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Modular forms and modular curves
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1. Introduction

The theory of modular forms has its roots in the work of 19th century math-
ematicians including Jacobi and Eisenstein. In the 1920's and 30's much of the
foundation for the modern theory was created by Hecke [Hec1|, [Hec2], [Hec3].
In addition to establishing the analytic continuation and functional equation for L-
functions associated to modular forms, he showed that for a special class of modular
forms, the L-functions have Euler product expressions. This special class consists of
forms which are simultaneous eigenvectors for certain linear operators, now called
Hecke operators.

The work of Eichler and Shimura greatly advanced the role of modular forms
and their L-functions in number theory. One achievement |Shil| was the construc-
tion of abelian varieties over Q whose L-functions were those studied by Hecke.
Shimura also proposed a partial converse, namely that every elliptic curve over Q
arises this way. This conjecture grew out of an idea of Taniyama (Shi8) and became
well-known through work of Weil [Weil|. A large part of the Shimura-Taniyama-
Weil conjecture has now been proved by Wiles [Wil2] (see also [Diam)]), with a
key ingredient supplied by the work of Taylor and Wiles [TaWi].

In light of the recent work of Wiles, it is evident that two major developments
in the theory began to unfold around 1970, building on the work and insight of
Shimura.

One of these was the introduction of tools of modern algebraic geometry.
Deligne [Dell| generalized the Eichler-Shimura construction to higher weight us-
ing £-adic cohomology; Deligne-Rapoport [DeRa] and Drinfeld [Drin] studied the
arithmetic of modular curves; the study of congruences between modular forms was
placed in the algebraic-geometric context by work of Serre [Ser2], S‘-‘-’illllﬂl‘t’ﬂn.—D}’EI‘
[SwDy] and Katz [Katz1]. This development has been a rich source of t.!"t‘EhIll{]llEE,
results and ideas in the field and figures prominently in Mazur's bounding of the
number of rational torsion points on an elliptic curve over Q [Maz1], as well as in
the recent work of Ribet [Rib4] and Wiles [Wil2].

The other development was the beginning of the Langlands program. The work
of Jacquet and Langlands [JaLa| on automorphic representations placed the theory
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Part 1. Modular forms
2. Definitions and examples

\lling the definition of a modular form and listing some ¢xuy,.

We begin by
ples.

2.1. Definitions.
PRIMARY REFERENCES:
[Shi1, §2.1], [Lang2, §l.

[Hida3, §5.1].

Let $ denote the complex upper half-plane, Hflﬂ GL-;'_‘(R) 1.111:'.i:~'11hgr..u“ il
GL»(R) consisting of elements with positive determinant. Then GL, (.R ) acts o
£ via Mobius transformations. For any integer k. any C-valued function f on 5
and a € GLJ (R), we define a new function f|la]i on $ by

(fllalo)(z) = det(a)**(ez +d) " f(a(z)), €D

9. VIL1], [Miy2, §2.1, 4.3], [Kna2, 5VIIL2, X2 ang

where a = ( : ; ) A subgroup I' of SL2(Z) is a congruence subgroup if i

contains T(N) for some positive integer N, where
r(N) = {7€SLa(2) [y=(§ 1) (mod N)}
I'(N) itself is called the principal congruence subgroup (of level N). For example,
(V) = {7€8La@) |r=(; 1) (modN)}.

Fi(N) = {’;ufEI‘.;;(}"h’)|'}fE(éI ;) (nmdN}}

are congruence subgroups of SL2(Z) containing I'(N).
Let k be a non-negative integer, and I' a congruence subgroup. By a modular
form of weight k with respect to I', we mean a function f : § — C satisfying
(1) f is holomorphic on H;
(i) fl[v]e = f for all v € T}
(iti) f is holomorphic at the cusps.

We need to explain (iii). The group I’ contains a matrix ( l‘] ’1‘ ) for some positive

* integer h. Hence f(z +h) = f(z) for all z € §, and thus f has a Fourier expansion
at oo of the form |

f(D)= ) angh, gq,=eh
n=-—o0 \
To say that f is holomorphic (resp. vanishes) at oo, we must have a, = 0 for all
n < 0 (resp. n < 0); this condition is independent of the choice of h. If a € SLo(Z)
;_h:l f’[F]kJI‘T]k = f“f!]k for all ¥ € @~ 'I'a, so that for any a € SL2(Z), f|la]x also
m“‘F"“&mf expansion at oo. We say that f is holomorphic (resp. vanishes) al
- ﬂ.I;?B f\lals is holomorphic (resp. vanishes) at oo for all a € SL1(Z).
-iB mgm (over C) of all such functions will be denoted M. (I); its dimension
| mmiﬁm subgroup I' of SLy(Z). If an element f, in addition
o m 2 dm m* m‘#ﬂhﬂ at (all) the cusps then it is called a cusp form;
| ﬂ SPRCE.O8 CUsD & ns on I' of weight k will be denoted Sk(I'). The finite set
S A W as the Hﬁt_Df cusps of the modular curve associated to
 holomorphic at the cusps and vanishing at the cusps.
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fes 31 B e n g s . . : )
W “]”_ discuss ”.”h - greater detail below in §12.1. We will also return there t

the topic of the dimensions of the spaces M (I') and Si(T) | o

Nulu.r, h'.l £ : (fa/r"»..-aﬂ}' = C - 1];(' a Dirichlet character mod N: we also write

e for the (completely) multiplicative map on Z where, by convention e(m) = 0
: X nT 1 ) : 3 E -

for m not prime to N. A modular form of weight k. level N *-’:hm:iu'tur o

aq ] r ' « A - - F . =1
simply of type (&, N, €), is a modular form of weight & with respect to 'y (N) which

transforms under the bigger group Co(N)
f € Mi(I' (N)) satisfying

by the character ¢, ie., it is an element

(Il7le)(z) = eldy) f(2), Vo € To(WV)

where d., denotes the d-entry of 4. Such a modul

ar form has the g-expansion at oo
of the form

T,

(2.1.1) f(:]—_—Zunq”_ q=¢c"'"

since ( Ill : ) € I'1(N). The space of all modular forms of type (k,V,2) is de-

noted M (N,e) or My (I'g(N),2). The Dirichlet character £ mod N is called the
Nebentypus of any element in this space.
Equivalently, consider the action of d € (Z/NZ)* on M (I(N)) given by

(d)r : [ — [llogi, where o4 is any element of SLo(Z) such that

219 =( 4 U ot AR

(2.2 Ty = ( 6 5 ) (mod N);
here, d is the multiplicative inverse of d mod N. The action depends only on d
(mod N) and not on the choice of defining matrix oy The space M. (N, ) is then
the e-eigenspace with respect to this action. In particular, we have a direct sum
decomposition

M(T1(N)) = EB_.H,{ (N, ¢)

e - B o J;‘. "
where € runs over all Dirichlet characters mod N such that £(—1) = (=1)". Letting

Sk (N, ) denote the space of cusp forms in M, (N, £),we obtain a similar decomposi-
tion of Si.(I';(N)).

2.2. Examples.
PRIMARY REFERENCES:
[Shil, §2.2], [Serl, Ch. VII],
[X.3] and [I-Iidﬂﬁ, 85.1].

Note that for weight k = 0, My(T') 2 by :
and M(N,e) = 0 unless ¢ is the trivial character. We list here an assortment o

Kobl, Ch. 111], [Miy2, Ch. VII}, [Kna2, §VIILZ,

_ C for any congruence subgroup of SLa (%)

examples of modular forms of positive weight.

e~ 9 Tor 2 € 5. consider the function
ExAMPLE 2.2.1. Let & be an eveninteger = = IFor z € ), con

s
(2-2“1) Gilz) = Z‘ '{m: x H‘J;‘

{rme )

is over pairs of integers (1, n) not equal to (0, 0).

» ' denotes that the sum : )

at it 18 ¢ yon Skho
The reader can check that 1L1s & modular forn
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J hﬂmw n e 2miz
Gi(z) = 2(k) (1~ -—'zﬂkul(ﬂ)q )5 Ly e

| and By are the Bernoulli numbers defined by

:-,"'--I-ZB‘Ir

k=0 | |
A]. Restricting the double sum In (2.2.1) over relatively prime
2 H-%m[:;tes:bgﬁn notma-lized Eisenstein series

=]1-— mel(“)ﬁ'"

“l-l-l

n with (m,n) = 1.

where ax-1(n) = .Eiln d*

(2.2.2) Ex(z) =5 Z (mz + n)k

| mtheﬁrstmmmnvﬁrthe integers 1m,

Before with more examples, let us introduce some notation and

bers.
recall abou t L-functions and generahzed Bernoulli num
; Ft:f'l}ix;et dz:ralilt;ird?modulu N its L-function is defined as usual by the

m continuation of the series
i Ly(s,€) = X:E(ﬂ)n =] (- e@p™)
wEEy Bl pIN

M the ﬂu’bmipt N is written only to emphasize the modulus of the character,
- and will be dropped if it is clear from the context. If € mod N is primitive, then
| iﬁw equation can be given (e.g. [Lang2, §XIV, Theorem 2.2(ii)]) in the

;n:

gk A
iy ﬁsﬂ"
w Il{IL‘.

"T'L

2y L - 5.) = L, )(N/2m)"T(s)(e™*/2 + e(~1)e™™"/*) /W ()

whm Wi(e) = EU)ﬂhiﬂ N denotes the Gauss sum of ¢.

