 on V'. Similarly, there is a C-linear form A on
, ¢,. By the above remarks, this reduces

a C-basis for V.

., e, and let V" = V',

Proof. Let V' be the R-space generated by ey, . .
on [ey, . . .
Vsuchthat/ — AisOoney, . ..

Suppose that we have a relation
Xy E¥. our proof to the case when

;o

x+1y =0,
(*) L(z, ¢)) =0forallz €V, and J(¢) =0 forallj =1, ..

Then iy is in V' (because equal to —x), hence is E -orthogonal to V'. But
In this case the conditions defining a theta function are particularly simple,

E(iy,y) >0, if y #0.
Hence y = 0 by the non-degenerac . | and our theorem can be formulated as follows:
y condition. Hence x = 0. This proves
g o Theorem 3.2. Let (L, J) be a non-degenerate type with respect 10 (V,D).
Observe that the lemma shows that if V' is the space generated over R by i
D =l[e, v,] D Dlew Un |

holds. Letc; =J (v;), and for

P ,e,,thcn
v — V! a Vi .
+ iV, Is a Frobenius decomposition, and that (*) : 't to the C-basis
2 € Vliet{z, . .., z,) be the coordinates of 2 With respect (L, J)is
{evs, .. . , e,}. Then the space of entire theta functions of type (L,

. b and that this is an R-direct sum.
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E fl I[:‘II L= L3

Fiz +¢)=FQ@)
F(z +v) = F(z)e(z;d; + ¢

w and this space has dimension dy - - - d,, where

where e(w) = €™,
d, = E(e, v;).

Proof. It is clear that the tWO conditions are precisely those duﬁﬂtﬁ :;:t:j
. l . g » afr
functions with respect to our lattice, antfl (L,J). We nu:s.t now i‘;ie i
functions. In view of the conditions with respect [0 the ¢;, we p

ity, and hence any such theta function has a Founer expansion

2mr.I

F(z) = >, a(ne™",

where the sum is taken over all r € 7" We shall also writt? (r, 2) instea.d of
the dot product r - z. The second system of conditions now imposes relations

among the coefficients a(r), namely
a(r — dye;) = a(r)e(r-v; — ¢),
where again e(w) = ¢*™. The values a(r) can be fixed arbitrarily for
0=r <d 1 T
and can be determined formally uniquely by the above relations for other
values of r. This shows that the formal Fourier series solutions form a vector

space of the required dimension d,, . . . , d,.
There remains to prove convergence. Let us write

a(r) s EZ:I’;{r}a(F)

}vherc f_is a rep::&scntative mod[d,e,, ..., d,e,] satisfying the above
inequalities. Then it suffices to solve the functional equation

g(r — die)) — g(r) + ¢; = (r, v)).
Using the fact that
L(E“ uj) - E(Eh Uj)

because we have adjusted L so that L(V, ¢;) = ;s :
we write (V, e;) = O for all i, it follows that if

Uj s 2 Ujkfh
k

83 pimension of the Space of Theta Functions

05
then

L(Uﬁ Ul‘) - Ujldl —— I—’(Dh L‘j}t

this 14t equality being true because E(v;, v,) = 0. Hence

4 v;) = Z f‘kdflL(Up Ug).
k

The above functional equation is essentially the
form, excepl for certain constants. Therefore
pr{:sscd as

polarization of a quadratic
the solution g(r) can be ex-

g(r) = q(r) + linear term in r + constant,

where ¢ (r) is a quadratic form, which we can easily guess, namely

|
f{(r) — 5 L (2 ri;dj;“] Uk, 2 rkd[’l;k).
k

k

1
= i L(w, w) where w = Y ridi! v,

k

Therefore, to obtain convergence, 1t will suffice to prove:

Lemma 3.3. If L is such that L(V, e;) = 0 for all i, that is, L satisfies (*),
then the imaginary part of L is negative definite on the R-space generated

by vy, . . ., Un.

Proof. Letz = x + iy, where x, y lie In the space V' above, that is are
real linear combinations of ey, . . . , €,. Then fory # 0 we get

—

0 < E(y, y) = E(x + iy, ) = Ez, ) = L(z,y) = L(y, 2 = =L(3 2
by our assumption on L. However,

L(z, z) = L(x, 2) + iL(Y, 2),
‘ | 0
and L (x, z) = E(x, z) is real, again by that same assumption. Henceify #

we see that Im L(z, z) < 0.

If z=w as in the theorem, then Zz | e
Ui, . .., v, and we cannot have y = 0, otherwise z

impossible. This concludes the proof of Theorem 3.2

..« in the R-space generated b_y
i : V' which 18

ve definiteness
Remark 1. In terms of matrices, we can EXPpress the negative

as follows. Let T be the matrix such that
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'lL_I:TE_; fﬂrj:—“ij-"!”’

/

I ¥

T = (vy/dy, - - - » Unldn)-
Then T is symmetric, and its imaginary part is negative definite.
The proof simply consists in observing that if T = (7), then
L(vj, v) = d; dy Tk
m the linearity of L in the first variable. Furthermore,

as follows at once fro
we have

(Tr, r) = L(w, w),
., e, (that is, an element of

where r is any real linear combination of e, .
V"), and w is defined above,

.
W o= E redi U

Suppose that we started with a type (L, J) for which the alternating form
E is degenerate. We are still interested in the dimension of the space of theta
functions of this type. We may assume that it is normalized. Then the
elements of Th(L, J) induce theta functions on the factor torus V /D, where
V = V/Vy, and Vj is the null space of the associated hermitian form. Fur-
thermore

dim Th(L, J) = dim Th(L, J),

where L, }'Ls the induced type on V/D. Now E is non-degenerate, and the
pfaffian of £ will be called the reduced pfaffian of £. We then obtain:

Theorem 3.4. The dimension of Th(L, J) is equal to the reduced pfaffian
of the associated alternating form E.

Proof. This follows from the theorem, which gives us the dimension in the
non-degenerate case.

G Remark 2. Let (L, J) be a non-degenerate type with respect to (V, D).
may happen that there is a bigger lattice D' for which (L, J) is also a

nondegenerate type with respect to (V, D'). H ; -
Indeed, let u € D', and Wriftj (V, D’). However, such D’ are limited.

. Jlian Functions and Riemann-Roch
§4. Abc och Theorem o .
n the Torys
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4 n
= »
j; el ey ;Zi bjv,

in terms of a Frobenius basis of V. Then

E(IL’ H) = b.d ‘

i ¢ and g
¥ il E(L"“ “) — _ﬂidj‘

These values have to be integers. Hence ¢

b, can take '
| e jr O ake on only a f;
of values mod Z, and there are only a finite number of pasgihl{:nl:;ingB?r

For each such D', the factor group D'/D is finite.

equation (1) of §1, there are only a finite number of exten
J' on such D',

By the functional
sions of J to maps

Theorem 3.5. Let (L, J) be a non-degenerate type with respect to (V, D).

Then all theta functions of this type except possibly those lying in a finite

union of subspaces of dimension < pf(E) are not theta functions with
respect to a lattice strictly larger than D

Proof. If F 1s a theta function of type (L, J') with respect to (V, D'), then
the pfaffian of E with respect to D' is equal to

. =
(D" : D)

d,

where d =d, - * - d, is its pfaffian with respect to D. Hence the space of
theta functions of type (L, J') with respect to (V, D") has lower dimension,
and there is only a finite number of such spaces, for lattices D" properly
containing D.

§4. Abelian Functions and
Riemann-Roch Theorem on the Torus

By an abelian function on V with respect (O D (or on the torus T - V/D )I‘Wﬂ
shall mean a quotient of theta functions of the same type, Or 0. Itis the; C ea;
that the abelian functions form a field, called the: function field ‘Df T, aflth
denoted by C(T'). Note that an abelian function is genuinely periodic Wi

respect to D, that 1s

f(z + u) = f() » &V, u €D.

' ' Oisa
It follows immediately from the definitions that an abelian function
quotient of entire theta functions of the same t{vp::denote by () te space

If 6 is an entire theta function of type (L; J);We FRESs = then B
of all entire theta functions of the same type: If 6 lies in this Sp
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n-degenerate, then the dimension

When (L, J) 1s no !
We call £(8,) the linear system

is an abelhan function. L
7 3.1 of §3.

of (8, is given by Theorem
of . : R R o
’?Jwﬂ theta functions will be called linearly equivalent if their quotient 1s
an abelian function, and this relation is denoted by

6 ~ 6.

that in any equivalence class of theta func-

Recall Theorem 1.3 which states le! |
ffering by a trivial theta function) there

tions (the equivalence being that of d
is precisely one normalized theta function.

Remark. Two normalized theta functions are linearly equivalent if and

only if they have the same type.

The proof is immediate, because the quotient of normalized theta functions
‘< normalized. and is an abelian function if and only if it is of type (0, 0).

Let V, be the intersection of all the null spaces of all Riemann forms on
(V, D). We call V, the degenerate subspace of V with respect to D. Then
by taking a finite sum of Riemann forms on (V, D) we find that Vj is 1tself
the null space of a Riemann form on (V, D).

Since an abelian function is a normalized theta function, we can express
it uniquely (up to a constant factor) as a quotient of normalized entire theta
functions, which are in fact defined on V/V, by the result of §2. Conse-
quently the function field of V/D is “the same” as the function field of V/D,
where V=V/V, and D is the image of D in V. Furthermore, (V, D) is
non-degenerate, that is, admits a non-degenerate Riemann form. Thus the
study of the function field is reduced easily to that of the non-degenerate case.

At tbis point it is useful to introduce the terminology of divisors. In
qlgcbral? or complex analytic geometry, a divisor is a formal linear combina-
tion of irreducible subvarieties of codimension 1. Locally in the neigh-
borhood {?f each point, such a variety is defined by a single equation ¢ = 0
?vlllerﬂ ¢ 1s some analytic function. It is clear that locally, if the subvariet;f
:1513 if;pe;bzyhannther equation ¢ = 0, then ¢y is holomorphic invertible in
% def‘:Eed br t::ld] G; tlhe point. It turns out that on C", a positive divisor can
i invzni E]Gfa entire lht?la t:unctiﬂn, and two such functions differ by
il “e unction whu:h‘ 1S tl?eref::tre a trivial theta function. How-
e ::Jfa e (;:I[‘chzfu?]ns we ha*fe In mind, the theorem giving the representa-
o e g a theta fl{nctlon is utterly irrelevant: all we need are global
R h;:re il;ce :kfe shall prove the representation theorem in the last
- g standardnga e the relev:aqt global definition, which still allows
define a divisor to be an Eﬁsiaf;eonfcdwlis{?f& e o 10F OUF purposcs, we
B s e e ec f:lb:& of theta functions, or 0. We shall

iively. A divisor is said to be linearl '
early equivalent to zero

§4.

Abelian Functions and Riemann-Roch Theoren, on t}
1 Torus

9

. :« the divisor of an abeli: "
. it is the divisor of an abelian function, thyy g if ;
contains an abelian function. Two divisors gre "iﬂlidht IS equivalence ¢lags

; o 1 o ST " N g 0 * ;
. thelr difference 1s linearly equivalent to Zero Wzﬁlh:lgrly €quivalent
: | ¢ denote lin
ear

X2 In terms of theta functj

. if 6y and Oy are theta functions i
optire, if 6y and by unctions in the equival
mﬁpectively. We let (6) denote the divisor {}?9 ence classes of X and v

guppose that Xo 1s a positive divisor. We denote by

. C
abelian functions f such that +(Xo) the space of

(f) = =X,.

i 6 is a theta function having divisor X, then it is
. 5 ? B CIE" t '{ L
omorphic to the space £(6,) defined previously under lh: Egghat} ‘Bliliiu) B

60— 0/6,, for 6 € L(6,).

We say that Xq 1S nﬂn-degengr_ate if a tl}eta function defining X, is non-
degenerate. If H, E are the hermitian and Riemann forms associated with 6,
then we also say that they are associated with the corresponding divisor‘
and Wfitﬂ o — E;.;n. ,

Observe that if Ey 1s a non-degenerate Riemann form, and E is any Rie-
mann form, then E + E, is non-degenerate, because the sum of a positive
definite and a positive form is positive definite. In terms of divisors, if Xo 1s
positive non-degenerate, and X 1s positive, then X + X, 1s positive non-
degenerate.

As in the case of curves, we let

[(X) = dim £(X).

., X, be positive divisors

Theorem 4.1 (Riemann-Roch). Letr Xo, - .
[Pinm+ 1

such that X, is non-degenerate. There exisis a polynomia
variables such that

I(roXo + * + * + I'mXm) =Plo, -+ Im)

for any integers ro, . . ., rm =0 and ro > 0. For any non-degenerate

positive divisor X with Riemann form E, we have

1(rX)=r" pf(E).

Proof. This is obvious from Theorem 3.1 because the desired dimension

IS given as the pfaffian of roEo + * * ° 7+ FmEm:
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i ) y f g 4 ‘ ; { r IIUIS.!
3 f J

n= dimg V.

there exist abelian functions fi, - - - »Jm which are
C. We can write them all over a common
degenerate (after factoring out

Proof. Suppose¢ that

:nally independent over
algebraically 4 wpf?ich we may assume non-

denominator ;
the null space of V/D if necessary). Write
fi = 6/%.
Then the monomials
6y - - O n+c T Im=1T

lie in $(65), whose dimension 1s given by Theqrem 4.{ and 1s equal to
r" pf(E,). However, the above monomials are linearly independent, and

there are
m +r
n
of them, which grows like r™. Hence m = n, as desired.

In §6, it will be proved that the transcendence degree of the function field
is precisely n if V/D has a non-degenerate Riemann form. Under this assump-
tion, we shall now use an argument similar to the above to prove that the field
must then be finitely generated, that is, must be a finite extension of a purely
transcendental extension.