- Fora Diriﬂilet character ¢ mod N (not necessarily primitive) the generalized
noulli numbers By, . are defined by the formula

if(ﬂ) tﬂul i E Bk‘,:
a=1 k=0

'J ;::lkg?‘n (e.g. [Lang2, §XIV, Theomm23]) that we have By, . = —kLy(1—k,¢€)

2 W 2.2.2. For an integer k > 0 and a Dirichlet character ¢ mod N such
mﬂ“‘l)ﬂﬁ"l}* consider the series (in two variables z € §), 5 € C)

1 Bvema)= 3 edr)ily )i, )

TEr o (N)

o i WS = &2 +d,y for any v = L ) € GL,(R) and
:—\ )lmE z} 1§ the stabilizer of oo in T o(N). This series is

SO A mw im' R(2s) > 2 — k + € (for any ¢ > 0) and

,raa m)mmmma 20, ) Ei (2, 5)

l'iﬂ-r*

.i
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l (s + k)L (25 + kEYE, plz s)
can be continued to a me romor =
H phic function o the wi
le a-]}lrm-:, which is entire

except when & = 0 and ¢ is trivig| k=0 ad ¥ = 1 g
{‘VE‘I'}'“!H']‘I except for simple poles at g = and 1;if k = 0, '\: lan ]{ti oot
= > 1 and € is trivial,

then there is m]h O ”"””I‘h
pole at s = 1: ;
“F]:ll’lltl Lh“ SeTies (-—-.... I-J e (l' — lr , "‘{ bt e I II_IF'LI 1 :'] |I.Ild ﬂi"ﬂ.'l IhII}’E Fi? '}]

S, We
”1 II'—’I“ILTI{ 9! 5 }“ 1”‘-‘-. } Lo ‘1["'-[ 1ss 1ty .rl”H tlUIl:l] qu,tdllﬂﬂ
Put, for k > |

Exne(z) = Epn.(z,0)
I'hen, as Hecke [HEEII showed, Ey N ht-hmHh to M, (N £) except when A = 2
and € 1s trivial. JEAE XC _

In the case that € is primitive, the Fourier expansion of [ . is given by
a8, = - .

(2.2.5) skoNe(2) =14 A, Z {Z (d)d” g™, g
n=l Jin Laal 2t o
where ¢ = ¢*™"* and
L{kﬁf):‘-rk{k — ]J1
;1: : — 9 (] =) 2y = —9]- L
Hf(r_;){—'_]"!}k -.-1"._-.“- JI._J _LHLE :
see [Hﬂcl §1,2], [Shi5, (3.-1)]. For N =1 (s0 2 is trivial) and k even > 2, note that

Ej. N 15 the Ilfl[‘llld]l:’[fl Fisenstein series [y introduced in Example 2.2.1. This
can be seen either from their definitions or by comparing their g-expansions (2.2.2)
and (2.2.5).

If £ mod N is not primitive, then £, v .(z) can be written as a linear combi-
nation of the forms Fy ¢, (dz) over divisors d of N/C, where (" is the conductor
of £y, the primitive character associated to <. (See [Hecl], also [Shib, (3.3)].)

REMARK 2.2.3. We digress briefly to discuss the functional equation for the
series Ep n o(z,s8) of (2.2.1). | |
In the éeu&e of N =1 (keven, ¢ =1), the Fisenstein series £,.(z2,8) = £y 102,08)
satisfies the functional equation
Y Ex(z,5) = Ci(s)y' T T E( 1 -k =)

sending s to 1 — k — 5, where
[(2s + k—2)((25s + k- 1)
b/l —k-2s__ " _ ol ] e o
Pi(s) = (-1)"72 T ()0 (s + K)G(28 + k)

functional equation that b (s)bp(1-k-s) =1,

see e.g. [Kubo). It follows from the

which can also be checked directly. Ve give here
For general Ej v, the functional equation is more complicated. We g

o [Kubo|, [Huxl
only a vague lncluullun of its general shape and refer Iluiruuhr to | . d]ﬁlem{
veclor-valie
v can consider mstead a
and [Shi7] for more det ails.  One

: mod N (satisfying
E(s ) WthE components include the series Fi o~ fnr characters \ [

ain “companion series’ ' for which

x(=1) = (- 1)¥). The compornents also llliil]:;l} ce ﬂ“mw of cusps inequivalent to o,

of. (2.2.4)) are ,

g Smhlhmrb B e ﬂ”;ﬁe{a T.]El. vulues of £(s) and &(1 - s) (with suitable
re :

The functional equation then

Jic version.
normalization in s). See also (Hida3, §9. 3] for an ade



plﬁ 2.2.2 and deal
m geries (2.2.4) do not

m'oﬂdﬂ an Eisenstein series
hotwen modular forms (see Remark

we shall assume that it is

Fr e s Tl T
d B T R~ Sl "
N ST L e - = el ] b =F IE
“ri . - e i = oo g - F
-, - o = ERE e mn
e, 1 'i;u [ —-—— = ||_ -
g 1 5 -1 " -
o - PRE -
£ G e . ~tL
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S
i i A F‘;h"': }

Bs,.: = 2 e(a)a/N = —L(0,¢)

R anﬂm =G ‘/Bl . is precisely E) x .
il ¢ the values L(0, ¢) and L(1,&) are related via the
‘tlth ',,,1 and £ in place of €.

& eight k=2 take & to be a primitive non-trivial cven

n=1 din

L. = *L(—l,e) is non-zero, and again from the functional
 rela _._'_"f"__j‘.};;fl,s) and L(2, &) (with s = 2), we see that the normal-
By, =2G,./By, _fl precisely E; .. of (2.2.5). Thus G . belongs to

tﬂm N to be an odd prime £ and fix a prime divisor

(4) where i, denotes the set of (£ — 1)-th roots of

chlet character mod ¢ such that e(a)a = 1 (mod A) for

ong ,___1'-0 Me—) and the congruence is in the ring of
ave that E, . satisfies the congruence [Koike, §1]

b 51 (0d )

oVide o e > e theory of congruences between
e e :4. modulnr forms of different
e i %‘ ’ﬁ ﬂle ﬁﬂn.-tﬁwal character mod
e o Eie =1 (mod 3). If f
I e "'«f:-.é YV and €', then fF, .
R in thﬂ tlng of integers O of

\ s
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a7
some number field, then so doe s I
o I

el C 3 .
are congruent mod 30. and the Fourier expansions of f and fE,
"

EXAMPLE 2.2.6. Whe
Il know k VK= 2 and € is the trivial characte :
well known tric nf “E‘t ke to construcy aracter mod N, there is a

such modular §
§1X.3]). Note that the right-hand side of (2.2.2) m Efm"‘ (e.g. [Hecl, §2], [Kna2,
us denote it by £, i aRes sense even for k = 2. Let

~:
los(z) =1 - ‘_‘leg
-1

(By = 1/6); it 1s obtained by choosine
2 : L3 ¢ lht order of summation in (9
¥ (X, v o). Then £y s holomorphic on § ki be

and at o¢, but f;
2) mmlulnrny property with respect to SL,(Z) (in h-:tﬂ*lﬂ (1:?? ) E;E (;-T*Eht
£ : et

Fa(z) = Ii:n E.(z,s),

()=
where [2(z, s) is the Eisenstein series in E xample 2.2.2 with N =]

trivial clmlev ). This time F.(z) is not Imlmmmrphm. for

Falz) = Ey(2) + c(7y) ™!

with some ¢ # 0, but this nearly holomorphic function has the modularity property
of weight 2 under SL.y(Z). Therefore, for any integer N > 0, the function

Fy(z) = NFy(Nz) = Es(z) - NE»(Nz)

belongs to Mo (I'4(/N)). More generally, given numbers ¢y € C for d|N such that
ZdIN cq/d = 0, the function Zdl_ﬁ- ceFoldz) =)\ cqFa(dz) is a modular form of
weight 2 on I'y(N).

In particular, if N = pis a prime then

(and so ¢ is the

Th
E:(z) — pEa(pz)=(1 -p) -2 Z Z (d)d)q"
1= din
: ol 1 *lprzo
is a weight 2 modular form of level p with trivial character. 39
EXAMPLE 2.2.7. Let : crwaite geed P
A=——(Ey- Eg).
lflL

Then A is a modular form on I';(1) = SL2(Z) of weight 12. It vanishes at o "!Jmﬁll:t:;
the constant term in its g-expansioi 1s (). as can be seen from the g-expansi

Ey and Eg. As r‘l”n][; — A for all a € SL; (Z), we have that A vanishes at all the
cusps. Hence, A € Si2(I'1(1))- Its g expansion is given by

AG) =g [J(1-4"7

the Ramanujan fmu:‘tmn 7(n).
aller than 12; see ¢ g. [Serl,

> ) lefine
(EE (Ser1, §VII. 4]), and the coefhcients T
There are no cusp forms on SL,(Z) with w eight sinl

VIL.3], [Shil, §2.6] (and also §12.1).
§ } { e ] ( subgroups of SL:(Z}

ExAMPLE 2.2.8. On smaller {C'Ilbruﬂnw (11)) = Cf, where
cusp forms of low weight. For example, S2(Lol

11,. - s,
f(z) = (A()A(112) ’ **IH“ )

there may be
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g4 Jevel or conductor 11 with trivial (or
0f V be one of the integers {2,3,5,11)

3 s .'
Teaim
4

Ik

[ .-.J".‘-I
nla ')

b
s i
= " ",_: - |
s 4

nnthe integral homology of modular
m from GL2 by certain natural
rie constructions. Though they can be
ﬁth ':wh;ich they act that makes themn

& hog! ien we explain how these double cosets give rise

\ mbj&ctto which we return in Part [I. Then, as an

3 Ty at‘thnﬂédm ring on the space of modular forms.

I narticular, we consider the eigenforms, eigenvalues and eigenspaces for the Hecke
it thi we shall fix a positive integer V.

L
-
TRz
]

-
—. et ol
'-r.l' .1 -8
CILRLL
L A

g
i wl-.

i
Brm
'

) det >0, c=0 (mod N), (a,N) =1 }

the notation (I',A) will be reserved for

our discus sion is valid for (Co(N), Ag(N)) verbatim.

he Z-module generated by the double cosets I'al’, a € A

1 *F{QE ﬁ] detﬂ-‘ = ﬂ}- This can be made into
cation between two double cosets u = ol and v = /1

mpositions al’ = [[. Ta; and I'AI" = [ ] :Fh;:

disjoint), and so l'al'8T is a finite union

- !
- 2 ¥ - - L ; g
R e e Lk !.

A, ].- s -

(,3)[FaiB; = v}
T | ﬂep&ndonly on u, v and w, and

o o extended linearly, R(I', A) begomics
e i e I'1-T as the unit element.
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3.2. Modular correspondences.
PRIMARY REFERENCES:
[Shil, §3.4, §7.2] and [Miy2, 42.8].