Corollary 2. If there exists n algebraically independent abelian functions
onVID, say f,, . . ., f,, then the function field of V/D is a finite extension
4L 5: & ORI )

-Prﬂqf. Write again f; = 6;/6,. Then 6, must be non-degenerate, for other-
wise, since ¢ and 6, have the same type, and can be assumed to be normal-
fzed, we could induce our functions on the factor space V=V [V, where Vy
1s the null space of the hermitian form associated with th, thus contradicting
Corollary 1. Let g be any abelian function. Consider all monomials

s 5 5 Tl
1 n

n 8

" *+ ry =r. Each such monomial lies in L(rX Y) where
x0=(9o)andgE$(Y)withY:>0. The num -( G+S), ;

§5 Translations of Theta Functions
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- 5 i ] ¥ ‘u I Fi L] #
o is asymptotic to sr”/nlas r — : ;
whic e Since the dimension of L(rx
< EQU 0o+ §Y)

pt(rEo + sEy) = r" pf(E,) «+ lower termg

it follows that if s > n pf(Ey), then there exists 4
dence among thcsc_mﬂnqmials. Such a relation gi
for g With C{f}emcmm.s In Clhs .. f, of degree < n! pf(E

select an abelian function of maximal degree over the feld Clzf 0). If we
then by the primitive element theorem of elementary field theo ht g .bla{n'),
function must generate the whole field of abelian functions Illl.z;'eb prm
our theorem. , y proving

relation of linear depen-
VEs an algebraic equation

§5. Translations of Theta Functions

We now consider the type associated with translations of theta functions. Let
a € V. If 61s a theta function, we let 6, be the function such that

b.(x) = O(x — a),

and call 6, the translation of 6 by a. It is obviously a theta function. The
definition is made such that if X is the divisor of 0, then X, is the divisor of 6,.

Lemma 5.1. (i) If 0 is of type (L, J) then 8, is of type (L, J — L,), where
L,(u) = L(a, u).

(ii) If 0 is normalized, the type of the normalized theta function in the same
equivalence class as 0, is (L, J — E,) where E,(u) = E(a, u).

Proof. We have

6(x —a + u) — exp {2m([L(x — a, u) + J (W)}
O(x — a)

that the bilinear form L is the

from whj ion is obvious. Note .
Ich our first assertion 7 hermitian form H is the

same for any translation of 6, whence the associate
§ame,

L tion
For the second assertion, if we multiply 6. by the trivial theta func

§ B
exp { 2m E}H(«’fr ﬂ)]}’

. L
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w) in the characterzing

; ; f —L(a. .
. . 1M ary PJﬂD : . siven b

- of the imagind G » exponent, gVt Y

e Iblfininf. only with the real part 10 the £AF

: 14l

equalmn. ren =
g be entiré ed theta functions, H'fa}h H-;‘.‘:'U-

2 8, €t . , _ H' if and only 1
Theorem 5‘.'.' Ljfi}rmf H H re.';perrfrt’!y. Then H{;’ H' tf yif
ciated hermi1i iy . that the normalization of 0, ~ V-

there exists A €

normaliz

V such tha
using the uniqueness of a normahized
‘ Hh= H'. Let V, be _lju: null space
v/ Vy = V. by §2, and

Proof. Supposc such @ exists. -
follows that [ = L', whencc _H = [,hm
theta function. Cunvcrscly, suppose thd! o 8
of H. Then both 6 and g induce thetd function:

we have the formulas

UL (u, w) + K (10)],

0 + 1) _ o[L(x, u) * 2
f(x)

O + W _ e(L(x, w) + 3L 0T K'(10)]
g (x)

with the same L, where e(w) = o™ Note that k' — K (mod Z) 1s a

homomorphism by (4), §1, and that

EEmMWm-HWH

depend only on the class @ of u mod Vy. Therefore there exists an element

7 € V such that the character p 27K =Kl ig given by

—2mE(a.u)

e[K'(w) — K(uw) =e

We now use the functional equation for 8 and §. Let f= 6'/6,. Then the

hypothesis that 6, 8 are normalized (i.e. that

A

> H(x, y))

Lix, y) =

implies at once that f(x + u) = f(x) for all u in D, or in other words that f
is abelian. This proves the desired property.
In terms of divisors, we can express Theorem 5.2 as follows.

et X, Y be two positive divisors. Th - . .
. en £y =
a € VsuchtharY = X, x = Ey if and only if there exis=

f . b ;
gcrller:[;; ; ﬂ:ﬁm f.u'}mm"’ we lﬂ‘_CI(H) denote its class modulo the group
y the trivial theta functions and the abelian functions. The factor

B
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f theta functions modulo trivial ones. and -
d group of (V, D), orof VID. S50 e

Two thetd functions are called algebraically equs
. of the other (modulo trivial and abuii:n lﬁ?lr?alent* If one is the
fTthrum 5.2 t.uc see that this condition is Equivulc;}d t:uncunns}. In light
(he qssociated Riemann fm.frns. (or hermitian forms) Em:‘*-“‘-'llth the property that
(he notion of ulgc}}rulc cqu‘wulcncu applies also to divig;qua!- Furthermore,
functions. I“ihuis a divisor may be said to be gl LEtr)h \'1:1 representative
¢ and only if it satisfies cither one of the mﬁn“ﬁ:iﬁjeqm}fﬂlem
equivalent

conditions:
y =Y - Y, for some positive divisor Y and some ¢ € V

oup 0 ! !
. lan ones, will be called

The associated Riemann form is equal to 0

It is obvious that the map
@p . a— Cl(6,/0) or ClX, — X)

is a hmnomﬂrphism of the torus V/D into the Picard group, and in fact into
the subgroup of elements ulgebralcally equivalent to zero, which is denoted
by Pico(V/D)- We shall be interested in its kernel.

Theorem 5.3. Let 0 be an entire non-degenerate theta function with Riemann
E. Then the kernel of ¢q 15 finite in V|D, and is represented by those

form
ents a € V such that E(a, u) € Z for allu € D. We have

elem

5

order of Ker ¢y = pf(E) = (d, - - * dn)".

where d,, . . . , d, are the elementary divisors of E.
Proof. We have seen in Lemma 5 1 that if (L, J) is the type of 6, which
we may assume to be normalized, then the type of the normalized theta

function in the equivalence class of 8, is (L, J — Eu). Suppose that a 1$ 1n
the kernel of @,. Then 6,/0 is equivalent to an abelian function. The type of

2 normalized theta function in its equivalence class is then (0, —E,) by the
above (depending on Lemma 5.1), and it is also (0, 0) since an abelian
function is normalized. This implies that

E.(u) = E(a, ) E L

forall u € D. But E is Z-valued on D X D- Hence it follows that if we

express a as a linear combination of a basis {uy, . .+ » taa} for D with real
coefficients, then in fact these coefficients arc rational and have '{}ﬂundﬂd
denominators. This means precisely that the kernel of @s lS_ﬁﬂltﬂ in V/D-
Using a Frobenius basis, one see€s in fact that the denominators are the

tlementary divisors d,, . - - » dn-
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lm . n . v
then a fortiori 1t 1s equivalent 1o

o ‘ unCIiﬂni . . 10Q
q trivial thetd fi assertion applies to prove the last

. ' hove
cm:sftailifabclian function |. and the @

statement. | '
function, normalized, with associate,

? n E””r[’ fhﬂrﬂ ’ 2 i .
Let ibff’ " space of H. Then Vy + D is of finjie
H. Let Vi

| of e, 1N V.

» non-degenerate case. Indeed

. eults at once from the non-cegt * . We

Froct T-I?;IS rLSl;“i;dﬂuccs 2 theta function on V' = Vi ”f’” » With respect to
know frﬂm5§~f‘g“;n vV, 160, ~ 0, and 0, is the normalized theta functiop

‘ 0 ' a y .

the .Im?gﬂs ' 0. then &, is of type (L./ — B P8 I i Sinke 0
g " on. it follows that £(a. D) C £. Buttia.D) = E(@, D),
' V/D. We can then apply Theorenm

Theorem 5.4

hermitian form
index in the kerne

is an abelian functi ! 1
Thus @ is in the kernel of 3, in the torus

5.3 to conclude the proof.

§6. Projective Embedding

Let & be an entire theta function, and let {6,, 6, ..., 6,} be a basis for

%(8,). Then we may view this basis as giving a map
Frxm (60, ..., 6,()

of V/D into projective space P", defined at all those points x where not all 6,
vanish simultaneously, and called the map induced by the linear system of
6. We shall see that if the torus has a non-degenerate Riemann form, then
there exists & such that the above map gives a complex analytic embedding
of the torus into projective space.

Instead of a basis for £(6,), we could just as well take a set of generators
for the vector space £(6). We would obtain a map defined at precisely the
same points. It is also useful to remark that the map is defined at x if and only
IflhEI:E exists some 6 in () such that 6(x) # 0. If 61is written as a linear
comt?xpatiun of basis elements, the condition that 6(x) = 01is equivalent to the
condition that thr:.image of the point lie in a certain hyperplane.

Let ﬂlf:re an entire theta function. Let X be the set of Its zeros, that is, the
:E;uizgf”ﬁ/ X such that B_(.r) = 0. We may view X as a subset of V, or as
Elements{:]fz)mlvb:?el:et ltbls cliear that X is invariant under translations by
is clear that X - is the setgmfggx- ;he - Ele*ments . \:vith K5 i
such that §-(z) - o) :1150 the theta fupctmn 6", that is, the fu.nctlﬂﬂ
consisting of al points » s . Sfli] for any point @ € V, the translation X
reason for defining g, 4 WIth x € X is the set of zeros of 6, (this is the

' we did, by the formula 0,(z) = 6(z — a)). The

Sets X, U -+ - U X, is the set of zeros

i S e e B e S ————_— e

§6. P

of the product 6, * = - 0, of the Corres
i
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Ponding thetg functions. In particular

is not the whole space.
Theorem 6.1 (Lefschetz). Ler g pe an entire
tion. ?hﬁnr*r}w map of VID into projective
system £(07) is everywhere defined, and is 4
into projective space.

Ron-degenerate thetq func-
Space induced by the linear

n analytic embedding of VID

Proof. For any points a, b € V, we obserye that the function
Ox — a)0(x - b)O(x + 4 4 b)

lies in £(0°). To see that the map is wel] defined, it g

: : : , 1t suffic
given a point x, there exist a, b such that the above pmducfri{iﬂ;w 1:lhm
0. But this 1s trivial: We first find a such that y — a does nm: lie incil:ﬁEIL to
of zeros of 8, and then find b such that 0(x — b)O(x + a + b) £ 0. In i;:ht

case this amounts to finding a point not lying in a finite up;
: € union of sets of ~
of theta functions. Zeros

Next we prove that the map is injective. In other words givenx,y €V
if x and y have the same image in projective space, then .r,and y ciii'fer by é
lattice point. That the image of x and y is the same means that there exists
a complex number y # O such that for all b, z, and all F of the same type as
8, we have

Fix —2)F(x — D)F(x + 2z 4+ b) = yF(y — 2)F(y - b)F(y + z + b).

By Theorem 3.5 we can select F in £(8) such that F is not a theta function
with respect to any lattice strictly larger than D. Let D' = D + Zuv, where
v =x — y. We shall prove that v is of finite order modulo D, and that F is
a theta function with respect to D'. It then follows that v € D, as desired.

Given any point zy, we can find b such that

F(x —bF(x +zo+ b)F(y = b)F(y + 20+ b) # 0,

and hence such that this inequality holds in a neighborhood of z,. This means
that in the neighborhood of z, there is a holomorphic function g having no

zero, and such that

F(x —2) = F(y — 2)80(2)

in the neighborhood of that point. It is then clear that such functions g are
analytic continuations of each other, and therefore that there exists an entire

tunction g without zeros such that for all z we have

Fx —2) =F(y — 280
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ritten in the form
y, this formula can be written 1N
Withe =X —
F(z + U) = F(2)h(z),
o function / without Zeros. The lh‘ﬂlﬂ relation for F now showe
TN unriviaf theta function, of the form

that & is in fact a t
nez) = €™

. : Furthermore U 1S in the kernel of ¢ unq s therefore of
where A is C-linear. orem 5.3. We can casily determine )

' : 2 ¢ (O D b}; The ) .
as 1011OWS.

Au) — L(v, w) € 7 for allu €D. But

J(u) — L(v, u) = Au) — L(u, v) — E(v, 1").

is real valued becausc 4, L are R-linear in z, and the

Hence A(z) — L(z, V) V over R. But A and L are also C-linear, and

elements of D generalc
consequently we must have

A(z) = L(z, v).

[t follows that F is a theta function with respect to D", and therefore concludes

the proof.

There remains to see that the differential of our projective mapping does
not vanish at any point, whence our map is an embedding since V/D is
compact. Select any point x, and a function G in £(8°) such that G(x) # 0.
Any F € $(6°) gives rise to a possible projective coordinate, such that the
corresponding affine coordinate when we dehomogenize with respect to G 1s
FIG. To see that the differential of our mapping does not vanish at x, it
suffices to prove that given a vector v € V, v # 0, there exists one such
function F such that

d(FIG)x)v # 0.

We may take a basis for V such that v = (1,0, . . ., 0). We have

d(FIG)(x) = LXMF (-I)G*-E ;‘ (X)dG (x).
:

Su :
PPose that for every F e L(6%), we have d(F/G)x)v = 0. Then

dF(x)  dG(x)

LY

Fi) " =G 0 =@

§6. Projective Embedding
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for 4 le{:d number «, and E\fcry F such
system, W€ have

that F(x) # 0. In our coordinate

dF (x)v = -ii:- (x), M e | oF
I'):.] F(I) e F(t) ?}Z_I' (I)
Let
| T
f(2) = ,
0(z) oz,

wherever defined. We select for F the function

F(z) = 0z — a)0(z + a + b)0(z — b)

with a, b arbitrary. Then we have

f(f‘-’—ﬂ)+f(-?f-b)+f(x+a+b)=g

for all @, b outside an exceptional set where the denominators on the left
vanish. Now we consider the function of z given by

fx =2) + f(x = b) + f(x + z + b),

which is constant, and differentiate with respect to each variable z;. We get

A of

— (x —2)=—(x b).
{?zj(_l ) z?zj-(t + 2z + b)

From the right-hand side, we see that these partial derivatives are constant for
some open set of z, whence it follows that in an open set of z where f 1s

defined, we have

1 d6

=aqz1+ *° + @z, + B,
0(z) dz,

with constants a,, . . . , a,, B. Let

Q'(Z) — %ﬂ'[z% + arZ1Z + + @212y T ﬂzl.
Then the first partial derivative of the function

8(z)e 1 = 6,(2)
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whence everywherc. This means that 6, (Which
only on 1t = | variables. But 6, is an eNtire
e have a contradiction of Theoren s 3

: i nt (O : dw
is equivalent on, an
eta funcll ng our theorem.

enerate
nondeg 5 4, thereby provin
H/gt’bmime’h’ independent abelian functions o, a

.y 1 . )
ry. There exist ! degeneraté Riemann form.

olla
Cor ga non-

rorus V/D havin
e can find abelian functions f,, 1
il

he point, that is, map a neighborhggg
nctions are obviously ulg{:bruit‘:ally

nt on the torus, W
| coordinates at!
(in C". These fu
y independent).

Proof. For any poi

which are analytic loca
of the point on an oper Bet)
independent (€VeN analyticall

letes the proof of the hypothesis we needed ip

o com .
The above corollary cOmp generated extension of a purely

§4 to see that the function field Wi'm[:; ﬁnttcly
l tension in n vari es. |
o omite iA = V/D, thendefine A to be an abelian manifolq

If D is a lattice in V an . . 1 :
if there exists a projective embedding of A. The above theorem proves:

Theorem 6.2. If (V. D) admits a non-degenerate Riemann form, then V|D
is an abelian manifold.

The converse can also be proved (see Chapter X, §3). We do not need

it for the rest of this book. Consequently for our purposes, it is more
convenient to take as definition that A is an abelian manifold if and only if

there exists a non-degenerate Riemann form on (V, D).

Appendix: The 1-dimensional Case

It. may'be useful to the reader if we recall here briefly the situation in
glmensnﬂn l. Tq deal with theta functions in this case, we need only use one
asic theta function, having a simple zero at all the lattice points. Let

D - [ml: ml]'

Because o - "
namely th f\;l?f:: one-variable situation, we can write down the function,
y the Weierstrass sigma function

—

U(Z)=z H (I —-i) exp r-_z.. +l(£)2 ;
W

2\ w

e

attic
, ¢ ﬁ:Dm which 0 has beep deleted. Taking the logarithmic
the Weierstrass zeta function, namely

,,‘[,[H:mli:c: The 1-dimensional Case.
f

109

wChH' L — W W m:‘_

l
§(z)=-+z|:___l___+l 3‘/\
z - -~ +.—|.

Taking the derivative once more yields minus

T IS ’ it ot . { . » q .
and one sees casily that it is periodic. Hence he Weierstrass ¢ -function

for any period ¢ we get

@ + W) = {(2) + n(w),

o(z + w) = Y(w) exp [n{uﬂ(z + %)] a(z)

with a suitable function (w). Note here that
L(Z, '[l‘.]') = n(f.d)z

is C-linear in z, and Z-linear in w, as it should. Th
. * ' ] u ‘ !
netion. Tt is easy to prove that S we see that o is a theta
Ylw)= 1 if 2 isa period,
Y(w) = —1 if w2 is not a period.

Fina!ly, to get a theta function associated with a divisor, we just take
ranslations of o, and products, for example,

ﬁ ﬂ'(z - ai)“i!

i=1

with suitable multiplicities. Thus the theorem to be proved in Chapter IX
becomes essentially trivial in dimension 1, because of the Weierstrass product

expression for entire functions.
Consider the linear system of divisors = —3(0), where 0 is the origin. In
that system, we have the Weierstrass § -function

—0(2) = {/{(2)

and its derivative ¢ '(z). The general theorem asserts that the coordinates

(1,9 (2), '(2))

. Only the
representa-
.2. mine).

are the affine coordinates of a projective embedding of the torus
Point at infinity (corresponding to the origin) is missing from this
ion. For more details, look up any book on elliptic functions (e




' describes the elementary theory of thlﬂmG{‘phiﬁlllﬁ and endo-
This Cha iy f an abelian manifold. First we relate the rational and complex
mﬂrphmmf'unsmtlu a purely algebraic representation on the points of finje
zsg.se?t;e? we prove the complete reducibility theore_n? of 'Pﬂin?aré, show-
ing that an abelian manifold admits a p‘mduct decnmpﬂsmpn mtg‘mmple ones,
up to isogeny. Finally, we deal with the duality whlch. arises from the
nondegenerate hermitian form, and show how the‘ dual manifold correspﬂqu
to divisor classes of divisors algebraically equivalent to 0. The duality
includes an essentially algebraic pairing between points and such divisors,
and a formula in the last section relates this algebraic pairing with the analytic

data and the Riemann form.

$1. The Complex and Rational Representations

Let D, D' be two lattices in V, V' respectively. Any complex analytic
homomorphism

Ao: VID — V' D'

can be lif'ted to-a C-linear map A: V — v making the following diagram
commutative,

A
V — |4

]

VD = D
U

§1

The Complex and Rational Ruprtﬁﬂnlﬂliuns

This follows {:u_sily by writing 4 power series @

origin, and seeing that the 'udd;llivity Property implies
of degree 1 are equal to 0 in this power series. Thus Jocall
A is C-linear. The global assertion follows, since for ;
a large integer N such that x/N is near 0. Then

X
)iu (N-E) = N,'[ﬂ (%)

whence Ao = A (mod D'). Of course one can also see
standpoint that the homomorphism A, lifts to the unive
of VID.

We shall usually use the same symbol A for the map on V and its induced
map on V/D. The ring of complex analytic maps

this from the general
rsal covering space V

A VID— VD,

i.e., of V/D into itself, will be denoted by End(V/D). By the above remarks,
this ring 1s represented as a subring of the linear endomorphisms of V, and we
call this the analytic representation of End(V/D). Its tensor product with the
rational numbers Q will be denoted by End(V/D)g. If A € End(V/D) (or
End(V/D)q ), and 1t we wish to distinguish its induced linear map on V, then
we denote the latter by V(A) or Ay, or Ac.

Let V/D be a complex torus as before, and let

D = [H]! SR :HEH]'
We now take V = C", that is, we fix a C-basis for V, so that we have complex

coordinates for elements of V, and we let ¢, . . . , e, be the unit vectors,
viewed as column vectors, so that

‘ 1 0 0
0 | 0

(€14« o s €)= ‘
00 ¢35

i - 1S
Similarly, we view Wy, . .., Uy, as column vectors, so that (uy, . . . , Uzn)

an n X 2n matrix of complex numbers. '
Let A € End (C*/D). Then A has a representation by an n X n complex

matrix C(A) with respect to the basis {ei, . . - , e}, and we have

(Aey, . .., Ae) =(er, . . -, &) C(A).




then

Similar multiplication
other hand, W€ also hav
D into itself. Thus

(AH;, .-

where Q(A) 1S :

consisting of the components of 1y, .

U= (4, - - -

Then

(e, -+ Ce)ey) = ( .

- be
s below are (0 . ; e
e the rational representation 0 (A), because ) maps
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understood in the same way. Op the

5 % I’l”:,;) = (“l& o e ) ler)Q()l);

q 2n x 2n rational matrix. Let U be the n X 2n matrix

i,, that 1s

" “3!:)-

(.JLH], v e oy A“ln) - (Eli R EJI)C()‘-)U

and also

(Atty, . .., A = (e, . .., e) UQ(A).

Therefore obtain the relation

C(A)U = UQ(A).

Theorem 1.1. The matrix

IS non-singular (where the bay denote

Proof. Let M be the 4

EXISIs a complex vector

column vector). This implies that /7

s complex conjugate).

bove matrix. Suppose M is singular. Then there
Z (2n-tuple) such that MZ = 0 (we view Z a8 8

= 0and UZ = 0, so that also UZ = 0

2 Rational and p-adic Representations

Hence

'._—|—|_|_|_

Both Z + Z and (Z ~ _/I}/z' are real matrices, and o
implies a relation of linear dependence over
which is impossible, and proves our assertion
Theorem 1.2. The rational represe

ntation A — O () ; o
direct sum of the complex represe Q(A) is equivalent to the

ntation and is conjugate

Proof. By Theorem 1.1, the matrix

(0

is invertible, and by the above relation, we also get the complex conjugate
relation, namely

C(AU = UQ()).

C() 0 \(U\ (U
(2 o) - (7)o

This proves our theorem.

Therefore

32. Rational and p-adic Representations

Let p be a prime number. The points of period p” on V/D constitute the
subgroup

]
VD,.:-—,,DD,
(V/D) - /

Let 7, (V /D) be the set of all infinite vectors

(ﬂ], ﬂzl ﬂir i S ')

a group under

SUc — a.. Then T (VID) 1S .
ch that a, € (V/D), and pa,+ = a: £ If z is a p-adic

Componentwise addition, and is called the Tate group.
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gefine an operation of Z 27 7;; (;'i/)D ) & j?j}l”_‘”z We seleg
integer, We ¢ ; , such that m = = (mod p 2 7 t’ : = Uy we defip,
an ordinary integer Zepcndﬂﬂl of the choice of m. We then define
This 1§ 10
-q = M | )
ol Ly =5 O F (zay, 202, - - )
: n T, (V/D), which therefore becoma.
: we gﬂl an ﬂp‘crﬂ[l{}ﬂ Gflzp on 1, (/ CDI“L:&
It is clear tha ithout torsion.

and clearly 15 W

dule over Zp, | _ e
B Jimension 2n over Ly, if n is the compley

Actually, T,(V/D) is free of

dimension of V-

This is easily proved as follows. Letxi, -« - » Y2n be vectors in T,,(V/D)
1S

‘ _a,, are linearly independent over th,
f .t components dyi, -« ; I e .
ey ﬁl;[ Thﬂl;l these vectors arc linearly independent over Z; for if we
field z,plaiiﬂn oF ljiait independence, we cuyld assume 'lhut not all the
hadﬂi:dfms .re divisible by p, and hence the projection of this relation on the
coe

iradict the hypothesis made on the a;;.
t component would con ¥po : |
ﬁrSNext ]:.fe show that the x; form a basis of T,(V/D) over Z,. We prove this

by an inductive argument. Suppose that we can write every element w of
=
T,(A) as a linear combination

(1) w=zix + ¢+ ZamXom (mod p"T,(V/D)),

with integers z; € Z. Letw = (b, . . ., b., b+, . . .). By definition, we
have for the first r + 1 components

I:'j(ﬂ]_“ ‘ W % 3 H]_,—H) + "+ Ejr(ﬂlr,l: s ey ﬂ:".Jr;r%-l)

— (bh & W T R b_r, b_r+]) + (0} e ey 01 Cr+l)

for some ¢, € (V/D),+,. By the very choice of the vectors x;, there exist
integers d,, . . . , d», such that

Cre1 = dlprﬂt.rﬂ i dgrprﬂgrir.u.

If we replace z;, . . . | 2, byz +dip’, ...,z + d,,p", we see that we
havel e;tﬂnded the congruence (1) from r to r + 1. This gives us what we
wanted.

We define the p -adi . .
et of veotns i€ counterpart of the space V' by letting V,,(V/D) be the

(a0, ay, @y, . . )
such that g, € (V/D),

on the first co for “ome r, and pa, | = a, for all r > 0. Projecting
ponent gives an exact sequence

0— Tp(V/D) e VI?(V/D) — (V/D)(p] — 0,

§ Rational and p-adic Representations

(P J¢ ¥ - :
where (V/D)'"” is the union of (V/D), for 41 positive ing |
et of points of p-power order on the torys (V/D) cgers r, that is, the
" We have a natural isomorphism '

|

obtained by multiplication by p".
isomorphism

(2) T,(VID) ~ Z,®, D.

If A € End(V /D), then we can represent A as a Z,

: -endomorphi £
T,(V/D) by the obvious action p rphism o

T,’l(’l)(ﬂh dar, . . *) == (Aﬂl't )"ﬂl! .o ')1

and, similarly, we get the representation of V,(A) on V,(V /D). This represen-
tation of End (V /D) on V,(V /D) is called the p-adic representation.

Theorem 2.1. The p-adic representation of End (A) is equivalent to the
rational representation.

Proof. Obvious from the boxed isomorphism (2) above.

The p-adic representations on points of finite order were f}rst introduced
by Deuring and Weil, apparently more or less simultaneously in 1‘9{0, 1941.
Deuring used them extensively in his paper “Die Typen der Multiplikatoren-
ringe elliptischer Funktionenkérper,” Abh. Math. Sem. Hamb. 1941, pp.
197-272, and his previous paper on the theory of corrcs;)ondencels in the same
year. Weil mentions them in his paper, “Sur les fonctions algébriques a corps
de constantes fini,” C. R. Acad. Sci. Paris 210 (1940), pp- 59?-"5?43&“‘1
develops them considerably in his book on abt?lian varieties. For appltc?tlo:;
to complex multiplication, cf. the book by Shimura and Taniyama men :?1: 2
in the bibliography. Tate notice around 1957 that by taking the nverse ulci
L.e., the infinite vectors as defined at the beginning of this section, rg]n: cao i
get actually a module over Z, (or Q), which gives a more naiu y

describe the representation.
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and B another complex toryg B
he additive group of complex analytic hmmmmrphis[m
ean :

|| study some general properties of such lmnmmurphimm,
ha hcumplex torus as above. By a subtorus we mey, a

is a complex linear subspace of V, D' = D N v

Let A=V/D be a complex Orus,
t A=

Hom(A, B)we
of Ainto B. We s
jetA=V/D be L}
worus V'/D’, wherf:rl*’
D' is a lattice in V.

y And

Let A, B be complex toruses and let

f1A—>1B

be a complex analytic homomorphism. Then Im fis a complex subtoyy
ea . _

of B.

Proof. Let A = V/[D and B = W/C, where V, W are finite dimensiong]
vector s;:;aces over the complex numbers, and D, C are lattices. Then 1 lifts

to a C-linear map

FoV=— W,

so f(V) is a C-linear subspace of W, and f(D) C C. Since the image f(V/D)
is compact, it follows that f(D) is a lattice 1n f(V), thus proving that f(A) is
a complex subtorus.
Similarly, the kernel of f contains a subtorus as a subgroup of finite index.
Also observe that if f: A — B is any homomorphism (complex analytic,
of course) and f # 0 then Im f has dimension > 0, and for any integer
N >0 we have Nf # 0. Thus it follows that the natural map

Hom(A, B) - Hom(A, B) ® Q = Hom(A, B)

IS injectives.
By an isogeny

f:A— B

WE mean a (complex ana

finite kernel. If fis such any ) homomorphism which is surjective and 0

iﬁ‘?fge“}’_, and NV is a positive integer such that every

such that p . r— n.:
§ f N id. Nﬂte that AN = (Z/NZ )2” where n = dim A'

g4, Complete Reducibility of Poincaré

Furthermore, if f1s an isogeny, then it has an i
N-'g where g o f = N-id. We denote this ;
usual.

4, Complete Reducibility of Poincars

Call a complex torus A simple if it has N0 complex subtorus of dimen-

sjon > 0. Then any non-zero element f € End(A) = Hom(A, A) must be
an isogeny, and consequently has an inverse ip End(A)y,. There'fnre End(A)
is a division algebra. )
[t is false that a subtorus usually has a com
use the existence of Riemann forms to

called Poincaré’s complete reducibility
Let A’ = V'/D" be a subtorus of A = V/D. If (V, D) has a Riemann form
E, then the restriction of E to (V', D) is obviously a Riemann form, which

is non-degenerate if E is non-degenerate. This is clear from the positive
definiteness of the associated hermitian form.

plementary subtorus. We now

Theoremd.1. Let A" = V'/D’ be a subtorus of A = VD, and assume that

(V, D) has a non-degenerate Riemann form. Then there exists a subtorus
A" = V' D" such that

A=A+ A" and A" N A" is finite.