Now we explain how the double cosets we have defined give rige

; T . . . e |
dLIILL;: on modular curves. ] hough modular curves and correspond
one of the central topics of Part [1, we give a brief introduction here

F,m " C””gf"m"?w subgroup I' we call the quotient space I'\$ the modular curve
assoclated to I'. We are especially interested in the modular curves
Fa
o( V)

Ly (N)\$
Yi(N) = T\(N\$
associated to I'y(N) and ' (N) respectively.
For a pair of modular curves X and V. it will suthce for the moment to view a

i o : r "wo_ i ) i
correspondence on X x YY" as a homomorphism Div (X) — Div (Y) where Div X
denotes the free abelian group gencrated by the elements of X

Lo correspon-
ences will be

. . . In particular, a
function f : X — Y extends to a correspondence which we denote by the same

symbol. Note that the the correspondences on X x X form an associative ring,
where multiplication is given by composition of correspondences.

Let T be the congruence subgroup U'y(N) or ' (N), let Y be the curve Yj(N)
or Y1(N), and let A be Ag(N) or A (N), respectively. For any a such that a~'Ta
and I' are commensurable, e.g. for a € A, put

[ =FRa—Ta and Y = 1508

Let ¢ : § — Y and ¢, : H — Y, be the canonical projections, and consider
the (possibly branched) coverings 7, 7" : Y, — } défined by 7o, = p and
™ 0w, = woa. These are induced from the obvious maps id and a on 9, ie.,
7 is the natural projection, and 7@ is the composition of the natural projection
L. \H — a 'Ta\n followed by the isomorphism a “Ira\H — I'\H obtained from
z — a(z). Using these coverings, we get a correspondence 7, = 77 o'w from Y
to itself where ', the transpose of m, is defined as follows: 1f I' = [, Tae is

a (finite) coset decomposition of T, \I' then “m sends a ;milnl p(z) €Y, z € .f_h
to the formal sum Y ¢, (¢,z) of points in its ]Jl'['ill]ﬂj.ﬁt.“ rr“.{p(:})_{crmmti:cl '.1.'1111:
multiplicity). Thus, 7,(p(2)) is the divisor ), ;[:‘:fl(:}).. SI‘IIEU '*:{d(:},,) {1&:1:-%131:!::
only on the coset I'J, we have: Ta(@(2)) = Z, ‘TT('::II{:}) 'f Fal = ]__Ll_ﬂll-. “:““:
coset decomposition I' = [ [, [, gives a disjoint union 'al’ = 11, Iﬂt.“ 5O that the
divisor is recovered with a, = a¢,.) One can check that 7, f.l::!pl‘!l(ib only on ﬂlif'
double coset I'all, and that I'al' — 7, defines a homomorphism from the Hecke

ring R(I", A) to the ring of correspondences on (I'\$) x (I'\$).

3.3. Hecke rings.
PRIMARY REFERENCES: |
[Shil, §3.1-3.3] and [Miy2, 54.0]. -
Fl;}r each positive integer n, denote by 7(n) the formal sum of all double cosets
| \ | | , 14 —_rf{ ' "I for every prime
Cal’ with a € A" in R(I',A). For example, T(p) =1 ( 3 p )I for L‘LLI}TE j
: . 1
p. Further, for two positive integers d, d such that a[d and (d,N) =1, ]L;“ [”}r‘ )
" 4 "J, & Y ¢ i N = Et.-. ";}:
- a U \P where g, is asin (2.1.2). Note tha
. » coset I'o [, whi a
denote the double cost u( 0 ) i ides N. The structure o

. ~ :f overy prime factor of n .

T(p). Let us write m|N™ if every poine . . ooe by the following

RE?‘) A) in terms of the Hecke operators T(a, d) and T'(m) is given by the 5
1 : . )

[Shil, Theorem 3.34]



A WiE N =1 je SLa(Z) and A(1) the set
i ee with bositive d A . Let T(n), T(a,d) with ald
E‘*‘m ;g‘ﬁ-.g] 1, i.e., with respect to (I'(1), A(1)).
Plp). T(p. p): Vi 'ind R(T, ﬁ] is its homomorphic image

Timl V prime p/N

0  Vprimep|N .

ﬁhamomrmrﬂ of R(I'(1), A(1)) can be
rela for the Hecke operators in R(I', A), where
1 ac OfT(p,p) fDl‘plN An example of such a

T L TR
e A " e =1 < S,

T(m)T(n) -_'jifd:r(d. &) mn/d")

iv iﬂ“ﬁf (m,n) which are relatively prime to N.
e : hoﬁmdemted S(p) in literature; if N

,‘ 3]&:14:1 [Miy2, §2.8, 4.5].

B AT 5 as elements in an abstract
¥ Kw on the space of modular
* " bh coset on modular forms on

o el s gives a well-defined action
Y '.*-j";-.!j ) Eﬂﬂﬁiﬂg by linearity

'ﬂﬂt:lm more explicit,
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LEMMA 3.4.1. For cvery (a, N) = |

by {3 1 2) Then fﬂ?‘ cvery n N ﬁJ: an clement Ta ”f SLE( ] (s dfﬁﬂﬁd

we hum
e ‘ | l ‘ [1 ( f1 4]
oy 5 4 |
il h )

where the disjoint union 1s gver g >0 unth ad = n (a, N) =1 and over b (mod d).
{7 — mno

Recall that A" = {a € Al deta =

: = n}. From this coset de

» operator on M (T, denoted T'(n), given b‘y

(3.4.1) NT0)k =) flloo 3 )

i, b
the sum being over a, b as in Lemma 3.4.1.

Put L'y = Ty(N), &p = Ay(N). The above discussion and the lemma are also
valid when (', A) = (I'y, Ay).

More generally, the Hecke operators act on the space of modular forms of
type (K, N,e). Observe that the operators T(n); and T(n, n)e = n*3(n); on
M.L{Fl( )) preserve the subspaces M, (N,2) as they commute with the opera-
tions of d € (Z/NZ)”™ via {d);. (Recall that {d); was defined before (2.1.2).) The
map ['SI" — I'yG0 defines a surjective homomorphism R([,A) — R(Ty, &p) and
the restriction of '3 to My (N, €) depends only on [',30,. Therefore R(Ty, Ag)
acts on My (N, <) and the action is given by

fliCoalolk. =) e(alan))fllagle, [ € Mu(N,e)

ir
where a € Ay, [gal'y = [], I'va,. and a{a) denotes the a-entry of the matrix
a. Using this and Lemma 3.4.1, the action of the Hecke operators can be made
.5 : ] . ; g e
explicit. The lemma gives al’ = [[, Ca, with a, of the form cru( W ) which
yields [yaly = [], Noa, with the same a,'s. Also, for f € Mi(N,z) we have

flloa]x = e(a)f for every integer a prime to . Thus, if we denote by T(n)x - and
T(a,d)i . the corresponding restricted actions of T(n); and T'(a,d); on My(N,¢)

as above, then
d-1

+b
(3.4.2) fIT(n), i Z Z a)d=*f f ) (a >0, ad = n).

il L=t

(Recall that ¢(a) = 0 for (¢, N) # 1) Also,
[IT(d, )y = d*e(d)f

for f € My(N,¢) and (d, N) = 1. This vields
(3.4.3) Tn)g Tk = Z d5 Ve (d)T(mn/d™ )k

d|(1m.n)

For n with (n, N) = 1 we may also v iew T'(n), < as an operator on .M;:EI;{I;S SL;tti::Ig
it equal to 0 on the eigenspaces *‘u’h.,(f\.h"] for ¢’ # ¢, 1.e., TN)ke = k e

where |

pr, = S(ZINZ)") ;E(ﬂ){ﬂ)k

(I') onto Mp(N,€).

is the projection of My



S m@mumgmd, for each 5, ¢
a0 - i) _One is the action T'(n), o,
rator

LR

of the ring R(I'\(N),A((N)).

s holbes .t.ld H Nﬁ . yet another 1s the actio),
i “icn ;ie)I;l::t of R(To(N),Ay(N)),
i arsaction of any two of these spaces
o \;u.lédiﬁm to all previous notation,
A oa g denote any of these actions and writ.
el 2 6ood and k and N are clear from thi
iﬁm a situation. Moreover, we shall
S m acting on a space of forms of
« = because the forms on (V) yield such
¥ ?ﬂlﬁm space Sk(I'1(N)) is a dircet
: maﬂ characters mod N satisfying

B
8 B
i = ain
i i -
| :

S Tn—t= [ (1~ Top~ + el 2)!

i

10 _-'?*_*-a-;_; typa(klﬁ, g). Also, if formula (3.4.2) for the
‘unravelled in terms of the g-expansion of / at 0o we obtain (c.:

F 3
- - o

A

e ‘F_T-"'i‘eic;{'ﬂ:-' 3

ﬁ *;:r a,; ﬂ“’ hﬂlg q-mmmﬂ of f € Mi(N,¢g), and
of T, f. Then the coefficients b,, are given by

rrrrr

L=

-i'l'-"

s

T, = U, for primes p

=

wy : |_|_

L
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3.5. Hecke eigenforms, ej
PRIMARY REFERENCES:
[Shil, §3.5], [Ser1, §VilL.5], [Lang2, §VIL.3] and [Kna2, §1X 6],
Let N be a positive integer, and |

| _ lenote by Ty the
erated by indeterminates 7, for all primes p

p not dividing N. It is the full Hecke alge
Hecke riug R([ﬂ ﬂ] hy the first asse -

genvalues and eigenspaces,

polynomial ring over Z gen-
and indeterminates S, for all primes
bra of level N, and is iIsomorphic to the

rtion of Proposition 3.3.1. Also. de (N
. - i : , denote by TVY)
the subring generated by T, S, for all primes p not dividing N. Then the sp}awm of

modular or .['.llb[} .ft}rm::; we have (IIHEH:HH['J.:i previously, such as M, (T (N)), Sk(N, €),
etc., are modules over Ty and T™) via the usual Hecke action of these indeter-
minates. To study the Hecke action on a space of modular forms, we need HI{I}’
consider the images of Ty and T'™) in End M (T (N)), the ring of n::mh;nmrilhisma
of Mi(I'}(N)). We remark that in the literature. slightly different sets of Hecke
operators are often chosen, but they yield the same subring of End My (I (N))

PROPOSITION 3.5.1. L Lc:f.f:“ be the subring of End M.(I',(N)) generated
by {T,} for all n € N, and T' the subring generated by {T,,. (¢)x} for all

| gma | L I |

primes p and all primes qfN. Then, T =T".

For k > 2, this ring 15 precisely the image of Ty i End My (T (N)). For
k=1, T(=T') is contained in the tmage, and we have equality after ten-
soring with Q. for &k = 0, all these rings are just Z with all prunes not
divtding N tnverted.