Proof. Let V" be the orthogonal complement of V' with respect to the
positive definite hermitian form H associated with the Riemann form on
(V, D). By the Gram-Schmidt orthogonalization process already used in
Chapter VI, §3, we can see easily that the orthogonal complement D" of D

in D (which is discrete) has complementary rank, namely

2n — rank of D'.

Hence it is a lattice in V”. The sum D’ + D" is then of finite index in D, and
the theorem follows. Note that in the orthogonalization process, we can solve
first with rational numbers, and then multiply by a_pprppriate positive integers
to clear denominators. This gives rise to the finite index.

In Theorem 4.1, it is clear that the sum map
A; X A" —_ A

- . . . aheli anifold is 1sogenous
Is an isogeny. Theorem 4.1 implies that any abelian m

0 a product
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AIXA:X"'XA"_;A'

is simple. . o :
rA;l P (o isogeny, then follows according y the

: .5 in basic algebra.
rc for semisimple modules in ba h g oo
usual urgumnnlhd(m@ Q has a direct product decomposition into matriceg
. En If A is isogenous 0 & product

. (O
Iha{ {:dCh fac . 5=
su{’:lljhﬂ UniQHEﬂL‘SH ﬂf thﬂ factors, up

Bxb‘x*"xB

ifold repeated r times, then
f the same abelian manifold repeated r times, the
0

End(A) ® Q = Mat, (End(B) @ Q),

here the right hand side is the ring of r X r matrices, whose components gre
whe

in End(B) ® Q.

§5. The Dual Abelian Manifold

Again let V be an n-dimensional vector space over C, *:.vilh a lattice D, and
suppose that (V, D) admits a non-degenerate Riemann form. We shall then
call the complex analytic torus V/D an abelian manifold. When V/D is
embedded in a projective space, as an algebraic subvariety, its image in
projective space is then called an abelian variety. We shall continue,
however, to deal with the abelian manifold and theta functions. I follow Weil
[7] in this section.

We denote by V* the complex antidual space of V. It consists of the
antifunctionals, that is, of the maps

E: V- C

which are R-linear and satisfy £(ix) = —i€(x) for all v € V. We denote the
value of ¢ at an element x of V by

(&, x).

Thus (¢, x) ¢, x) is a bili
:  X) | Inear map f " |
If £ € V* then ¢ (whose Pt bk

C-linear. Thyg the i value at x is £(x)) is a functional, i.e., i
functionals, Note ;:u LTC,“““HIS are merely the complex conjugates of the
-Space in order o m::(: . vector space over C. (We take the antidu#l
analytic.) 4 Cerain map ¢, analytic later, instead of anti-

f €€ Ve then 2:c ...
e en £ is uniquely determined by its imaginary part. Indeed,

§5. The Dual Abelian Manifold
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£=p+ip,

where p = Re £and u = Im £ Then §(ix) = —i£(x) means that
a

pr(x) = plix)  and mix) = —p(x)

Conversely, given an R-linear map KV —R, wec

‘ : s ’ dl dEﬁ - i "

jonal £ = p + in, by letting p be the function given in tenr:f 3[} e

above relation. kA,
We obtain an R-bilinear map

(& x) = Im (¢, x),
which is non-degenerate by the above remark (that u determines £). There-

fore, from elementary algebra, we conclude that the set of elements u* € y*
such that Im (u*, u) € Z for all u € D, is a lattice D* in V.

Lemma 5.1. Let C, be the group of complex numbers of absolute value
I. For each & € V*, let X; be the element of Hom(D, C,) defined by

Xe(u) = e?mImw)
Then the map &€ — X¢is an isomorphism between V*ID* and Hom(D, C,).
Proof. Our map §— X, is clearly a homomorphism. Suppose that
Xe(u) =1 forall u €D.

This means that £ € D*, and conversely. Hence our map is injective on the
factor group V*/D*. To see surjectivity, suppose given a homomorphism
D — R/Z. Since D is free, we can lift this homomorphism to an additive
map i : D — R, and such a map can then be extended by R-linearity to an
R-linear map V — R, since D spans V over R. As we remarked above, u
Is the imaginary part of a complex functional £, thereby proving our lemma.

Let £ be a non-degenerate Riemann form on (V, D) and let H be its
associated hermitian form, so that E is the imaginary part of H, and

H(x, y) = E(ix, ) + iE(x, y).

There exists a unique C-linear map

(PE:V_'}V*

such that
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Hx, y) = (ee()s y)

parts, and recalling that £ (i,

) li{:q .
; . , 9 ]
¢ D into D*, that 1s, induces :

7 Takin imaginary '
C K. : 4 homy,.

-y amg & D, we see that ¢ map
ism. also denoted by @&

@k - ViD= V¥[D*.

[ is non-degenerate. Then it is clear that f1 1s n(Jrn-(Jf;gf;m,_trmE

that . . G & cac
Suppose V— V¥ is an isomorphism. In this case we can

and that the map @k - .
transport £ to V* by defining

Ex(op(x), @e() = E(, y),

or equivalently

ExE 1) = E(ei' (), &' ().

Note that ¢ maps D onto a sublattice of D*, and hence some integral multiple
of ¢ maps a sublattice of D onto D*. Among other things, we have proved:

Theorem 5.2. Suppose that E is a non-degenerate Riemann form on
(V. D) and let E* be its transport to V*. There exists a positive integer m
such that mE* is a non-degenerate Riemann form on (V*, D¥),

We now see that if V/D is an abelian manifold, so is V#/D*.
Let A € End(V/D). We can define as usual its transpose on End(V*/D¥)
by the condition

(‘A€, x) = (£, Ax).

me th.is and a non-degenerate Riemann form E on (V, D) we can define an
involution on End(V /D) by the condition

N =Af = 07 Aoy

It will be an

A= X s inlmmed;ale consequence of the next theorem that the association

deed an involution, that is an anti-automorphism of period 2.

Thm::em 3.3. Let E be q n
4ssociated hermitign form
With respect 1o H, that iy

on-degenerate Riemann form on (V, D), with
H. Let X' = \L. Then \' is the adjoint of A

H(M. }’) — H(I, A-"),),
Therefore tr(ALA") > 0 if A * 0,

x,yeV,

86. Relations with Theta Functions
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proof. 'Trivial computation as follows .

The usscrli?q about the trace comes from standarg elementary linear a

ndeed, AA" is self-adjoint, and so can be diagonalized in ry linear algebra.
on V. Furthermore, AA™is positive as an operator on v so all the diagonal
elements are positive, so their sum (the trace) is ~ () lagona

Note that the trace in the theorem is the trace with res

rcpresentaliun. iSince the rational representation is a direct sum of the com-
plex and 1ts conjugate, it follows that the positivity statement also applies to
the rational representation. Furthermore, since the rational representation is
defined over Q, the trace is Q-valued on End(A).

pect to the complex

§6. Relations with Theta Functions

A normalized theta function is said to be algebraically equivalent to 0 if its
associated hermitian form H is 0. By (4) of Chapter VI, §1, this means that
for such a theta function F, the functional equation takes the shape

F(x + u) = F(xX)Ye(u),

where = : D — C, is a character of D, uniquely determined by F, and which
we shall call the associated character of F. In previous notation,

!ibF (H) s E?.m‘h"[u‘.i_

It depends only on the linear equivalence class of F. Conversely, two
normalized theta functions which are algebraically equivalent to 0 and have

the same associated character are linearly equivalent.

The group of theta functions modulo equivalence, and mc}d.ulo the sub-
group of those linearly equivalent to 0 was defined to be the Picard g{;'oup
(of divisor classes). The subgroup of those algebraically equivalent mPi wa;
denoted by Picy(V/D). We deal only with the latter, and so call it the Picar

group for short. o
p t duces an injective homomor-

Pico(V /D) — Hom(D, Cy).

We shall see in a moment that it 1s an isomorphism.
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a 5.1, that if @ is normalizeq of |

[, Lemm ized and i
. R ! r » l R ?
function which 1S normalized and in the samq clags

(L, J), then ! E.). Also recall the map as

Po /g Cl(ﬂufﬂ)t

d note that the normalized theta function in the class of 6, /6 is “Igﬂbfﬂiﬂully
and notc

" [ [D 0' " s . . ’ » |y . .
Eq?lf;zlsgaractﬂr Jssociated with the linear equivalence class of 6,/ i there.

fore equal to

~dmik(a, u)
e .

6.1. Let 6 be an entire theta function with non-degenerqq,

Theorem : :
ve a diagram which commutes wig), fac

Riemann form E. Then we ha

tor —1:

V /D _L V*[D*

(,PHI (=1) JX

Picy(V /D) — Hom(D, C,)

The right vertical map X is the isomorphism induced by ¢ Xe of
Lemma 5.1. The bottom map associates with each element of Pic, its
associated character, and is an isomorphism. In particular, the homomor-
phism @4 has finite kernel, and Picy(V /D) is isomorphic to V*¥|D¥*,

Proof. The theorem is obvious by putting together what we know. Start
with an element x € V. Its image ¢, (x) is characterized by the condition

X{_.: TR EZTHJE[‘LH}

On the other hand
associated character We have seen that going around the other way, the

¢-2miE(s n??ﬁ::{;:{ﬁlﬁ normalized theta function in the class of 6/0 i
Since gy s Suriectiy 2 G 1)-Cﬂmmutativity clear.

follows that the bott > the right vertical map is an isomorphism, it
oM map i surjective, so an iIsomorphism as desired.

Next we ident
: entify ¢ ; ,
Phism, ey J tWO possible VErsions of the transpose of a homomor-

)t ‘ VI/DI —> V/D

6. Relations with Theta Functions
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, transpose, such that for z '
the transp EVand £ € v* g, have

<)"'*§1 Z) - {f, n')lz)
We use the transpose notation ‘A for the induce map
‘A . Picy(V/D) — Picy(V,/D,)

which sends a divisor on V to its inverse Image on Vi. In terms of theta
. c

functions, 1f £ 's a theta function representing a divisor on V/D then F « )
represents the image of this divisor under ‘), o

Theorem 6.2. The following diagram is commutative:

Al

V¥[D* —  V¥/D%

*I [a

Picy(V/D) T Pico(V,/D)).
The vertical maps are the natural isomorphisms, which make correspond
e Yy« F
where
Ye(u) = ™™ and  Fe(z + u) = Fe(2)Pe(u).
Proof. From the equalities

Feo A(zy + ) = Fe(Az) e (i))
= Fe(Az) + Auy) = Fe(Azy) Y, (Auy)

We conclude that
dlffal(ui) - WFE(‘AHI)'
Then
Ynee(ty) = o 2milmAtEu) — ezm‘hn(f.lul} - !l’f(f\ul)*

Therefore F).¢ has associated character Yreg, and the commutativity is clear.
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_ .nerate theta function, giving ric

o Jet @ be an entire non-degene & Tise to the
Now

hnmﬂrmaphism
@o - VID — Pico(V/D).

v define an involution
; D). We may (
Let A E End(V/D)¢
Ao = @i o 'Ao @
Picard group.

where ‘A is the transpose OD the

the Riemann form associated with 0. Then g, fo

Theorem 6.3. Let £ be
involutions A¢ and Ag are equal.

Proof. This is an immediate consequence of the preceding two theoremg

and of the diagram:

yepr ——  V*/D*
N \\fﬁ
/PE |

The central square is commutative, and the two end triangles have sign —|,
which cancels.

V/D

# Picy(V/D) —— Pico(V/D)

Let X be a divisor on V/D. We denote by ‘6(X) the set of all divisors Y
on V/D for which there exist two positive integers m, m’' such that mX is
algeblraically equivalent to Y. We call ‘€(X) a polarization of V/D if 4(X)
contains the positive divisor of an entire non-degenerate theta function; or
equwalenﬁtly,i If some positive multiple of a divisor is a hyperplane section in
"Ome projective embedding. Suppose that X is the divisor of the entire theta
function 6, and is non-degenerate. Then it is clear that the involution

A= Ay

%Eieifs on'y on the class 6(X), and therefore A is also denoted by A¢, where
of the info arization 6 = 6(X). Theorem 6.3 gives an analytic description
olution defined purely algebraically by the formula

A A

37. The Kummer Pairing

We shall now deser :
dual Vé/pw scribe the p-adic versjon of the duality between V//D and IS

§7 The Kummcer Pairing
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Let g & V* be such that N§ € D* for some Dositive :
application later, we :~.'hull consider the cage when N o Cinteger N. (In the
the moment, 1t l% nututmr}ully convenient to work with : d ipﬂweﬁr of p, but for
recall the two iIsomorphisms

Piﬂn(vﬁ)) =~ Hom (D, Cl) == V*/D*

Therefore, with & we can associate a normalized thet:
entire) fe, well defined up to multiplication by an abeli:
ally equivalent to 0, and satisfying

ftf(.‘f + H) — f('t)[ljf(”) :f‘(xjel?rr'lm(f.u}

forx € Vand u € D. Given a finite number of values of y € p

always find x sufficiently general in V such that the terms in ll;EWEbEEH
equation are defined. The condition N¢ € p* implies that f¥ is an a;elize
function. It @ € V and Na € D, it follows that there exists afn N -th root nl}
unity ey (€, a) such that

fe(Nx + Na) = ey(§, a) fe(Nx).

[tis clear that this root of unity does not depend on the choice of f; in a linear
equivalent class, nor on the choice of € (mod D*) and a (mod D). Therefore

the association
(&, a) = ex(§, a)
gives a well-defined map
(V*¥/D*)xy X (V[D)y — p,

where py is the group of N-th roots of unity, and it 1S trivially_veriﬁed that
this map is Z-bilinear, i.e. is a pairing. It is equally easily verified that tl}e
kernels on both sides are 0, i.e. that the map puts (V¥/D¥)y and (V/D)y 1n
pertect duality.

st. Suppose that 6 is a

There is a ial case of & which is of intere
L b ; d Riemann form E. If

nondegenerate entire theta function, with associate
b € V, then there is a unique normalized theta function fin C1(6,/6), whose

4ssociated character is —E,. We suppose that N0 (e D')’ andDNﬂT-T;eg
(mod D), in other words, b and a represent points of order N in V/D. v
;hﬂ root of unity ey corresponding to this special choice can be written 1

orm
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—2miNE(b.a)

ﬂ,ﬁ,wﬁ.(b), gl = €

+ions. and Theorem 6.1.

s : o L 3 * 3 N
the p-adic version. Instead of N we use p¥ i the

ding discussion Then (V/D)y really means (V/D),~, and similarly fo,
precedi :

. B i"'lT"l . . v % 4 i :
#). and wy. When we pass from p top" T, ILIs casily seen that the
(VVD )i'; ?;I;n;’;l;;:ﬂ[ with respect to the inverse limit, that is, that if
pairing 1 -

Now let us pass 10

p;'n.'Hg e D* and pN'rlH cD,

then
evs 1 (€, @)’ = ex(pé€, pa).

Therefore we can express our pairing in terms of the Tate group, and we
obtain a Z,-bilinear map

T,(V¥D*) x T,(V/D) = T, (),

which make the two Z,-modules on the left Z,-dual to each other. Note that
T,(u) 1s formed of vectors

(§|1 g!a g’:’u ¢ o )

where {y is a p"-th root of unity such that ¢§,, = ¢y. Thus T,(u) is a

I-dimensional space over Z,, which cannot be identified with Z, unless we
have selected a basis.

_ “l;l_en;]ark. The advantgge of the root of unity ey (€, a) and the p -adic pairing
;5 acd[ they hold algebraically. When we embed an abelian torus in projective
pace, we oblain the complex points Ac of an abelien variety A, which may

be e
defined by equations over a field k. As we shall see in the next chapter,

the zeros of ; ion i
s of a Ihelzf function in V correspond to a divisor on A. One can then

(€, a) corresponds to a purely algebraic definition

; class correspondi i ots
of unity then lie ; ponding to £ on A. The resulting ro
extensi}ngﬂgflf g&:he Fﬂmplex numbers, containing , but generate possibly
over Q, and N suff S 15 always the case if we take k to be finitely generated

ciently large). Then these roots of unity, and 7, (u), have

an be used as representation spaces for the
osure of k, thus giving an additional tool
more arithmetic aspects of the situation. I
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.« then ubst_lrt_l In HUChji context to identif
operates trivially on L,.

For the algebraic theory and applications
hooks of Lang, Mumford, Shimura, and WeijL

Y T, () with Z,, since a Galojs group

the reader 1S referred to the

s8. Periods and Homology

LetA = V/D beacomplex torus, and pick an iso
complex coordinates zy, . . ., z,

we first observe that the holomorphic 1-formg
complex numbers by

morphism of V with C”, with

On A are spanned over the

dzl-! L SR R dzﬂ-

Proof. The coordinates z,, . . ., z, define a complex analytic chart af
every point of A.  Any holomorphic 1-form has an expression

f](Z')dZ] e @it o +fﬂ(z)d2ﬂ

at every point, where the functions f,, . . ., f, are holomorphic, and the
functions which form the coefficient of dz, at every point are then analytic

continuations of each other on the torus. Hence they are holomorphic on the
torus, 1.e. periodic, so constant. Hence dz,, . . . , dz, form a basis of the
|-forms over C, as was to be shown.

Denote the vector space of holomorphic 1-forms on A by (),(A) = {),. We
have a pairing

H](A, Z) X n[ — C

given by

(v, m)n-arJ’ w.

"
This induces a homormophism
H|(A. Z) -y ﬁl

nto the dual space. We shall prove that this map, B injectizve, ?&dAﬁ;:e:;S
Image s a lattice, giving rise to an isomorphism of {l/H(4, L:d that it has
First we note that (2, can be viewed as a real vector Space,

dimension 2n over R. Indeed, the forms

dz\, . . ., dZy, 121, - - - , idz,
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dent over R, a5 one sees immediately since if we Write
are ]Iﬂﬂ'ﬂri.‘f :
7 =X+ Db then

[!wl 'r!"*li s ¢ * ¥ fitiﬂ‘ ff.-'r”

“c;.fclu in H,(A, Z), then the map

.I"
P — (U
0

sn on A, which is therefore constant, and there.

hic functic e . ;
?gﬁms a :]T{iugmr}gcnﬂﬂ w = 0. This implies that in the above pairing, the
ore equi -

Vin ), is 0. Since H (A, Z)isa free abelian group on 2 generators.
kernel in £, 15 U. ; real rank = 2n, it follows that this real rapk

fore its image in {2, has
and therefore 1ts IMage 1 _ ! | S — '
must be equal to 2n, and therefore that H,(A, Z) may be viewed as a lattice

n Ql-

There is also a natural isomorphism

D— H\(A, Z),

obtained as follows. The group D may be viewed as the fundamental group
of the covering

p:V—-o>V/D = A,

Ifu €D and/, is apath from0towinV, then p o/, is a cycle on A. The
association

u—classof pol, in Hy(A, Z)

gives rise to the above 1Isomorphism.
Thus we obtain a natural embedding

P: D — H\(4, Z) > Q)

whgset;]mage in ), will be denoted by D

o ’ :

is a E‘ Other hﬂ.nd' let z € V. Let l. be dny puth from O to z. Then p o [,
Path in A, which we A * ;

1o the functiona] 4y View as an element of (),, that is, giving rise

W > L
W -—j pP*w.
pt":‘_h ﬂ

Thus we haye Extended the map pto a m
ap
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rheorem 8.1. The map py is a C-J; oo 13
phisi » inducing an isomor-

Pa VID — QD = i1 (4 7).

proof. Foreach j =1, .. . n we have

£ N
- AT — .
HJ- T— Z'._ ; e
J;} : ‘

Thus it is clear .lhal_ the map is C-linear, and we have already seen above that
it induces an in jFCl!VE map on D, This proves the theorem, since D generates
v over R, and its image generates (), over R (being a lattice)

Now let {wi, . . ., w,} be a basis of (), over C. Let A be the abelian
group of periods, that is the group of elements

f (Wi, . .., w,), forall y € H (A, 1).
Y

Theorem 8.2. The map

P
Pr—:-J (@, . ... ©)
0

establishes a complex analytic isomorphism of A = V [D with C"/A, send-
ing D on A,

Proof. The map is well defined, from V into C"/A. The above duality |
immediately implies that the kernel is D. The map is locally surjective in a OEE
neighborhood of the origin because dzy, . . . , dz, are local analytic coordi- -
nates, and it is surjective by additivity, and the fact that given z € C”, the
element z /N is close to the origin for N a large positive integer. Since the map
Is obviously analytic, the theorem follows.

Theorem 8.3. Let
f:vV/D— VD

be a complex analytic map such that f(0) = 0. Thenfisa homomorphism.

Proof. Let Q,( f): Q(V'ID") = O,(V/D) be the induced linear map on
holomorphic differential forms, obtained by pull back. We further get the

dual map (linear)
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VII. Homomorphisms apg Dualjy
Iy

a.(f) : VD)~ Q,V'/D"),

jally verified by the change O

d it is trv
. am:

jve diagr _
commutat! i

f variables formula that we have ,

a,v/p) — V'ID")

——
L

o -
V —p

Hence f is linear, as was to be shown.

v.!'

pyv

cHAPTER VIII

Riemann Matrices and
Classical Theta Functiong

§1. Riemann Matrices

Let H be a positive definite hermitian form on C*. We may write H in terms
of its real and 1maginary parts as

H(u, v) = E(iu, v) + iE(u, v)

where E is alternating and real valued. By convention, H is linear in the first
variable, and anti-linear in the second. Let A be a lattice in C”. We call H
(or £) a Riemann form for the pair (C", A) if

E(u,v) €Z for u, v €A.
Note that the form (u, v) — E(iu, v) is symmetric positive definite. Let
W=(w,...,Wu

Pe a basis for A over R. We view w; (j = 1, . . ., 2n) as column vectors
n C", so that W is an n x 2n matrix. Elements of C" may then be written
In the form

Wx with x € R*,

: : . 2
‘.a"d elements of the lattice may be written In this form with x € Z*", There
'S @ unique alternating matrix P such that
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E(Wx, Wy) = 2Py,

_p. Thus the matrix P is the matriy |

: aete (W D2 Cpre.
respect to the standard basis of R, |

» means that P = ‘
N fact,

“AlteatinG form with

senting the alternating
if P = (pyj) then

A ™ W
E(wi, W) = Piyr 1]

.l matrix such that
Let C be the 2n X 2n real matrix suc
iw = WC.
Then
E(iWx, Wy) = E(WCx, Wy) = X CPy.
It follows that 'CP is symmetric positive, and we also have
‘CP = -PC.
The following two lemmas express in terms of the relevant matrices two
conditions characterizing a Riemann form, namely the facts that the form
E(iWx, Wy) 1s symmetric and positive definite.
Lemma 1.1. The symmetry of 'CP is equivalent with the condition

WpP-""W = 0.

Proof. This symmetry is equivalent with the condition

= ("H:’) CP"]("W CW W ~lt oyt 17
W ’H/):WP C('W, "W).

Usin e o o
e g once more the df:‘ﬁmllﬁn W = WC and pe rforming the matrix multipli-
10ns, yields the desired conclusion.

Lemma 1.2, The marriy associated with H is

M =2i(Wp-trwy-1 5 o,

and so ,
Joru, v € C" e have

above. It is clear that M 1S

g/, Ricmann Matrices

rermitian.  Thus it will suffice to show (hy

H(H, H) = '“M'E‘

o 1y =l be i times the unit n x , matrix. Then

0 —i/\w) ™ (‘,’,"-,) C.
Since H(u, u) = E(iu, u), we put u = Wy to obtain:
- | ’
— XPCx = — P (E) Iy 0 _1{ *
W 0 —iﬂ 1% i
e A -1 /s
i II(IW, ru/)(rw, rw)—lp(%) (I,, G)(}E) o

The terms on the far left and far right are (‘u, '%) and (u, w) respectively.
We then carry out the matrix multiplication for the middle product which is
equal to

H(u, u)

W P*l(fw Mnis ]
7
We use Lemma 1.1, and we use the fact that
0 X\' [0 r')

Y 0 TAX sl

with the appropriate matrices X, Y to find that the above expression for
H(u, u) is equal to

=

i'u(WP™ W) T — i T(WPT W) = 2iu (WP W),
This concludes the proof.

Now let W = (w,, w,) where w,, w, are square matrices, let

0 "lq
e T
and suppose that P = J. Performing the matrix multiplication, we see that
"elations of Lemmas 1.1 and 1.2 can be rewritten as:

RR 1. o, ‘0, — o, 'w, = 0, or equivalently WI'W = 0.
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‘ z 3 [ "
g Y 5 (000 eqmvm’en!/_}- IWJ'W > 0.
= Moy — W) W2 :
RR 2. /(w2 @i | |
Taking an mnverse and

- El EGI“ !
uivalent with Plex

the Riemann relations.

These are callec e second one 1S €4

conjugate, We see that
w, '@2) > 0.

RR 2. (2@ —

[ et Rt be the set of all pairs (@, @2) of n x ncomplex matrices Satisfying

the Riemann relations ub;::we. A‘-.. u;;ni;uc}] o
1St f all matrices M ¢ ‘
GL.,,(R) consisting O

MJM =J.

Then Sp.. is closed under transposc.

Let §, be the Siegel upper half space, consisting of all matrices

» € Mat,(C) (n x n complex matrices)

which are symmetric and whose imaginary part is symmetric positive definite

Lemma 1.3. Let (w;, w2) € 9.

(i) Ifg € GL,(C) then g(w, wz) € R.
(i) IfM € Spy,(R) then (w;, w:)M € N.
(iii) The matrices w,, w, are invertible.
(iv) We have wi'w, € D,.

Proof. The first two assertions are immediate from the definitions of R,

SP2., and the Riemann relations. As for (iii), suppose there exists a vector
v € C" such that ‘vw, = 0. Then

whence v = 0 by RR 2. Hence ;' exists. Furthermore J € Spa.(R), so

(~wy, 0) = (0, w,)J € R

by (ii), and therefore ;! exists thus
by (i) and therefore (1v) follows
concludes the proof .

proving (iii). Finally (w5'wy, 1,) € R
from the Riemann relations RR 2. This

In llgh[ of Lemm: :
Relations reaq: M1 i = 2 ang ®; = 1,, then the second Riemann

Thus let d,, ...,d,be positive Integers such that

|, we let Spx, (R) be the subgroup of

§2 The Siegel Upper Half Space
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we have 1O consider the slightly more
ﬂsmciuted with the Riemann form £ is not

géneral case whep

t ®
J but has he matrix

elementary divisors.

Aold] =« |,

and put

...- = diﬂg(d’” IR SR dn)*

Given the Riemann form E integral valued on the

latti . ,
., wi,} of A such that tice A, there eXx1sts a basis

{wy, -
Ewj, w)) =J; = ( 0 3 ‘
-0 0
Then
E(W’x, W-‘}r) — fl‘.f,-gy for X,y € R:!n_
Let

1 0
U=(0 6) and W=WU"'!' so W = WU.

Then matrix multiplication shows that
E(Wx, Wy) ="'xJy
and
A =WZ"=WUZ™ = (0, @202
This kind of changes of coordinates reduces the situation to the preceding one,

when all the elementary divisors are equal to 1.

32. The Siegel Upper Half Space

n) is a choice of Riemann
(V, A, E) consisting of a
Riemann form E. We say

A polarization of a complex torus (for this sectio
form. Thus a polarized complex torus is a triple
complex n-dimensional space V, a lattice A, and a
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VIIL. R
f the elementary divisors «, |

all equal to 1. We sha]] Il;]‘;""ﬁ;t({i}[

oation |
. ing] polariZatit’
o Shn rhlflflpﬂ o hasts are
isisaPp . us basis ¢ , i TR ,
that th ety y Frobemus and obtain a classtfication of such gy
. by parametrizing them as a quotjey, u;jin
1 H_

lhis Cﬂsc * R . . < )
dulo the action of a group of "y

manifolds up 10 '~ palf plane Mo

alize
gﬂﬂfr . T : i SN Lo S
. have chosen an isomorphism of V' with & x "l;ul - !?hdh”" lor the
ave Chus s written as an i ZN M |
If we hJ‘"EI ( its elements can be W I‘Il[IL nas i i lrmitn:-{ W, ang the
lattice A, so thd o atrix P with respect to this basis, thep ye
: resenic
form E 15 T€P

write a triple

alsg

W, A, E) = (C" W, P),

representing [ 1s of the form

o |l
Jz -"1” 0

matrix. This corresponds to having chosep 4
| to all the elementary divisors d,, . . . 4
v M

" J
Suppose that the matrix /

where 1, is the identity 1 X /1
Frobenius basis for the lattice, anc

being equal to 1. ‘ | _
To each matrix z in £, we may associate the corresponding n x 2p matrix

(z, 1) which we may view as a matrix W of the components of a basis for the
lattice as at the beginning of the preceding section.