3. Similar statements hold _;'r:u‘T['h"'lJ (unth the correspondmyg subrings generated

to

by the elements “away from N ).

Indeed. the formula

j'.—! s e B
F ':'.'”'} Ji= 'I,J'r o= ll;,:

Taiks qnerate the same subrings ndomor-
shows that for k > 1, {1},} and {7}, (¢)r} generate the same subrings “f{n-lz
phisms. One inclusion is obvious and for the other, apply the formula with tm;

e U Y060 NN (4 T, S <
primes ¢ and r congruent mod N (noticing that ¢~ .1 are relatively prime anc

(@) = (r)x). A similar argument using
| . <.
F}’ q.r],.” - "'ji'l
e oy 3 Slv the imave f1-> 2. For k = 1 this formula
shows that this ring 1s precisely the image of T.m if £ = an equality after
Tusion of the subrings, but an equality a

-eads — ¢S, yielding only one i 1 y
reads (ff)l ,’buh i, - ——— T;_\ ) For k = (). we have IJ’ = 1
tensoring with Q. The same argument is vd el for "3, $0E . s e )
2 - . . “vi[““’ ."|||If. f{j]' [”'il““:‘ .l“ not i;_i.[".,,'|[1!,I[‘1__!1 _""n, W Ll i .:-”"
if pis a prune « "Eqa“lll |‘ 1 |7 — 1 (when pJV) shows (it PoT
i imem — p= = The formula p " = 1p— ! e )
{p)y = 1 and :5';= H 5, = (p 2 = (T, - 1)%
and this ring 1s as describe v also the image
it coincides with the nnage
of TN in this case.

(N) we call an e
is a common eigenvector under all ek A € Spa(Lo(N)) of Example 2.2.7 B

- ~ o nerance. the Ramamgjan a « oig :

T y-eigenform. For instance,

e or N > 1.
a TV)_eigenform, but never & T y-eigenform

d in the assertion. Simnilarly, as
of Ty in the endomorphism ring;

lement of M (I1(N)) a T—uiguufmm_if it
ecessarily a

' ing2.2 ¢ (N)_pigenforms. They
All of the examples given 1 §2.2 are T'77-¢lg

: - is primitive
| in Example 2.2 9 that the character £ 15 primitive,
{ YAalnnpiv c.=-=

prime.

REMARK 3.9.2. .
are even T y-eigenforms, provice
and in Example 2.2.6 that N is
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: s to have a (uniq,.

N ﬂ;ggnfurmka(rl(Nn has to (i)

Observe that a ‘m-!&rﬂ):: } (k N,E] for some Nebentypus E "””? N. "

character, i.e., _il: is Nz)ﬂt{:ﬁhe’&ndﬂmurphjﬁm ring is t:ﬂnt.mm':l+m that

is because the Hﬂﬂgﬂ‘ of (z/m the subring generated by {(g)x} for all primes ¢y,

TN) by Proposition 3.5.1. A (Z/NZ)* (under d (d)x). In fact Propositi,,

dividing I is precisely ¢ TO0C L of a T-cigenform. For instance, a modul,

5. el sl it LT L

fﬂrmdﬂ.ﬂ FI( ﬂimmun : under TF for all prinlﬂﬁ p not dl\'l[flll}.{ NGty i
¢ and is a co .’ dmnnl : ifecittniﬁi a simultaneous eigenvector ll!?dﬂ‘l‘ all 7,

T y-eigenform if an J’- ider the T-eigenspace consist iy,

oney zero T-eigenform f, we may consi er B [y

For non- f under each operator in T. N,

' with the same eigenvalue as ‘ |
fﬁi}%ﬁimy of the operators involved, a T(N)-eigenform will be o T

i i ich i ' limensional. \Whil.
i the TV)-eigens to which it belongs is one-dimer |
:Ilzlgnff:i? inifgenem!, we shallp:: in §6.3 that this holds for certain forms calle

newforms. * | |
Let us next observe that every T y-eigenspace is (at most) one-dimension

Suppose f € Mi(N,¢) is a (non-zero) T y-eigenform and let Zf;“_u”r;” be the (-
expansion of f. Then its Fourier coefficients a,, can be read off in terms of (],
eigenvalues. If A, denotes the n-th eigenvalue, ie., f|T, = A, f, then it follows
from Proposition 3.4.3 that

e a, = Aya; for all n € N;

o ) #F0ifk#0(so,a; =0=k=0and f = ay);

o ifag # 0 then A, = 3, e(d)d*~".
Thus, if two forms of type (k, N, €) are common eigenforms of 7’, for all n with (]
same system {\, } of eigenvalues then one is a scalar multiple of the other. Sucl i
form is said to be normalised if a, = 1.

REMARK 3.5.3. Let f be such an eigenform of weight £ > 1. Then 7f -
8¢(7T) f defines ahnmnmhimn 0y : Ty — C. The image is in fact contained in -
number ﬁéfld, and the Elgeni‘al}lﬂ An lie in its ring of integers; see Corollary 12..1.5
bﬁlowsm Thmwuiproved by Shimura {Shil, Theorem 3.48] for k> 2; for k > 1, see
[Shi6, Propositions 1.3 and 2.2] and references therein, and also [Ser3, §2.5].

3.6. Petersson inner product,

Pmu.uw REFERENCES:
IBmL;tﬁl;diisj. [Lang2, §I11.4] and [Miy?2, §2.1, 4.5].
_ an arbitrary congruence subgroup of SLy(Z), and denote by T i

projectivization, i.e., its image in PSL,(Z) = §
rojectvization, e, it = SLy(Z)/{1). On the space 5, (I') o
cusp forms, define the Petersson inner product of two elements f and g by :

-(3'.3;1-). (f.q) = 1 N
(/,9) -———-—[ﬂ-ﬁ:ﬁfﬂf(z)g(z)y‘“-ﬁg.

where D is a fundamental domaip

Mw can hedadwed from t.h;ﬂ;olll-‘ (s6e Remark 7.1.1). The convergence of

3'61])&”‘1“@&%. £ owing growth proprty (e.g. [Shil, Lemma
LEMMA 3.6.1,

(here, y i the igmags

Hd

("-')ykﬂ ts bounded on H

ent of the chojce of the fundamental domain

AT ‘congruence subgroup With respect to which f, g are

o=
'
1

modular. For the latier ¢l
subgroup, say contained jp, [
which consists of (I ]"’] Lrans):
inner product is positive definite op

1 1 I I I’ Ly L] L] “'l' '1 =
LW { ¥ .. ] e s LJ -
] ] f S

55
‘Pendence 'se f r
| £one uses that if 18 another con T
, then g flm-:l;um_-nlnl 55 cheee

P domain for 17 can be chosen
4 undamental domain for I'. The Petersson
the space of cusp forms. o

REMARK 3.6.2. The at -
converges. For instance il:'] }T ”“”"“_ (s } 15 also used whenever the integral (3.6 1)
- . ) v Are weyght g modular forms of whic SA
15 a cusp form then fg is a cusp form of weight 24 5 of which at le
on by Lemma 3.6.1 Hence the intepral f-?f. 1" -
finite in this case as well o

ast one
a5 T Nl o \eok

S0 | hat f(2)g(2)* is bounded
) defining (f 9) 18 meaningful and

Vi M . I b i WS
_ With re -“*.I*"L‘L1 [,”.H“_ Pelersson product, the operation la]i of a € QI Q) is
ut“tm}r *i“ii 't adjoint is given by [”tli, where a' is the n1'1:i|1 ‘in;.'ul-uti.m:t:i;u I .
r Xt : . ‘Or ex: b % 1 ! ' '  4.C.,
l.' ( (¢ ttﬁ)f’ I”.I example, on Oi(I"1(N)) the adjoint of {a); for (a V) = 1 is
(@)x, where @ is an integer such that aa =1 (mod N) | N
S '}(flv” the Hecke operators T for (n,N) = 1 are self-adjoint with
respect to the Petersson product; see IShil]. In fact. on Si(N, ) we have for all
prime to N 14, &) we have lor all n

(Twf,9) = e(n)(f, T.q),
1.e., the adjoint of T, with respect to ( , ) is T = £(n)T,,. On Skl (N)), the

adjoint T, of T,, for (n,N) = 1 is Lo (A) '['lrllu:; the operators of the form T
and (n) for n relatively prime to N form a mutually commutative set of nurm;:i
operators on Sx(I'y(N)). (Those operators T, with (n,N) # 1 on Sg(N,€) need
not be normal.) Applying the spectral decomposition theorem for normal operators

(e.g. [Hers, Theorem 6.10.4]), we deduce that there is an orthogonal decomposition

Sk(Ti(N)) = @ Sk(N,¢)

(where € runs over all Dirichlet characters mod N such that £(—1) = (—=1)*), and
that each Si(N,¢) decomposes orthogonally into a direct sum of T -eigenspaces

[Miy2, Theorem 4.5.4].

4. W-operators

PRIMARY REFERENCES: . o
[Shil, §3.5], [Lang2, §VIL.6], [AtLi], [LiOe, §5] and [Kna2, §IX.4, IX 7).

We now discuss the W -operators, which form another useful class of operators
on modular forms. On the space of forms on [y(N), these are involutions and they

commute with the Hecke operators T}, for p not dividing V.
/ -] 3 . * [ T.=
LetI’'=T(N), andwy = ( {;: : ) On M (I'), the linear operator (W]
— N)*~* and preserves the subspace Skil-;} of cusp 1':3-1::115.
(') defined by Wx(f) = N1=5= fllwy k- Thus
(k, N,£) to those of type

[Cwy Ty satisfies [wy]; =

We let Wy be the operator on My

W2 = (=1)*, and Wy maps modular forms of type
4 1 }

ey

(k, N, &) since |
(a)x[wn )k = [wn]kla)
for every a € (Z/NZ)™, where aa = 1 (mod N). Also, from the fact that
([1ﬂ[[.‘](I\EI-','-.'F) = (I”wﬁ—f‘)(ﬂ.tl“}



~ F.DL D AND J. 1M
3 o _ 1 it follows that
for every o € A with (detay N) =1, 1t 0%
AT (W chunls = NN T (e

f € Mk(NiE)

for every n such that (n, vy
Waln) o () Warf 308 WS = ()T W]
for f in Mk(r) L0 I | = adjoint with respect to the Petersson inn,
We also find that W and Wy Sy o T Wh for all integers n, and if

gl R T. is adjoint to W,
pI'Odllﬂt on Sk(r)* Mmm T" s If a cusp form f is a Hilﬂullum*nu:-1

. ~1 VW
(n, N) = 1, then (n) is adjoint to Wy (m)W N) = 1, then 50 is Wy f will
1. However, suppose for some prime

cigenform away from N with eigenvalues An, (n,
thﬁ"“ : S mmﬂ;mder T,. It need not be the case that 11/, s
2 Aewe lﬂfl" (See Remark 3.59 of [Shil].) Indeed, if the condition
W from N" in the nbmmtm is replaced by “for all n € N" the new
statement is no longer true in The obstruction is due to the existence
of the so-called “old” or “non-primitive” forms which come from lower levels (sec

§6.3). ly, we can associate an operator Wy to each positive divisor () of

N such that Q and N/Q are relatively prime. Consider any matrix
Ay i
. “’Q"( N od)

~of d ant @ with a, b and d integers and d = 1 mod N/Q; such a ma

- trix normalizes I' = I'}(N). The map [wg]i on Mg(I) is independent of thi

- choice of defining matrix wg and is consistent with the old definition in the casc

| ’.,H‘g Q mﬂrr thﬂﬁutomatphlﬁm Y = wa'rwal induces the involution
- = ﬂﬁﬂﬂi{m ~ (Z/NZ)* (~ (Z/QZ)* x (Z/(N/Q)Z)*) which is given by

‘ ﬂ"”’mﬁ@ and the identity mod N/Q on the respective factors. From this
. we e that if £¢ and ey/q are Dirichlet characters mod Q and N/Q respec-

ﬂﬁ? M[w’?]#m mwm of type (k, N,eqen/g) to those of type
 Nicgen/g). We let Wo denote the operator f - Q1~*/2f[uwg]i on A, (1)
 Mote that it s not the case in general that W3 = (~1)* on My(I), but that 1V,
e . Iy (r ( oand | Q k 1 G
i section, we restrict our attention to the I'y(/V) situ-

g &ME(FH(N)) defined by Wgo. We find that i
- Operators Tﬂwith (H,N) =1. If Q Hﬂd Q.f are {“Vi-

3 .-r .-I:'E .' :‘ el R .
S ;‘ Fﬁ 7 ) 1 ther the operators WQ and Wg: commute and
] g :;-.- :-l-'_l" : .:;_.

2] ﬁ%’ Where, for a prime p|N, Q(p) = »'

]
L]
.
i I
i
H

sk * the involution Wy on Sk(To(N)) 1s

ombosition of < o ct and commutes with all 7, such tha
}ﬂ L) m simultaneous eigenspaces away
e the latter aic "‘ into Wy-eigenspaces. Morc
BE~ then the *“ Wy) with eigenvalues +1 s0

e '.-:',,::.;, . .- ‘I _h iﬂ T{N}_muimianti i_e” we
piler not equivariant under the

N .
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full Hecke algebra since

n's with n, Ny £ ; :
Wy. ( ) # 1 do not commute with the involution

[ =4 .

0. L-function and functional equation

PRIMARY REFERENCES-

[Miy2, §4.3, 4.7, [Ogg, 1. [V], [Shil, §3.6]
In this section we define Dirichlet se

discuss the main results of Hecke!

admit analytic continuations.

have Euler products.

Let

and [Kna2, §VII1.5, IX A].
ries attached to modular forms and briefly

s theory [Hec2|, [Hec3| of such series. They

L:' -I ] - : w -
satisly functional equations and, in certain cases

1

.
[(z) = Z Cng", ="
=0

be the g-expansion of a modular form on [} (N) of weight k. Tts coeflicients satisfy
a, = O(n®) for some constant ¢ € R. For example, the Eisenstein series E).
(k =4,6,...) have this property with ¢ = k — 1 since or_1(n) € 2n%=! for k > 2.
For cusp forms f on I'|\(N) of weight k > | (the case k = 0 is trivial), ¢ may be
taken to be k/2 from the fact that | f(x + iy)|y*/* is bounded on . In general, if f
is in Mg (L'} (NV)), the value ¢ = k— 1 will suffice if & is at least 3. In the i:emv:a where
k=2or =1, wemay take c = 1 +¢ and ¢ = 1/2, respectively, This follows from
the fact that modular forms of weight k > 1 are spanned by the cusp forms and the
“Eisenstein series”. The definition of Eisenstein series in this context is that given
in [Hecl|, and includes those appearing in Examples 2.2.2-2.2.6. (In fact, it can
be shown that the space spanned by Eisenstein series is the orthogonal complement
of the space of cusp forms under the Petersson inner product of Remark 3.6.2; see
e.g. [Ogg, §1V] and Theorem 4.7.2 or §7.2 of [Miy2|.) That their coefficients have
the growth property stated above follows from Satz 9 of [Hecl|; see also Theorem
4.7.3 of [Miy2] or Theorem 7 of [Schn, Ch. IX].

REMARK 5.0.1. The Ramanujan-Petersson conjecture asserts that for p not
dividing N, the eigenvalues of T}, on Si(T'1(N)) have absolute value bounded by
opk=1)/2  This was proved by Deligne [Dell, §3], [Del5| (see [DeSe, 9.1, 9.2| for
k = 1). As a consequence, one can even take ¢ = (kK — 1)/2 + ¢ (for any € > 0) for

f in Sk(T'1(N)), and ¢ = € for f in M (I1(N)).

The L-function of f is defined initially as the Dirichlet series
N

L{S.f} — Zu”n‘-ﬁ

=l
v = ) this series converges
it is sometimes written L(f,s) as well. Since a,, = O(n") this ;L:[[-;)(r::dl”;:w
absolutely and uniformly in the region R(s) 2 ¢+ 1+ “”rl ‘”fi* | “-}i'[s}[::- . X
defines a holomorphic function in some right half-plane, at least i

The completed L-function defined by

Al = N*2(2m) I (s)L(s, f)

d

. the reader can verify that
is essentially the Mellin transform of f; the reader can verily th

. . dy
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More generally, if f is a modular o, Of

el h mction with the functio
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Shil, Theorem 3.60] or [Ogg, §1]. N,
y weight and level, but with characier
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scuss the notion of newfornys, |
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mf =) @nq" is the contragre.

l equation may be rewritt,

& ! r.'l
i - . L =u; " L .--u
H i ‘i' Ii'l'ﬁ-l"- y I. 1_'I"\+' ¥

erse r‘;ﬁ due to Weil [Weil] (see also [Ogg, 4\
les suft *-”._,-'_-_;:'-'lh nditic 5 for a Dirichlet series to he
ﬂwﬂﬂnﬂﬂ:lﬂﬂs here, but only

conaition
i b n e e e -
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5
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.;.

N-¢igenlorm of type ( , N, €). ‘Then its L-function has

R R

» Theorem 3.43, [Miy2, Theorem 4.5.16]): if / lia

e ,'_:i'.,il' ":J:;-" .{, 0
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e |
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i *uﬂ a cuspidal T';-eigenforn
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R L’i—rr the functional equation
e ti; Foiiy

P 1

rm of conductor 11 as in Ex-

a | 1 .. completed L-function
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S S the whole s- AN ony
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IEXAMPLE 5.0.6. Take an Eise

say H(z) = E.(z) - ply(pz)

function is —24 times

nstein series of wel

A ght two with pri
of Example 2.2.6 whe prime conductor,

e pis a prime. Then, its [-

Z (Zfll[d)d)]’l_’ — C{")L("J — 115“}

where € is the trivial character mod p; recall that eo(d) = 0 if p|d. Th
o . ere are

simple poles of A(s H) = (27 //B)~*I'(s |
< ' I‘J) r ] L ﬁ, IJ( £ F T £ — P H
respectively to the presence of ['(s) ,-m[(; LA Jat s =0and s = 2(= k), owing

L(s—1,e4) = (1=1/p""N(s - 1).

[‘I(wrﬂ ;u'u ;m]ni,lmz poles, c.g. the pole of ((s) at s =1 is cancelled by the zero of
L(s —1,gq) there (at s = 1. the Euler factor (1 — 1/p*—1) is | i - 153
S 1 [ l o ' % 5

finite). ( [p*77) is zero while ¢ (s 1) is

Similarly, if we take the weight one Eisenstein series Ey . with an odd character
e mod p (with p prime) as in Example 2.2.4 then L(s, E) ;) is essentially ¢(s)L(s, £)

6. Newforms and multiplicity one

In this section we explain some of the relationships between cusp forms, espe-
cially Hecke ecigenforms, of different levels. The main result is the multiplicity one
theorem of Atkin and Lehner [AtLe|. They consider only modular forms on [o(N),
but here we follow [Lang2, Chapter VIII] for exposition of the theorem in I'y(N)
case. We shall return to the notion of multiplicity one from the point of view of
automorphic representations in §11.

6.1. Old and new subspaces.
PRIMARY REFERENCES:
[Lang2, §VIIL1], [Miy2, §1.6] and [AtLe]

We consider the action of Ty and T on §(I,(N)), the space of cusp forms
of weight & and level N. We shall fix the weight k(> 1) throughout the section,

but consider different levels. i 0 )

Let d, M be positive integers such that dM divides N and let 14 = ( M

If f(z) is a modular form on I'{ (M), then fllea)s(z) = d* 71 f(dz) is a modular form
on I'y (N) since LJ’FI(M):.{{ contains I'j (N). Moreover if f is a cusp form then so

is f|[tq]x; 50 f — fl[ta]x defines an injective map
(6}.1) t'-:}””._.\.r : Sk(rl (ﬂf}) - Sa'»:“ﬁl(*ﬂ‘r))
which we will denote ¢; when M and N are fixed.