Lemma 2.1. Every isomorphism class of principally polarized abelian
manifold contains a representative

(C", (z,1,),J) with z € %,
for which the columns of (z, 1,) form a Frobenius basis.

Proof. Let W = (w,, w,) be a matrix satisfying the Riemann relations, and

&hﬂSEtCUlumns form a basis for the period lattice of the abelian manifold.
¢ note:

Ifw,=1,, th /
m then the Riemann relations ar / ' *
S dre e ) W the properi
that w, € §), quivalent with the prop
Since multj

pliCﬂ[iﬂ'ﬂ b wl,"] 0 o
Lemma Y @yt on C" s

i [ ] 3 L] . & ” a[
2 & ; a linear isomorphism. we see th
2.1 follows 1mmed1utely from p :

Lemma 1.3.

factor out by an appropriate group of

Satistying the Riemann relations;

5 The Sicgel Upper Half Space
S' :

-
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1

= subgroup of GL,, (R do
Spzs(R) = 51 21 () consisting of 4] e
Matrices y such tha

yJl'y = J.

Then Spaa(R) is closed under transpose. Write

a b
Y = :
( ¢ d )

We have:

. g ' 4 )
Jiy=J ifandonly if a'd —b'c =1 4n Uy o :
vJ'Y " d a'b, c'd are symmetric,

when n = 1, this means that vy lies in SL,.
we shall see that the association

z> (az + b)(cz + d)! = ¥(2)

defines an operation of Sp,,(R) on ©,. We have by Lemma 1.3 (1)

a b
(z, lr.)( d) =(za+ c,zb+d) ER.

o
Hence by (1v).

(zb + d) ' (za + ¢) € H,.
But 'z = z so taking transposes yields

(‘az + 'c)('bz + 'd)' € D..

Since Sp,,(R) is closed under transposes, it follows that v(2) € D, ‘lt 1s then
immediately verified that this defines an operation of Sp2,(R) on ©,.
Suppose that (], w3) is another basis for the lattice A. Then there is a

matrix M S GLEH(Z) such that
(m{! (ﬂi) - ((ﬂ;, ﬂJg)rM,

and conversely. The form E with matrix J with respect (0 the basis (@), @)
has the matrix

MJ'M

Therefore the new basis has the same

with respect to the basis (w;, @2). We let

matrix for the Riemann form if and only if M € Spax.
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— GLan (Z) M bp:-"(R) _H 'Spln(l‘_’.-)_ :

«_ SL.(Z)- - hocia £ . :
when 1 = | lhi;ﬂnff g“’ the chOICER ?il lnf::tif ”::, l e, ang lin, we denote by Th(H, v, A) the vector space of normal;

Wwe have "D“Cn Jffect the choices w:_,';h | n;i‘ol(:[ + C dl:flnu A o s Car Hmisfy!ﬂg the z}bﬂve cgnd{tlﬂns with H, . and call (Hmﬂ 1zed theta functiuns
1s mumh::Sm of X ;355 of pnlnrized abelian ma S. Any twg mprﬂﬂen”.m runctions. This nﬁt.utmn IS be:lter adapted to the appitlj’)t_a type for such theta
et of equivalenc la. qind than the previous notation in Chapter vi. +H10ns we now have in
tives o Let z € qand for r, s € R” define

c, @1, ) and (€5 @1, )
1 - 1ne . (}(H, z, I, ‘1") = z e(_l" "(r “+ fﬂ)?
hange of basis of the lattice Erghcrv}ng? th? matrix J y aboy mezr  \2 2r + m) 4 (r + my(u + s)),
difer ¥ ° ﬂlignear somorphism on C" (multiplication by "

: an Invery;
" 3 Y ’ ) - " 1 lb] o it 1Mnita v * ’
left) transforming the second half of the lattice vecygps it lhE The positive definiteness of the imaginary part of » ;

ve proved: ial term goes to zero like e™ for some ¢ ~ 0, whence w
convergence, uniform for u in any compact set of C"

Theorem 2.2. The map three simple transformation formulas.

- > (somorphism class of (C", (z,1,), J) Th 1. For a, b € R" we have

o 5 .7 |
induces a byjection O(u, z, r + a, b + 3)1
e(

lﬂ\l‘{-j” — &g E 'azr.] - "a(ﬂ + 5 + b)) ﬂ(u + Za - b, - 4 r, j)_

This follows directly from the above definition, expanding out the exponent

§3, Fundamental Theta Functions and collecting terms.
This section follows Shimura [Sh]. Th 2. Fora. b € Z" we hav
Let A be a lattice in C". We recall that a theta function on C" with respect | e e
to A is an entire function f satisfying the condition Ou, z, r + a, s + b) = e('rb)0(u, z, r, 5)
fu+ 1) = fwe(Au, D)y Again this follows directly by observing that the sum expressing the left hand

side can first be changed by replacing m + a by m in the sum over m, and then

: : Vrriz ; : . the si 'y ini
foru €C", | € A, and e(z) = ™. Here i is an arbitrary function, and ) mple term e (‘rb) comes out as a factor. Combining these two formulas

G ] ik ' elds
11: Ciimea-r.m " R_-l_lnear Inl. A theta function is called normalized if there JIeies
4 hermitian positive form H such that Th3. Ifa b € Z" 1h
 Af a, " then
1

S+ 1) =f(“)e(§}H(u + % , 1))1,[/(1) O+ za + b, z, r, 5) = e(-— %‘aza — ‘au + 'rb - r-‘?ﬂ)a(“* 2,1, 5).
and if  hg |
4o I‘Ealsyaiﬂiﬂl[;lte value equal to 1, We Jet £ be the imaginary part of H, <. e(— 1 B :ﬂu)x_,‘,.(a, b)(u, z, r, $)
Variable, ami-Iin{:::.ﬂrail:]ditault.e Mating. We assume that H is C-linear in its ¥ -
o that > second variable. It follows from the above assu™ Where X_, ,(a, b) = e(—'sa + 'rb) is a character.

.'
i
[y
1

-'l“l_:'. l_‘ .
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s r, s) (as function of u) is N0t 1oy

ivial theta function so as My).

by a tr “hluin .

! -
o, ) =7 "UE =
’i-

Then e(Q (1. =) is a trivial theta functiop

atic 1 i, » ang

so 0. 2) is quadr |
Q{N -+ “ - Q(H, f) = ’(” + E)(: B E) |‘f_

is not holomorphic in z. Define as in Shimury

Note that 0 (1, 2)

o, 2, 1 8) = e(Qu, 2))0(u, z, r, s).

We shall find again the hermitian form of the last section, defined by
¢

: I

Hu,v) = 2i'u(z —2) "0,

Note that putting / = za + b witha, b € Z" we lind

] ![—ru+—f*u+ru+i(?-—?“’f
:?";HH+E! = 5 A

Th 4. For a, b € Z" we have

put+az+b,z,r,5) (1 i |
ou, z, r, 5 - E(z,‘ H(“ T 7’ !))L(?_ f"b)xus,r(fh b).

This suggests that we define

| |
. (za + b) = e(a' Hb) and lﬁ:‘m (za + b) = E(; ‘ab + 'rb — I.S'ﬂ)'

il

Thus

"b:*‘r"‘ = ";’:X:.-;,r

where X: ., i the character defined by

X:.-i.r(zﬂ -+ b) = E(!f’b — rSﬂ)-

+ b with a, b € Z". Then with the
n be stated as follows.

3 Fundmntnml Theta Functions
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— tions @(u, z, r, s) lie in Th
The functior (H,, .
w* X:.u-.'l...rt II. IH])-
Now let X be any character on C», viewed a5 R2# if
- ‘ l
n the form e eXpress elements

20 + b with q, ) e R"

We observe that the map
0 — 6x
gives an isomorphism
Th(H, ¥, A) == Th(H, yx, A).
On the other hand, define
Th(z) = space of entire functions satisfying

f(u + za + b) I,
f Q) =€\ —7aza—"au). for a,bEZ"

Then certainly the functions 8(u, z, r, 5)X. _,,(u) lie in this space. Thus we
have isomorphisms

Th(Z) = Th(H:, l!’:r [Z*Jr ln]) e Th(H:t d;:.r,h [Ea ln])-
Each one is obtained by multiplication with an appropriate function.
Theorem 3.1. Let L = |z, 8], where 6 = diag(d,, . . . , d,) with

0 ‘<dlld2l ‘ % .Id,,.

. & _1
Let j range over a complete system of representanves for 8 'Z"|Z". Then

for a fixed r, s, the functions

o, z, r + j, ), j € representatives as above

fﬂrf” l bﬂSf.Y UfTh(H:: "p:,r..'n [:l 6])-

Proof. After multiplying by the inverse of a ch

function, we are reduced to proving the equiva
lions

O, z, r +J, 9)

aracter, and a trivial theta
lent statement that the func-
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Thez, O) of entire functions such that
- HCE =
< for the sP
a basis

s | , 1
0+ 0b) _ E(__ . aza — 'au) for a, b € gn

. wians are linearly independent .
these functions are fine i‘w ; P‘ f.llt.fnt, and gee
pzmsiun shows that the dimension qf this
ourier coefficients are determined reeyp:

it is clear that the ,{
“the er ¢

the analysis of the F[J%If'l i

o & ¥y DECRUTE th

aow II 3 *111.

This proves the theorem

InvOIUtiOHS and Abelian Manifolds
of Quaternion Type

Certain abelian manifolds have large algebras of endomorphisms. The most
common case 1s that of Complex Multiplication, which is treated :extcnsivel
in the literature. Almost as important is the case when this algebra cnntain};
aquaternion algebra. I'have therefore included this section as an example of
such manifolds, which will provide easier access to their more advanced
theory.

§1. Involutions

Letk be a field. By a quaternion algebra Q over k we mean a simple algebra
with center &, of dimension 4 over k. If k has characteristic # 0, we also
require that the algebra has a separable splitting field of degree 2. We are
essentially concerned with quaternion algebras over number fields, so we
have no intention of dwelling on the pathologies of characteristic p.

If £'is a finite extension of k which splits Q, then E®Q (tensor product
taken over k) is a semisimple algebra over E, of dimension 4 and so must be
the matrix algebra M, (E) of 2 x 2 matrices over E. The quaternion algebra
Q itself is either a division algebra, or M,(k). Since the algebra of 2 X 2
matrices over a field is simple, it admits exactly one irreducible representation
of dimension 2, up to isomorphism. The trace and detcmliqanl of this rep-
resentation will be denoted by tr and nr respectively, and will be called the
(reduced) trace and norm of the quaternion algebra. _

Let @« € Q but a ¢ k. Let P,(X) be the minimal polynomial of a over
Jr": Then P, has degree > 1, and hence must have degree 2. Fug‘thermm.‘e. P,
d‘ivides the characteristic polynomial of the absolutely irrcducﬂ.::lq 2-dimen-
Mlonal representation of EQQ, so P, is equal to this chi}ra'ctensnc polyl_.’lo-
Mial. In particular, the norm and trace are those of the minimal polynomial.

We let the factorization be
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tions an .
(X, Involution .
Ype
x - )X = @)= X? — (@)X + nr(a).
_ (X -
Poa(X)
; and AFCE) = Wa
—a+t &
ra=«a
' = a.
Ifa EX then we let & ' h
.1, The map & o is an involution of Q, thay | an qpy;.
Theorem 1-%: r,
qutomorphisi of order

. 1v linear. It suffices to prove the
.« obviously lnear. Froperty
Prﬂﬂ_ﬁ The map 15

(aB) = B«

o ace. norm are the ordin:
e 2 X 2 matrices, and the trac 4 : 'nary trace apg
By specialization, it suffices to prove the relation when iy,
independent coefficients, and in particulyy are

when &, ﬁ ar

determinant. e
matrices have algebraically

invertible. But then

,f_'l', = ﬂ’_l det ({1’),

and the relation is obvious. This proves the theorem.

We note that if F is a subfield of O over k, then F i1s a quadratic extensiop
of k. and the involution @ — a’ induces the non-trivial automorphism of F
if F is separable over k. Indeed, the formula o’ = a” ' nr(a) shows that o
also lies in this subfield, and a, &' are the roots of the minimal polynomial

of a over k.
The involution @ — «' will be called the canonical involution.

Proposition 1.2. Every inner automorphism of Q commutes with the
involution.

Proof. Immediate from the fact that aa’ is an element of k, and so
commutes with all elements of Q.

Thez:em L.3. Let F be a separable quadratic extension of k contained in
Q. Let ¢: F = Q be a k-linear embedding which is not the identity. Then

[ ' : ;
r:fT €XISIS an inner automorphism of O which induces ¢ on F. Inpar
uiar, every automorphism of Q is inner.

Proof.
- We shall need the remark that there is an isomorphism

Q ®Q e Endt (st)

51 [pvolutions
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e O denotes O viewed as a vector

5 Space gy
ollows. Anelement ¥ @, pi o

k. The i
; ) 1S0 PO
EIVES rise to mﬂfphlbm 15

d .
n tndnrnnrphlsm such

X F— 2 ﬂ’;‘IBf_

his assoclation 18 & homomorphism of Q@0 into Endy(g,,).

i jentically Zero, and hence is injective since QXQ is Simplgv(an;) twﬂls_ :;ﬂé
deals other than O and l_he whole algebra). |t is an isomorphism s; side
Jimensions of the domain and range are equal, Since the

Now we may view Q as a vector space over F

Lawral way, using the multiplication in Q. Seco ys. First in the

nd, by the action

(a, x) = @(a)x fora €F x e 0.

The dimension of Q over F, either way, is equal to 2.
morphism

So there is an iso-

A:Q — Q such that A (ax) = e(a)A(x),

and A in particular can be viewed as an element of End; (Q,,). Thus by the
first remark, we have

A= a8,
and in particular,
Ala) = E a;af3; fora € F.
The relation A(ax) = @(a)A(x) shows that

2, aaxBi = ¢(a) > aixBi  forallx € Q,

50

E a;a®P; = Z ¢(a)a;®p:.

Let a = q; for some I,

He P | d all i.
nce o;a = p(a)a; for all @ € F, and 2 lude the proof.

@£ 0. We claim that « is invertible in Q. This will conc
Since a & F, we have
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0=F+ af,
whence _ raQ + aFaQ = Qal + QaaF
Qo = C Qe(F)a + Qap(F)a
C Q.
sided ideal # 0, whenee Qa = ©, whence cris invery,

We shall now characterize all possible involutions. Let y € Qx, Define
e sha

_.I [

The map a— a* s an involution if and only f

1.4. : . .
Theorem olution is of this type, for some y.