Let us examine the extent to which ¢j 18 compatible withitl.m. acn?n of the
Hecke operators. Using (3.4.2) we find that if p is a prime not dividing N, then

flleale| TPk = FIT(P)xclleals

where T'(p), in the left side of the equation is relative to level rN whilm; thzt ilf l]:ll:
right side is relative to level A/ A similar statement holds for T'(p, p) if p does not

divide N. Thus ¢} isa homomorphism of T':"”"}-‘nmdu}is} wherfﬂ*}n.;u :ieg,ﬂrd tle(}f;ll]- (i";lf' ]}
as a module for T(N) ysing the obvious inclusm_n T C\'rI‘ [- 3 g;:riding J{I/M,
in Si((M)) is a T(M)_eigenform tl*u-':n f1[ed)x in S;;(f[‘l(i ‘1?], or

is a T(V)-cigenform with the same eigenvalues away from V.



ails J .".I _‘,: 1| _ .. 3 , R Qf the maps L d.M,N over all
oed N, the of Sk (N ), and is denoted
o S ST (), dewoted ST (V)"
(N0l We define the REE 5 oy vold ]ll 3 (T (N )) with respect to the
AT al complement U R 5 ND k (N))ulq is stable under

is Sk(T1(N))"™. Morcover

- Yk ﬂlﬂ- ‘
= (rl ( N))qﬂd of oldforms gwﬂn b}'

" Mﬁ B ook
T dM|N M#N

{ the T™)-mo *“. -S;(IH(M))“" admits a basis consisting of TALL
S, (I (] has ;m consisting of of TW)_gigenforms {f}, where

form f = ﬁ'[‘?‘]k with gi € Sk(Fl(ﬂI))"tw for some

s d, M such t f: mw and g; is a T -eigenform.

heck directly that the space Sk(T1(N))°! s stable

1e DIgger I TH- %Mmlater that the same is true for
‘ﬂ“ % ce is spannec byTg-eigenIorms called “newforms”

s ﬂmm thlt the sum in (6.1.2) is actually a dircect

wing Corollary 6.3.1, especially Remark

-," ion of (Z/NZ)* where we define the ac-
: al projection (Z/NZ)* — (Z/MZ)"

L Ny
'-

‘ﬁ g =J°"‘ = SN, NS () W
PR ’“'_ ‘ . '_ moaigw Sk(N E)m W

oy

' g)old )m of Sk(['u(N )). Theac
et w define the Dld and
G st character x mod M
g 't WWB (Z/NZ)" —
R acter € mod N, there
a o ; if £o denotes the
he'a m @m only if C|M
.' :;:#L j for dM‘ N, we see
LV, XN ) ¢ MW denote L
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old
Then Sk(N,€)”" i simply the linear span of the images of 1y« S (M, y) — S (N
k(M x c(V,€)

over all integers M and d such that Af = N IMIN, x he D
u-,t e Dirichlet character

mﬂd ﬁ'! WI 1 kf‘- £ ”‘tl Ef [h “‘l" ’1‘i’/ \ lh' U[”]H}.‘]{J'ﬂdl [U[Ilpl{f"ant UfS ( 'I' ] i

Iﬂ Sk(N E) rﬂlﬂti‘h’{' ‘O th{l ]*‘{-l[ ‘Isson ]JrU':.lillf.l 15 'S}[ }HH.-. .
N is primitive then S (N )" = § (N =) In particular, if € mod

REMARK 6.1.3. The maps ¢ are essentially pull}
by the degeneracy maps Y (.
N reversﬂd)-

r sack homomorphi
] phisius induced
) = Yo(M) defined in §7.3 (with the roles of M and

EXAMPLE 6.1.4. We describe the decomposition of S, (1'1(33)) int
new subspaces. By the dimension formulas in §12.1, we H’:d L 511(1 0 1;01(1 and
dimensional. We also find that S,(1",(3)) = 0 and that So(I’ (1) = S(r])llf 01
one-dimensional and therefore generated by a normalized T, -cigenform fu T}?{]:
. l ¥

fore S;(l"l(ﬁd))"” = Sa(Iy(33)) oid g spanned by the
2 ) anned by * linearly independent f 3
f(z) and f(3z). The space S»(1",(33))"™* decomposes as e e

@ Sa(33,¢)™™,

where € runs over the 10 Dirichlet characters mod 33 which are “even” n the
sense that e(—1) = 1. For the trivial character 2, we have that 5,(33,¢)™" =
Sa(Io(33))" is one-dimensional gene rated by a Tyy-eigenform. E‘spplying the
dimension formulas to groups interme diate to I'y(33) and I“L-,(JJ}, and using the
second part of Proposition 12.3.11, we find that S2(33, )% = 85,(33,¢) is two-
dimensional for ecach non-trivial even ¢. We shall see from the theory of new-
forms that each is spanned by Tjy-eigenforms. Moreover, while f(z) and f(3z) are
not Tys-eigenforms, suitable linear combinations will be, so that in this example,

S,(I'y (V) is spanned by T -cigenforms. This is not the case in general. For ex-
ample, the reader may check that the subspace of &2 (I";(297)) spanned by f(z),
£(32), f(9z) and f(272) is stable under T, but does not have a basis of eigenforms

for T:; .

Let us also note how the W-ope

find that

& y L] & . F
rators behave with respect Lo the maps tj. e

§|[ﬂd]k|[ﬂhmr]k = ffk_"';‘f{ﬂ‘u]k for g € 55;([11(1”)] )

or equivalently,
for f € S:.-{,Fl(ﬂﬂ)

;Nr)l*kflj[w;;] . preserves the

Fllwant)e = fllwslelleals

since [wy|? = (—N)¥~? on Si(l1(N)): Thus Wy = (- i
spaces Sk(l"l( Jjne¥ End S;(Fl(:\’))”‘ and gives an isomorphisim

Si(N, &)™ o SRV E)

and an analogous isomorphism for the old subspaces.

6.2. Multiplicity one theorcit:
PRIMARY REFERENCES: o [AtLE]
[Lang2, §VIII.3, VIIL.4], [Miy2. 4.0f amt e shall

Let 'E‘(N ) be as befc:l-re[ In addition to T{”'mbmfﬂmbjinfs: (:;:rgit) );I:‘Er“i’mtzﬁ
consider forms which are suuultﬂnec}us L‘g“”vﬂt?zel:fge:nd czrmdﬂr the action of

auxilliary positive L ts similar
%gg t'lll?life:e f;?t}ﬂgut;f (?II(N )) the following are equivalent by argumes

to those used for Proposition 3- 5.1:
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"ﬁ !.r__..._ )... 1 we have a,, = 0. Then

on I'1(N) which 15 a st-
. Fm Ifa, =0 then f 15

yus way so that 7, f = A,/
n We get that a,» = 0 for
ﬁﬁn is necessarily of type
lﬂﬁ 0 for all (n, ND) = 1.

) AVl in Si(T'y(N))™™ can be
Sty =1, ° igl’mty one theorem 1s
Ok(L'1(N)) be TV genforms with the SIITTIL‘

# ;ﬂ#-;f [ Sk(PI(N))"““
in particular, if g is in the old

I thatitlsnnrmahbed
‘ thﬁ first coefficient

. hence g—f =0
#Hion of functions ¢5g; where
: | eigenform under
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ion of f

1) i %
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i3
ot
=

t':: ﬂ] = ﬂﬂ(T ) for P
9i) ﬁby Proposition
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6.2.2 (at level M instead of N), and so
o there is a constant ¢ such t}
sl : , 1at =
As f—cgi € Sk(I')(N)) is a TV -eigenform, Proposition 6.2.2 im ;:1({}1 Etg e
is old at level N, which in turn means that [ is old at level N (beczﬂlsf Y { cﬁ‘-
old at that level). But f # 0 is also new of level N by assumption, anﬂ‘ E:hr::d -
ea

contradiction, unless g = 0, F :
g =0. Yinally, if g = g™ 4 g°" then each component has the

same eigencharacter as g (or f), and so the
» above ar I ld _
while g = ¢"*" 1s a multiple of f. RIS Siows Shat gt

]

6.3. Newforms.
PRIMARY REFERENCES:
[Lang2, §VII1.3], [Miy2, §4.6] and [AtLe].

We have already noted that for a T[N”’-uigenfurm gonI'y(M) (with M # N
MIN), the two forms g(= ¢ig) and tjg (with d > 1, dM|N) have the same TOVD.
eigencharacter. If in addition g(# 0) is in the new subspace of level M, then

these two forms are linearly independent. Thus, we have the following corollary to
Theorem 6.2.3.

COROLLARY 6.3.1. The subspace §.(I'y(N))"™¥ (respectively, Si(T'1(N))°') of
Si(Ty(N)) is the orthogonal sum of the TP -cigenspaces in Sp(I'y(N)) whose
eigencharacters occur with multiplicity one (respectwely, > 1).

The same is true of course if we consider eigenforms under T in the old and
new subspaces of Si.(N, ), since an eigencharacter determines the Nebentypus.

The corollary implies that S (I'; (N))"“* is stable under the action of the full
Hecke ring T y. In fact, a TW P eigenspace in S (I (N))"™* or Si(N, £)"" is one-
dimensional and is therefore stable under Ty since the Hecke operators all com-
mute. Therefore a TP _eigenform in S (T(N))"" is necessarily a T n-eigenform.
Thus the following are equivalent in the new subspace of level N:

(i) f is a T y-eigenform;
(ii) fisa T(N)_eigenform;
(iii) f is a TWP-eigenform for some D.
Recall also that such a form f can be normalized so that a; = 1. A normalized
eigenform in Sy (I (N))™" is called a newform (or a primitive cusp form) of level

N.

REMARK 6.3.2. Conditions (ii) and (iii) are equivalent for f in Sg(I'1(N)), but
they do not imply (i).

REMARK 6.3.3. The multiplicity one theorem holds also for forms of different
levels. Let f, € Sk(Fi(N)™™ (@ = .2) be two nﬂrmall.ﬂed Hecke eigenforms

e
with eigenvalues aj, under T, for pnme:.: p. Suppose a, = a;, for all but finitely

he multiplicity
1t e mubt have fi = f This follows fmm t
2 ek ol g of their levels is established by

the equality Ny = Vo
one Theorem 6.2.3 once the equaty” U 0.2); see e.g. [Miy2, §4.6]. Thus

considering their functional equations (Remark 9.
for a TW L"T'..E;genbpace of Si(I'1(N)), there is a unique pair (f, M) such that f is

in the eigenspace and is a newform of level M.