},z e k. Every im

Proof. Since a** = y2ay’, and @** = aforall a € Q if and only jf
= k(i}ecause I is the center), the first assertion 1s clear. Conversely, e
ZH +* be an involution. Then @ — (a*)" 1s an automorphism, and so by

Theorem 1.3 there exists an invertible 7y such that
(a*)' = y 'ayforal a € Q.

Since inner automorphisms commute with the involution a — «', our the-
orem 1s proved.

The involution of Theorem 1.4 is called the involution associated with,
or defined by 7.

§2. Special Generators

Let 0 be' a quaw{nion algebra over k, and assume for simplicity that the
characteristic of k is + 2. Let F be a subfield of Q of degree 2 over k. Then

F = k(B) with some B such that 3% = b € k.

By the | :
inf] Z Eﬁ:‘:gi:;:::;;nﬂrphésm theorem, there exists an element y € Q “’hﬂsle
-1 M induces the non-trivial ism of F, that I3
Y By = —p. Ther ey automorphis

B Ek(y) it follows that Y = B so y? commutes with y and B. SN

Q=F+FY=F+yF

Spﬂﬂi“t Gencrators
2.

§2 147
use O 1s @ vector space of dimension 2 over

i * F‘
or of Q, 0 lies in k. We have thus proveg Therefore

the first part of th

becCi
gﬂlﬂ
[hm}rﬂﬂl.

* lies in the
e fullnwing

Theorem 2.1.  Let F be a subfie
: — p € k. Then:

(i) There is a basis 1, B, vy, By of Q over k sych,

ld of degree 2 over k, F = k(B)

that y is invertible, and

2

(i) If z = Yo + X B + x27 + x3 By with X; € k then

rx =2xo and nr(z) = x§ — hx? — exd — bex?

Proof. The second statement is immediate in view of the commutation
ules between B and Ys and the fact that the canonical involution induces the
qon-trivial automorphisms of k(f8) and k(y) respectively, so g’ = —f and

y = = . .
Whenever we are in the situation of Theorem 2.1, we shall write

Q = (b,c)x orsimply (b,c), or (F,c).

Now assume that k = Q is the rational numbers. We say that Q is
indefinite if Og = M, (R).

Theorem 2.2. The algebra Q is indefinite if and only if Q contains a real
quadratic subfield. If Q = (b,c), this is the case if and only if b > 0 or
¢ > 0.

Proof. If Q contains a real quadratic subfield F, then F&Q = M, (F) so
the splitting is clear. Conversely, suppose Qg = M, (R). Supposeb < Oand
¢ <0. Then b = —b? and ¢ = —ci with by, c; € R. Put =_ﬁbf‘ and
j=vyey'. Then 1, i, j, ij satisfy the usual relations of the Hamilton qua-
ternions, so Qg must the Hamilton quaternions, which certainly do not split,

a contradiction which proves the theorem.

Theorem 2.3. Assume that k = Q and that Q is indefinite. Let * bé Ige
involution defined by an element y. Then tr (@a®) > 0 for all a '

a # 0 if and only if y* < 0.

2 itten
~ Proof. LetQ = (b.c) with y? = ¢, B? = b. Any element arcan be Wi
In the form

a =X + yB with x, y € k('}’)
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the commutation rule between B and 4 Shows "
= Mgy

] computation using
w (c+ yBY (IR

" —
r ad = N, Y,
o (v + YR+ By')

s
—

= 2(xx" “+ yy'b).

a1 143 » s nat " f
() is an imaginary quadratic field, so xx’ and yy, =0,
s [hen:}(}g 2 5, 0sotraa* >0 mr;ﬂ 7 0. Conversely, jf 2 0
finite, . eh that xx' is large negative, so t . ,
We can find x such that Faa* o 0,

icky = l. 1
'I;his proves the theorem.

Ify
0 is inde

§3. Orders
a lattice in @ we mean a finitely generyqeq

that k = Q. By @ - o orrlicedt Sk 2 o L
iif;?jule hich is of rank 4. An order 1n Q15 a subring which is a Jayic,
S .

Let a be a lattice. We define the left order of a to be
0,(a) = 0 = ring of all elements @ € Q such that aq C q.

That o is a ring is obvious. We must show that it is an order. Givep any
element x € Q, and a basis ay, . . ., Q4 for a over Z, the elements xXa; can

be expressed as linear combinations of this basis, with rational coefficients.
Hence there exists a positive integer d such that dx € 0. It will now suffice
to prove that 0 has “bounded denominators™, or equivalently that o s finitely

generated.
The bilinear map

(B,@) = tr(Ba)
is a non-degenerate bilinear form on Q and hence there is a dual basis
ﬁh s os ey ﬁ.i SUCh [hat []‘(ﬁj El',‘) = 6,; LC[
x= > ¢ with ¢; € Q,
and suppose x € p. Then
tr(xa;) = ¢;.

Hence ¢; € 41
o d Z where  is a ;
This proves what we wanted common denominator for tr(a,), . . . » tr(a)

Similar]

Y, we ;
left order. “0uld define the right order 0,(a1). We shall work with the
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§4. Lattice? Determined by Quaternion Algebras

f o is the (lefh) orcer of a, then we also say g Qis a .
o-ides’ R L? .‘dlf ﬂll . Idln ? -lattice, then there eXists a poeit?vz-'lium’ edong

-1deal. In fact. i . » Inte
i tfﬂ 4 o r ¢ such thg td{-‘[, e, LWO lattices, then lhﬂl‘iﬂr E'SUCh
positive integer ¢ ¢ at ca C bh. We also say that an exists a
c.u.mnmtz-rnsur:abI«z-. Y two lattices are

§4_ Lﬂttices and Riemann Fgrms on (2
Determined by Quaternion Algebras

We begin by some comments on a special type of lattice in C*

Lemma 4.1. Let

w=(")ec.
W,

Let oy, . - ., a4 € My (R) be linearly independent over R. Let L be the
7-module generated by «,, . . . | ay. ThenLw is a lattice in C* if and only

if wywa # 0 and Im(w,/w,) # 0.

Proof. If wy or w, = 0, or if wy, w, are real multiples of each other, then
there 1s some real linear combination

4
a=> ca, ¢, ER, notall¢; =0
=1

such that aw = 0, so Lw cannot be a lattice in C*>. Conversely, if

Im(w,/w,) # 0, after multiplying the vector w by w;' we may assume with-

out loss of generality that
T
w=1,

with 7 in the upper or lower half plane. If ais a real matrix as abmr?, then
it is clear that aw = O implies @ = 0. Hence ajw, . . . , ayw are linearly
. = . . % -

Independent over the reals, so Lw is a lattice in C°, thus proving the lemma.

An element w as in Lemma 4.1, with wyw, # 0 and Im(wi/wy) # 0 will

be called a non-degenerate vector.
The lemma will be applied to the following situation. Let Q be a qua-

(€rnion algebra over the rational numbers. Let

p:0Or — M, (R)
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ol p) a quaternion type ‘ .
hism. We call the pidllr::(Q e TP Letq be , Theorem 4.2. Let A = C¥/A pe g complex tory
be an iSGmGT of dimension 2, an¢ % A is of ype (Q.p). Let u € A, y 4 Thﬂfdlm.ﬁ'”“”"zrs-'wh that |
complex tor e There exists a lattice & in Q such thay A _ 'p(a):n [“ 'S non-degenerqte,
Y . - If 0 is the order of a, .5
¢ of type (O, p) if there exicte . |
bedding. We 54y that (A, 1) is oL LYP (@.p) “TC eXists g “Omp|ey P(0) = End (A) N P(Q)
eddIng .
E;a};ifcm isomorphisn? wi datid b
‘ ' e [ e - :
0:CYA— A R i Tl 5§ b cegenerate vecior in C? guq 1o (Q.p) b
' quatrernton type. Let a be a lattice in Q and let A - p(Mu. Th ¥ A ¢9
. - dhen A\ is q

jattice in C* and C°[A is a complex torys of type

s commutative for all o € Q. (Q.p) as above.

such that the following diagram '
The converse statement in the theorem is obyioys

8
: & . o If we '
T ) the data lﬂelhﬂéﬁtdlgon, we ggall say that (A, 1) is of type ?’Qan; t:; E;Vi;l}ll
o L respect to ©O. WE O t.EI"I omit © from the notation, and ident ot
pl )+ | Jfter the suitable choice of basis. cently A with €A
CYA —— A We shall now see that a torus as above is always abelian, in other words

admits a Riemann form. Recall that a Riemann form E on V/A is an

In fact, such an isomorphism O always exists. Indeed, write A = VIA Where R-bilinear form on V which is skew-symmetric, non-degenerate, such that the

V is a 2-dimensional complex space. ‘Thc con?plex representation of (Q) on form
Vis thus a 2-dimensional representation, equivalent to th_e representation
over C since M, (C) is simple. Consequently, there exists a basis for V
identifying V with C?, such that ) 1s represented by p(a) relative to this

(x,y) = E(ix,y)

is symmetric positive definite, and such that E (A,A) 1s Z-valued.

basis. ;
Letu €A, u+ 0. The map Le,t_ E be a Riemann 'form on C*/A. We shall say that E is p-admissible
if the involution determined by E leaves p(Q) stable. In symbols, this can be
o > plau, a €0 written
= p(Q)* = p(Q).
is injective, and for any lattice a in Q, the image p(q)u is a free Z-module
of rank 4.  Furthermore, there exists a positive integer ¢ such that We may then define an involution a — a* on @ such that
pldaju C A, so p(da)u is a sublattice of A. Since p(Q)u = QA 1s the
rational vector space generated by A, it follows that there exists a lattice a in p(a*) = p(a)*.
Q such that
By the general theory of Riemann forms, we have
A = p(c
p(Q)u. tr ae* >0  fora #0,

Let 0 be the left order of a. Then o0 is also the subring of elements a € ¢

such that p(a)A C A Thus and we know from Theorem 2.3 that

* = ~~1 o'+ with some 7 such that y* <0, Y €Q.
0=0 ﬂp"]End(A)_ Q Y ay wi 4 4

In other words_ p ¢ th * Let {a), ..., a;} be a basis of Q over .:lhe rationals. ~ Then
under the fﬁprésenlatioe S”br"‘_g of 0 corresponding to endomorphisms ?fA wa), . . . p(ay)} is a basis of p(Qr) over R, an

& als). We cap sum oot Just endomorphisms tensored with the ration

. Marize our discussion in the following theorem. p(a)u, ... » P (ai)u)
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The values of a Riemannp forn

E(p(@)u,p(B)

over such basis elements.

when @, ;3 range

7ot CA be of HP€ (Q:p.n,u)_ .Lw E be q P-admisgiy,)
Theorem 4.3. LC1/A Then there exists d rational numbe ¢
on U /i

F‘ [l. E‘If{‘j
: . ] m q
Riemann form !

E(p(@u,pB) = ctr(yap’).

; an element ¥ € 0, v €Q,and y* <0, there

| E.Tf.a*; [y
that the form determined by

Cﬂfl ri-lrjfl)'r g.f 1«'0‘!’
an integer ¢ Si ch

E(p)au,p(Bu) = ctr(yaf’)

] ] 2
is a Riemann form which Is p-(HfHH&.Hbf{:’ on C-/A.

Proof. The map a E(p(Du,p(a)u) is a Q-linear functional op 0. s
there exists £ € @ such that

E(p(Du,p(a)u) = tr(éa) for all « € Q.
Then

(1) E(p(au,p(Bu) = E(p(Du,p(a*B)u)
= tr(a*B) = tr(§y '@’ yB) = —tr (&y' B'ya)

because £ is anti-symmetric. Take 8 = 1. Then for all a we get
r(¥y™a') = r(éy”'a'y) = ~tr(¢y 'ya) = —tr(éa) = —tr(£a)

using the fact that r(éa) = tr(aé) and tr (A) = tr(A"). The above relation is
true for all @, and hence
~YEY ' =€,50 -yt = ¢y,

It follows gt once that &yl = &y~

iStS 2 raf; , and theref e so there
EXISS a rational number ¢ such that ore &y Q,

&= cy.

From the Jagt “XPression in formula (1) we find

Ype

1 dre

1

atices and Riemann Forms on 2 Determs
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FP(upBu) = —ctr (yapy
This proves the ﬁrstzpurt of the theorem
conversely, let ¥* € Q, y? < ( 4o Y = —y. Define

E(p(a)u.p(B)u) = tr(yaf').

Then E is an anti-symmetric R-bilinear form o Ox

- : - We show that th
s(jz,w) 1S symmetric. Since p( = (2 , e form
f? EI: n_)_ 3 Qr) there exists N € Qg such that

iu = p(n)u, and n? = -1, 7' =,
Since ip(a@)u = plan)u, we get:
E(ip(a)u,p(Blu) = lr(‘}f{rnﬁ’) = tr (3,”&:?)

r(yBna') = E(ip(Byu,p(a)u).

This proves the symmetry.
Next, for the positive definiteness, we have

E(ip)(a)u,p(a)u) = tr(yana') = tr (ana'y).

Let y* = —s® with s real, and s > 0. By the inner automorphism theorem,
there exists 6 € Qg such that

y s = 6 ' né.
Therefore
tr(ana’y) = 5&(&3}"1 5 'a'y) = snr(8)" tr((ad)(ad)¥).

We select ¢ to have the sign such that csnr(é) > 0, to get the positive
definiteness
* ' : uch
Finally, if « ranges over a basis a,, . . . , asof a, and B'rm:lges Og;;dcd
a basis also, then the finite number of elements tr(}'_ﬂf Bj) t;"ﬁ i
denominators. If we select ¢ to be a common denominator, then

. LA : dby a, . . ., %
¢ tr(yapB') is integral valued on the lattice generate s |
Since the Riemann form we have just defined is clearly p-admissible, this

concludes the proof of the theorem.
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' Type

Lef
. I
A= P(ﬂ)”: with 1 = (Hg).

Juy is in the lower half plane. Assume that there o
L
SupPOSﬂ lhﬂr I (E) _ ] LEI

W
p(eu = (H.:)-

Then 7 = wi/ws i8 I the upper half plane, and the map

XISts ¢ Uni

gives an isomorphism

cinmscin, e &= %)

Thus we see that to study isomorphism classes of abelian manifolds admitting
quaternion multiplication, we may limit ourselves to representatives whose
lattices are of the form

T : .
A7) = p(ﬂ)(l), with 7 € O, (The upper half plane).

We' now derive a necessary and sufficient condition that the abelian manifolds
be isomorphic.

Assume that a = 0. Let us use the notation

A(1) = C¥/A(1), where A7) = p(FU)(T).