REMARK 6.3.4. We have mentioned, in Remark 6.1.2, that the decumposnlllm:
(6.1.2) is actually a direct sur. This can be seen as fﬂlIGWb‘ First, note tha

Sk(I'y(N)) is an orthogonal sum of T(N)-eigenspaces. Let g be a uewfc:irm anl}aﬁl
M, and suppose M divides N. Then for every positive integer d dividing s



)_aigensubspace of Sk(I'1 (N)) t,
i e m @d_c;,;g, d over divisory
R lY independent over C i,

¥
el
l. i . ' .,l; - !

iy
i

dﬂ'}" ' ,; b)’ mulﬁp]jcity one (Th{.'m'u]: I
 level M, and =g s Si(C1(2 H‘MNaﬂd 1 ﬂj < ju, are distinet .
o -;.:“;'; c 8;(1_-‘1(”)] belong to mutually

I vield the following direct sun

)

_ sums gives precisely the sum appearing
e two u‘umll

o in a T)-cigenspace of Si(I't (N)) (or cquiv

D). Since f is a Tpr-eigenform for some 1/
._ - hﬂlﬁm product (5,0.2) where € is a char-
B b -eigenforms in the T{N)-eigenspace arv
LS Mw of L(s, f) at primes dividing

i | 3 =
B .,
I.. ' -
i

iing to Ex lﬁ'.l...«l;, we see that S>(I",(33)) decom-
the rest are one-dimensional, generated by a new-
onal T(3)_eigenspace is generated by f(z) and
8) is a newform of level 11 with trivial Nebentypus and
mma X%+ X 43 = 0, one finds that this

by the Tyz-eigenforms f; = f — a3 f(3z) and f. =
(8, /) | #0,5) has an Euler product for whicth
)= (13+312)) = [(1—ay3-")(1— As3)]
. L(s, f2)) are obtained from L(s, f) by replacing

e

p e R g
- i
e L
L

-

=
A i
| N .

-

1R
s LN gy s -E
g—a\—1)\

pe gy
- N e

)ne finds that the 4-dimensional T(¥)cigenspacc

2), £(92) and f(272) contains only three nor-
functions are obtained from L(s, f) by

H newform f of level NV is
~EREE €= 1)) similarly it is an eigenvector
16 €lgenvalues €(Q(p)) = 1. Consequently.

fv) situation. The involu Wy commutes with
e ) ':i.' '.; % O :
S i'*.- L a

AdlS L .".-!"‘..-.;" ‘ﬂn iE ﬂbtﬂinﬂd
0 Sk(Lg(N)), T, f is a cusp
A (N/p) if p||N. Indeed,
*'h;;;. < and ]
e 0. £=),f, while
ired values for )\, when p|N.
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s Elernentary theory

Recall that in 3.2 we defined t}e modular ¢
subgroup I' of SLy(Z) as the quotient space F'x:f} ':a'llr"."E
complex upper-half plane § is given by line p
thus defined a modular curve simply as a topological sn:
it in §7.2 as a moduli space for elliptic curves . iy
a natural algebraic-geometric description |
of a “moduli scheme.”

assoclated to g congruence

1%1:!'(3 the action of SLy(Z) on the
ar fractional transformations. We have

gical but we shall interpret
I'his interpretation will yield in §8
of the curve as the set of complex points

7.1. Topological structure.
PRIMARY REFERENCES:

[Shil, §1.3-1.5], [Ser1, §VIL1], [Lang2, §111.1, [11.2] and [Miy2, Ch. 1].

Wu first describe the topological structure of the modular curve Y = SLo(Z)\H
by giving a convenient set of representatives in §) for this quotient. {See-[Serl
§VIIL.1] and [Shil, §L.4].) As the diagonal matrix —1 acts trivially, we have Y _
PSL2(Z)\$. The group PSL,(Z) = SLa(Z)/{£1} is generated by the elements

, 0 -1 , =]
S — _
(15) r==(Y )

p . ) ‘ i ) )
with relations S = TY = 1. Every element z of § can be written in the form v(2')
for some v € PSL2(Z) and some 2z’ in the set

D={r+iye|z>+y* > 1,|z] <1/2}.

Letting D’ denote the interior of D together with the subset of the boundary
satisfying x > 0, we find that for every z there is a unique z’ in D" such that z
is in PSLy(Z)z’. The element v of PSL2(Z) such that 2 = 7(2") is not necessarily
unique, but the only points of D' with nontrivial stabilizers are i and ¢ = e™/%.
Their stabilizers are the groups (S) and (T') respectively. Observe that the points of
D' are in one-to-one correspondence with the points of Y, but the two topological
spaces are not homeomorphic. Rather the topological space Y can be constructed
from D as the quotient space obtained by identifying z with —= for boundary points
of D; thus Y is homeomorphic to R*.

REMARK 7.1.1. A “nice” set of representatives in 9 (or for some authors, its

P ik -
closure, and for others, its interior) for the modular curve ['\$ is called a “fun

: oy is initi re, but remark
damental domain” for [. We shall not give a precise definition here,

only that D is a fundamental domain for SL,(Z) and that I'm: any F there i51 a
fundamental domain of the form UyD where 7 runs over a suitable set of coset
representatives for ['\SL2(Z). (See [Shil, §1.4] and [Miy2, §1.6].)

and inherit from fj_t.hu structure of a one-
5). If the image I of I in PSL,(Z) has no
it fixed points on . This is the case for
al homeomorphism § — '\

The spaces I'\$ are Hausdorff
dimensional complex manifold [Shil, §1

elements of finite order, then I' acts withot

example if I' = I';(N) with N > 3. and then the [E.'C e 3 08
fully describes the complex structure ol the quotient. Slightl)

quired if I'\$ has elliptic points. These are points for which a prelimitge i,n,_.,:?l lu:; :
non-trivial stabilizer, necessarily of finite order, in F_. Nztti]télift(%;zrt ';11; ﬁ“i:tiﬂn
elliptic points on Y = SL.(Z)\$; they are PSL2(Z)t an 2 ;
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((#-i)ffi-l‘i)}’dﬁﬁw‘ C. The complex structure at PSL.(7Z), . ;U o .1_ l.mm!]jh ”r, N,y then Do(M) is contai o |
‘ﬂz’; = L3 of the orlsiﬂ in L. L 4 8 nﬁighborhﬂﬂd of PSL:(Z)¢ natura llr{l_]t{.tmn.iruln Yu(AD) o Yo(N). T) fum_wl in Lol und theve & &
inY tod d 0% ¢ function works ! : . For . degeneracy maps from ¥ (M (N were are in fact a number of ng
by [ and 8 : :+ olomorphic to the complex plane. For ay 'Y o WUV 10 Yo (N); for any div number of natural
g;ﬁhm o b Fmoll gl ﬂ al pro tion 46 hiaad SLa(Z)\H maps ‘tirﬂ(ﬁﬂlcf C Ugld¥) 8o Ehal 7 v dr indices s th“r d of M/N, we have that
¢ Tt et ur ) T : €5 i oImu ) b i ¢
hitrs Mw s P 'the : Z]( To complete the description 14 denotes the matrix a 0 L | D irom Yo(M) to Yy(N). Here
m pdntﬂ tlﬂ SL?(Z)‘ U SLa( l e rn'th[-t i[ . d ” l €L “”“th{'“fl L1 ;:‘{ ') "ail" : .
tlnﬂlitﬂﬂtd‘ ﬂﬁpﬁﬁm of T\, one can use the fact that this projectlonis i the case where M = .w.” o 1.2 We are especially interested
= l'"nt 1 3 3 - A L : i — ] |} ) ]_}]'”I“ Cand wes ;
' dmmm in mhbor of each elliptic point. s 10 80 1 how maps defined, respectively, by 7 — fl, P, snd we denote by a and 3 the degeneracy
et D l t WE Bhﬂll EKPIH”I 1n ﬁ : LOAW lhl.l.,‘. ; | ) : oo o i | ;Hlli T r—s J"T '111”.'&;{‘ I I ] J _ : *.:'
AR M[‘\jj are not compact. : S S interpretations alB,C) =(E,Cx) where € ve the moduli-theoretic
Note that the € i " " to obtain a Riemantl surface. ~ NP s L) where Cy s the subgre fC ‘
ure compactified by the addition of “cusps B(E,C) = (E/C,,C/C}) where (') s the subgroy, . C of order N, and
com 3 subgroup ol C of order p. The coverings
7.2. Moduli spaces: Yo(Np)
SRR | - i3
11.2] and [Sil1, Appendix € §13] o | Yo (V) v
interested in the curves iated to To(N) and Ty (V) for LY,
denote these curves Yo(N) and Y1(N) respectively. W possibly branchied, give rise loa correspondence (see §3.9) T, = oo o
N, and we : “moduli s " Yo(N). I p does not divide N, then T, (' (N 2] Do oo ROV S
mind their interpretation as i uli spaces.” | L N de N, then T,(Cy(N)7) is the divisor ) T(N)~(7) where
whose pOintsareuatum!ly in bijection with isomorphism v runs through the set - |
C) where E is an elliptic curve over C and C is a cyclic subgroup : | |
A consider the pairs (E,C) and (E',C') to be isomorphic 1f (7.3.1) {( i . ) ( 11] | ) | ( 1 p—1 ) ( p 0 )}
P g M P 10 '

Yo O) To establish the
[dentifying points of Yo({N) with pairs (£,C), we find that T, has the following

to T € § the pair
natural characterization

1
$9" ¥ ‘ i L T,(E,C)=") (E/D,(C+D)/D)
- where A, is the lattice 7+ Zr. One checks that any pair (B, C) is isomorphic to E: -
~ for some 7 € §), and that E, is isomorphic to E;- if and only if 7/ € To(N)7. Note
where D runs over cyclic subgrouj

< of E of order p. If p divides N, then T), (in this
has similar descriptions, except that

 thatif N = 1 then Yp(NN) is simply the set of isomorphism classes of elliptic curves.

~ As an elliptic curve over C is determined up to isomorphism by its j-invariant, the case frequently denoted U, in the literature)

| we omit the last element from the above set of mat rices and require that [ £5.
that T,14 = T, T, for all primes p and q.