Consider a homomorphism

hmum&%+mhnm

Which commutes v
with th : :
complex matrix on Cze,;ﬁp fesentation p.  Such h is represented by 2

therefore p a scalar, ich commutes with p(a) for all a € Q, and

e W
b
F

65 Ismnﬂrphiﬁl“ Classes

(1) M =gl with g € ¢,

We suppose h # 0. There exists an clement )\ g | such th
Ch that

T
o (1) - (7

(3) nr(A) = detp(A) > ¢

because 7 and 7 ha've Imaginary parts with the same sign
We then apply this discussion to isomorphisms |

Theorem S.1. Assume that a = p. Then (A(T),p)
el ‘ i a d A ..
isomorphic if and only if there exists a unit € in o éirf nr{le) i—- (IT;L*S: riz

p(e)(m) = 2. Isomorphisms are then given by the matrix operations p(e)
for such elements €. p

Proof. In the discussion preceding the theorem,  is an isomo hism if
. 1 ; and
only if MA(7) = A(m2), or equivalently -

p(0)p(A) = p(0).

This 1s equivalent with 0A = o, that is A is a unit in 0, and we already know
by (3) that nr(A) = 1. Conversely, given such a unit A, let

a b
p(A) i (C d)r
and let ¢ = ¢7, + d. Then it follows at once that
T T
()-¢()

Si“Cﬂ A is a unit in 0, we have gA(m) = A(ry). Hence A induces an
ISomorphism as stated in the theorem.




CHAPTER X

| 1VISOTS
Theta Functions and D1v1SO

Let M be a complex manifold. In the sequel, M_ will Ei[hﬁ;’ be C" or C"D
where D is a lattice (discrete subgroup of real d”“?”ﬁm” -;”). Let {U,} be
an open covering of M, and let ¢; be a I]‘lﬂl’i:lmﬂl"phlﬂ fun_ctmn on U, If for
each pair of indices (7, j) the function ¢;/¢; 1S holomorphic and invertible on
U; N U,, then we shall say that the family {(U,-,_c,a,-)} represents a divisor op
M. If this is the case, and (U, ¢) is a pair consisting of an open set {/ an(
a meromorphic function ¢ on U, then we say that (U, ¢) is compatible with
the family {(U;, @)} if ¢i/¢ is holomorphic invertible on U N U,. If this is
the case, then the pair (U, ¢) can be adjoined to our family, and again
represents a divisor. Two families {(U;, @)} and {(V,, )} are said to be
equivalent if each pair (V}, y4) is compatible with the first family. An
equivalence class of families as above is called a divisor on M. Each pair
(U, ¢) compatible with the families representing the divisor is also said to
represent the divisor on the open set .

If{(U,, ¢)} and {(V,, i)} represent divisors, then it is clear that

Wi N, i)}

also represents a divisor, called the sum_

imel;?; SC;{HP,HCHY of ianguage,ﬁ We sometimes say that the family {(U,, @)} is
. VISor, say X, and write X =1{U,, @)}. We say that X is positive if
the functions ¢; are holomorphic.

—————

§1 positive Divisors

(his chapter we assume our theta funct; S ,
«tisfying the condition f

Fz + 1) = F(z)e it i

» L is C-linear in z, and the ab _
where L 15 , € above equation holds f
50 identif ' : s for
shall HIE’C.' IHEIILY V_W”h C", with reSpect to a fixed basiﬂi“ 4D, We
exponential term obviously can be rewritten for each y ip tl:é ?nd then the
orm

L(z, u) + J(u) = ¥ e 4

where ¢, and b are complex numbers. depending on 4.
a polynomial in z of degree 1, with coefficients depending on y

We shall prove that given a divisor X on C"ID, there exisﬁs a theta functi
F representing this divisor on C". If the reader knows the content of Chz 1:1:1
V1, he will then realize that there is g bijection between divisors on the t{[;ru;
and normalized theta functions (up to constant factors), and this bijection is

homomorphic, 1.e., to the sum of two divisors corresponds the product of
their normalized theta functions.

Furthermore, two (entire) theta functions have the same divisor if and only
if they are equivalent (i.e., differ by a trivial theta function). Finally, since
to each theta function we can associate a Riemann form. we see that we can
associate a Riemann form with a divisor, uniquely, and that this association
1s additive.

We now turn to the existence theorem, whose proof is self-contained, that
1s, makes no use of the linear theory developed in the previous chapters.

§1. Positive Divisors

Theorem 1.1. Let X be a positive divisor on C"ID, and let X be its inverse
image on C". Then there exists an entire theta function F representing this

divisor on C".

Proof. The proof will be carried out by juggling with‘differential fonps,
and reproving ad hoc some results valid on Kihler manifolds. Everything

n
becomes much simpler because we work on the torus and B

Lemma 1. Ler M be a C* manifold, and {U;} a locally finite aperf cover-
ing. For each pair (i, j) such that U; N U; is not emply, SUppose §iven

a differential form w;; of degree p, satisfying

W — Wik + Wik = 0

......
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[, whenever this intersecron is not empty. Then - N
W )
nt, 00 cuch thai
:;Eﬁg;m rial forms @i on Ui St
i

r this intersection 1s not.empty.
ILI

n U, N Uy wheney
I
. . inated to the given o ;
of unity subordina given covers
. b.e a pﬂl‘(l[lﬂﬂ ng‘
Proof. Let {gi}
We let
w, = Z 8 Wij,

J

ith the obvious convention that the expression on [hf: right iS_Equul to ()
wlllerever it is not defined. Using the cocycle equation, and its Obvioyg
W

consequences that

w; = 0! wl} . _wf‘-’

we get our lemma.

The next lemma again considers only €~ forms. Let D be a lattice ip R™
and T = R™/D the torus. Letx;, . . ., X be the real coordinates of R™ and

write a p-form as
EﬁV”fP t'!.l','! JANCIRIIVAN d.l'fp,

taking the sum over the indices i) < - - - < i,. Let /(w) be the form with
constant coefficients obtained by replacing each function f; by its integral

1(fy) = L fl) d.

Since f can I od ' : :
Ju can be viewed as a periodic function on R™, we can view the integral

as a multiple _ .
Dcﬁnelple Integral after a change of variables if necessary.

dw J
3x;=z§fr]ﬁ‘“d"n/\“*/\dr

ip*

In other words d
: , define : fog s :
4pplying it to the functig:fs o, derivative of the form to be obtained by

denote by A the f; ﬁﬂ' Similarly, if A is a differential operator, We
orm obtamed from W, l‘eplacing all functions f(ﬂl b}’ Aﬁ,—}.
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Inwgrming by parts, we see at once tha

dw
! (‘—-) = 0.
rix;

Lemma 2. Let (a,)) be a real symmeryi Positive definite :
P matrix. Let

AeS gl
2 4 f)x,'{'?.'{.'j

Let w be a p-form on the torus. There exists a n-
that Ay = w if and only if [(w) = Q. If Awpzf%rmt

coefficients.

bon the torus such
then  has constant

just deal with tun_clmnsfon the torus, viewed as periodic functions on R”
ince these functions are assumed to be C* P
Sin e C7, they have Fourier expansions

which converge rapidly to 0, as one sees by the usual Integration by parts
Say |

f('l) - z Cpelﬁw--l‘

where the sum 1s taken over v = (v, . . ., u,), and v- x is the dot product.
Note that

A(ei‘.niv-x) - (21.“;)2 Q(1",)t,:,zmziw-:.n:1

where Q (v) = 2 a;v; v is the value of the quadratic form at v. If I(f) = 0,

then the constant term in the Fourier expansion is equal to 0, and we can then
solve trivially term by term for the Fourier cocfficients of a function g such

that Ag = f. The converse is trivial (integration by parts). Also, if Ag = 0,
then we see at once from the way A operates on e*™" * that g must be constant.

This proves our lemma.

We now take R™ = C" (m = 2n). We shall use the usual coordinates z,

2o = Xo + 1Ya Iy = Xa — 1ya-
We define
o 1(/d I a) B =1(_§___!..5€_),
0z, -2 OXq K | 0Ya 0Za 4 \ohe K hre
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i1 terms Of Zav Zas and then

. and Y
we can solve for Xa d Ya
bCEEUSE |
{? g l (?.}n l '
Aa i -—-‘} ’ ——""r?? — ——2 f'
-1
'#{] — — - —?_;' 2{[
— 2 r 7 — — _—

forms in terms of dz, and dZ,, and take the

we express the differential

Laplacian to e

is written as

L P dz“;: N\ {!Eﬁl ANCITIE N\ dE};‘?,

If a differential form

w =ﬁn.;‘3} d:ﬂl /\

th say that it is of type (p, q). Its exterior derivative is given by
en we -

- (?fn.ﬁ e .
&ﬁ{lﬂ} fff; /\ d-.* /\ (f:'ﬁ} + z {;: :I dZJ. /\ {!E{"] /‘\ dzhﬂl‘

In other words, the same formalism prevails as with the real coordinates.
A C* function f on U is holomorphic if and only if for all «,

d . .
—_j—- = (Cauchy-Riemann equations).
0z,

For one variable this 1s standard. For several variables, the Cauchy-Riemann
equations in each variable show that f is holomorphic in each variable sepa-
rately. By repeated use of the Cauchy formula in one variable, one then gets
a power series expansion of f in all variables, because fis continuous, whence
one sees that f is holomorphic in several variables.

We now suppose given a (complex) positive divisor on the torus C"/D,
:I:Efimmﬁd by, say,  finite covering {(U,, ¢,)}. We also assume that U, is
™ I:“a_gﬂv'{’fﬂ b;“ F/fﬂ in C” under the canonical homomorphism C" — C"/D.
i nnqo(l}, ieg: 45 a periodic function on C*, lifts in particular to a function

| . L e ,
o TOr any lattice point / € D, we let U, be the translate of Uy by

l. Then g, lif | .
of C i l1lts 10 @y on U;. Note that the balls {U;}, ; form an open covering

Using Lemma I, we can write

é'rj:a'l(}g oo = ¢ — A

e e TR R R RS S —

e e L

e e o i e iR R e B o E e
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a1l indices &, we have
d /14
g; — i..g.l
ff:.."“ (}f“

Theny = 860N Ui. Buti(y) = 0. Hence by Lemma 2 there exic
[ such that vy = A{. Let exists a 2

-form

Then
Ali=0 and §U=§:-§;.

But {; = d log qo,-/fpj 1S of type (1, 0). Hence we need only the (1, 0) part
of ¢} and {; for this relation. We let {7 be the (1, 0) part of ¢!. Then

"

d lﬂg "‘Pl/(\pj - gr; - §j
A {r: =0 on U,‘.

We have d ¢ = d{'] on U; N U, because d* = 0. Hence there exists a
2-form w on the torus such that w|U; = d{'|. Since

dA = Ad,

it follows that A w = 0, and hence w has constant coefficients by Lemma 2.
Since £ is of type (1, 0), we can write

w = Gupdza N\dzg+ D, bap d% /\ dzg.
Let

Y = 2 AapZq dZg + z bapZa dzg ON £

Then dy = . # '
Let Uy = U,y + I, where | € D is a lattice point. Then
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d(ﬁ,__w)sﬂ on il

here exists @ C* function fi; on Uj; such thy
1 d t Erc '
By Poinca

dy=1¢ -V

1, (])_ W

But on Ui U we have

Hence
pe it and ge i
le on Uy N Ujr. Consequently, starting with say

. - Itip
differ by a constant mu - ~ Function F on C” which diffare ¢
py¢”/0, we can continue analytically to a funcl h differs from

. i by a constant multiple on Ui S
Gﬂ.fwﬁ ?;w contend that F is our desired theta function, namely

F(" S !) - F(Z)EIfrf[f.(:.i’]-i-.f{f}].

Say z € Ujp. Then

¥

Fe+l)_ g+ D) et
F)» @) el

and since ¢; is periodic, we get

dlog F(z + D)JF(z) = —=dfy(z + 1) + dfo(2)
=i+ ) =Yz + 1) - i) + )

— E auﬁ(zu + [) dfﬁ + z bnﬁ(Ea + ?) dzﬁ

= (2 apZq dZﬁ P E bﬂﬁfﬂ dZﬁ)

This is g I-form, with coefficients

. ' ' ith
IEspect to 7 81VeS what we wanted dePendmg ouly on i InisgreiEe

and proves the theorem.

e conclude that fi; is holomorphic by the

R e e e < B s B 0 B B0 e e o

— e — Wy Wi B Bl ey U s Wi | i iy e e
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82. Arbitrary Divisors

Let {(Us @)} represent an arbitrary divise

" ™ i lr i . A r nﬂ[ o
open Sets U; may be taken arbitrarily smal , necess

- In this section

® = g/h,

where g, h are relatively prime, that is are no
cible element.  Thus we can write each ¢,

know that

t divisible by the same irredy-
= &i[hi. Then on UiNU; we

887 '[hih}!

is invertible holomorphic. Since gi, h; are relatively prime, it follows that
g;g; ' is itself a uniton that intersection. Hence {(U;, g} représ&nts a positive
divisor, as does {(U;, h)}. Thus from the unique factorization we can
decompose a divisor as a difference of two positive ones. In that way, the
quotient of the theta functions associated with these positive divisorsiwill
represent the given divisor globally.

§3. Existence of a Riemann Form on an Abelian Variety

We wish to indicate a proof that if there is a projective embedding
0 : V/D — Ac

of a torus onto the complex points of a projective variety A, then (V, D) admits
a non-degenerate Riemann form. We assume that the reader 15 now ac-
quainted with the terminology of algebraic geometry and abelian varieties.
Let X be a hyperplane section of A. In the neighborhooc_l of each point, X
can be defined by a local equation ¢ = 0, so X can also bc V.IEWEC] as a divisor
In the sense we have used previously. Then 6 '(X)isa c!msar on V, ﬂ“d has
an associated theta function 6, which is entire since X 15 a posilive divisor.
Let H be the associated hermitian form. The meromorphic functions SIVIg
the projective embedding { f;} can be written in the form f; = 6;/6 Where

Qj = SE(B{})

T
Fo. |
:‘.
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§4.

k"ﬂw that af
less than 7,
[. because ! 0

t. This €O
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If Vy is the kernel of H, then by The

factor through V/Vy,.
and this contradicts Cﬂmllury | of

f the functions
ncludes the proof.
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Introduction to Algebraic and Abelian Functions is a self-contained

presentation of a fundamental subject in algebraic geometry and
number theory. For this revised edition, the material on theta functions

has been expanded, and the example of the Fermat curves is carried
throughout the text. This volume is geared toward a second-year
graduate course, but it leads naturally to the study of more advanced

books listed in the bibliography.