‘map 7 j(E-) defines a bijection Y(1) — C.
S It follows directly from this description

- Similar ﬂl&pmmd' Yi(N) are in bijection with isomorphism classes of pairs
i O ﬁ“ﬂ‘g;‘fleu;ptw R H- Pk ot E Dfﬂl‘dEl: e For 7 € j?' . REMARK 7.3.1. In §3.4 the symbol T}, is used to denote the endomorphism of
PR A0S /N mod A..) The action of Io(N) on $ induces an action ol Figare B e oy = T ML) where = (1 )
Feay? ":ﬁ'.:.:':l'ﬁ %N]OHH[N) Using the isomorphism Ly(N) /T (V) = (Z/NZ)* defined »(To(N)) induced by the doubie €O !};1 ; ol My “1; ,1 mrm;pﬂndélmé, )
byl ) —d = . We have also explained In §3.2 how [P gives rise O ¢
F“ e S ) ~ dmod N, we view (Z/NZ)* as acting on Y, (N) as well. The Yo(N) x Yo(N) There 1. is defined as B o'A where the maps A and B to
Ao 5 *’I‘.-.'-.';'_ur.., automorohism . . s I - 3, Tere (7 1s conjugate L Co(Np) by 7-
E_-_:_: (pp "'-“*df" 21 (d) Ole'.(N) has the moduli-theoretic interpretation Yo(N) are not from Yy(Np), but lIL}IlIrFr\.ﬁ "-*r'h_l{: ( .t-liilli'-:i; t.ﬁ "*m:ll(lm}’j[ﬂ}l -
i} L '. = (E, ¢ ﬁ% N@: that (—1) is the identity, so the action of (Z/NZ)" However, the correspondences 7, and 1, {]I']l)‘l[]{; ) u{_l ( \:r jil ui%\ﬁ s o
',p:.. - 1_‘...- nro ,I 1 d r . gra % — :"' W 1 . J ;” il ! { {
R -0 .mjmmd/t{:;}‘ Note also that Yy(N) is naturally the quoticn! composing A and B v.n.th the |l..n‘l1“1:4_11"l.3::‘f m belwest <2
L AN -t| mmp and Ehﬁ natural projection Y;(N) — Yol N) degeneracy maps [J and a, respectively.

i erateg b}’ P ! A (E’ P) 4 (E' (P}) where (P) is the More genvrﬂlh' to any 1]t}sitiw integer n we can associate a modular correspon-

NYEEY; | dence T,, on '1’11(1\}) x Yo(N) by the formula

Kerieltad (7.3.2) T.(E/\C) = >_(E/D Rl
[

 PRIMARY REFERENCES:
7~ ""T:i .._-_,.1"_ Ay o
erl, §VIL.5], [Sil2. £1.9]. [Kna? -
5], [Sil2, §L.9], [Kna2, §VII1.7) and (Kobl, §11 hen T
' e hav | e B <0y A ' et § 1.5]. : of E af order n 5;1li:~'f}'illﬂi C N D = 0. Then Iy
T e R in §3.2 certain natural projecti Y where D runs over subgroubs QF = .« from T(n) by the construction of
o DELWLL nodular eurves _ - l]' 1on mﬂpﬂ or dﬂ' ener- . . - o mce 'u‘h'lllfh arises 1o 3 T
: ar curves and used these & coincides with the r:DrrLf«Ilm“l‘ ne : o 1| primes p, the T, are
3 ; i wmdeﬁnem d T8 ] . ) ' i R 1 11{1 (lﬂ[”“—‘d I } fﬂr a !}r * I"‘
rrespondences. §3.2. In particular, having set Ty = 24 |

er from a more moduli-theoretic point of view.



: ime not dividing N
] p 15 a pI'I.I“L Nno B4V
Ty Tp -l Hr2s e dividing N

Te = 1 e P
139 Ir Z g, =
IO

rrespondences on Y (V) .

- descri ular co
One can similarly define and e mt::i not dividing N and consider 1.

| a 3 :
Yi(N)- hwm*-’mr%‘p] denotes I'I(N)nl‘ﬂ(p). T'he modular corr.-

. y [ e o
dﬁmdl ¢ and 3 are the degeneracy ,".m]h
ﬂ}i’ by a© g where @ The effect of JP oIl & point

mm_ d, respectively, by 7 Halr:u:g TET‘;IE;)T(T) ifere -y Tuns through

is gi the form _ S _
Iy (N)r of YI(N) is given by the last matrix requires a slight modification. Wi
the set in {7.3.1), except that

now have the moduli-theoretic interpretation:

T,(E,P) =) (E/D.P mod D)
D

\er | bgrou. ps of order p. One can again define T,, for inte-
m:f ?#:thm:r;:duli-theu:tg interpretftiun analogous to the one in (7.3.2),
ﬂ -ain these coincide with the correspondences which arise from T'(n) via the
a0 Df§32. They satisfy the equations listed in (7.3.3) except that now
Tf= Tpr1Tp — (p)pT,r-2 for primes p not dividing N. Note also that the corre-
QmﬂchT,. commutes with the action of (Z/NZ)* and the natural projection
Yi(N) = Yo(N).

REMARK 7.3.2. One can also give a simple moduli-theoretic interpretation of
the involution of ¥; (V) induced by the matrix wy defined in §4. The pair (£, I?) I
sent to (E/(P), P' mod (P)) where P’ is a point of E[N] satisfying (P, /) = g2t/
where () is the Weil pairing on E[N]. Denoting the involution again by wx
wm thsidmtitiﬁ WHanH = "Tn fﬂl‘ a.ll n 2 1 ﬂ.ﬂd ‘HFN(d)wN = (:f}_] for
all integers d relatively prime to N. Similarly, for @ dividing N and satisfying
{ﬁﬂmﬁ 1, the involution wg of Y5(N) defined in §4 has the interpretation

(E.C) = (E/CIQ, (E1Q) + C)/ClQ)).

—y M
ST
i
qn ¥
s

S 8. Canonical models

72 Tt ;"’1]- |m section is to explain how the interpretation of the modular
mj‘*ﬂ Wm be S”“;:itﬂ define canonical models for these curves.
main reference will } fing Bh]' fr-ohimura congruence relation in this context. The

e L O jn .], but see also [Shil], [KBMH] and [MHWi]. We
Hart],  oound in algebraic geometry, as can be found for example i

YVis e 4 ﬂlm R . Y Wﬂl‘ B.'B'Ilbl'iflg R of C, we mean a pair ( Y, @)
isomorphism ¥ 2 (g) " one-dimensional fibers, and ¢ is an analytic

" o
L] - .:.. =3 -
1 M e e TR

5y i = [ : "
d g " W L - 1 c I y
RS MeMr 4 e WALISIGET P erh
o 5 o~ o T d. g iR
5 g e Fr—— = e o
i LS ¥ T e L L
. " T b - e gy &
o Lty 0 R [ GES 1
L) Ly - - :
5 ks
¥ | r
: #
k.

AT e e Y = Spec (Z[j]) over S ‘
P 1ll) = 15,5 = pEEZ and the
M |y P o S "m SL?(Z)T to the element of Y(C)

\ y :
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subgroups. In particular, he shows that v (N) and Y (N
hrnju{:tiw_. varicties defined over Q o lh‘ljt ‘tlj . "] M e S,
i i projections, degener: 3
: s, de racy maps and

uurmﬂlm“;‘hi;m;;ﬁ illﬁll_.‘-llﬁﬁi!tl above can be defined over Q. We will adopt t) int
’ Ao | o . : . ado 1 poin
of view of Deligne-Rapoport |DeRal in order to define models over rings nI; the

form Z[1/N]. These models are an important tool in the study of the arithmetic
& ; stic

of modular curves and our discussion will barel

arcly scratch the surface. In additi
to [DeRal, the reader can consult [Igul], (Ig Terry ! LR o
[MHWi]- gull, {Igu2|, (Igud], \Drin|, [KaMa)| and

8.1. Families of elliptic curves.
PRIMARY REFERENCES:
{KﬂMﬂ, Chapter2|, |Gross, ’ril] and [Sil2, Chapters LLIV].

Recall first that the points of Y, (N) correspond to pairs (E, P) where FE is an
elliptic curve over C and P is a point of £ of order N. We will now rephrase the
definition of a pair (E, P) so that it makes sense with C replaced by a scheme S
over Z[1/N]. By a family of elliptic curves over S, often simply STl s elliptic
curve over S, we mean a smooth, proper group scheme over S whose geometric
fibers are elliptic curves.

EXAMPLE 8.1.1. Let S = SpecZ[1/11] and let £ be the closed subscheme of
P% defined projectively by

Vilg el - a8 ¥Eg . X Z* =902

Then € can be given the structure of an elliptic curve over S with zero section
G — £ defined by “the point at 00,” X — 0, Z— 0.

EXAMPLE 8.1.2. Let S = Spec(Z[j,;7'(J - 1728)7!]). Let £ be the “generic”
elliptic curve over S, i.c., the closed subscheme of P% defined by

V27 4+ XYZ=X3-36(j - 1728)"'XZ° - (j - 1728) ' 2°.

At a geometric point Speck — S defined by j — jo (where Jo € k- with jo # 0, 1728),

the fiber of £ has Weierstrass equation obtained by replacing j by jo In the equation
above (see [Sil1, §IIL.1]).

EXAMPLE 8.1.3. The Tate curve Deld4, §8] over S = Spuc{Z{(q}}] is defined
by Y2Z+XYZ =X+ a X2+ agZ” in Pf; where
’ \ 1 -0, =ody N 1 — ny
G4 = —SZ n3g" /(1 —q"); ay =~ 5 (7n® +5n%)g" /(1 — 4")

21
n->1 e

8.2. Moduli problems.
PRIMARY REFERENCES: e e (Wi
DeRa, Chapters 1IL1V], (KaMa, Chapters 3], [Shi%; Chapter 6] and [Ma¥¥i,
§2.3). o
r A -5 eSS s as [Ul"
Now define a contravariant functor Fi(N) fl":"”“ Z[l{/ N| ?‘7?‘_[;:?:*;:}?1;:CIHSEES
lows: For a scheme S over Z[1/N], F1(N)(S) is the set 08 1O I

. is i nt of £(S)
. - Ahintic © e over ) and P 1s an elemen .
' : A IFf-S — T is a mor-
Ry Qe k — §, P os has order IV in E(k). 16 f:5- B adin?
geometric points s : Spec ‘ (T) — F1(N)(S) by “hase-change

o !
phism of schemes, we define RN F 1(N)
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e : £s and Ps are defined so the Squarcs in the followiny
here &s 3
(£,P) = (£s,Ps) ™

| Ps I
Pt i £

| l

S N 8

: change that (£s,Ps) defines
dard properties of base-
It follows formally from stan

elemen that F1(N) is a functor. P
s In tht: Eigge)(fhlﬁdbstmtivé(statement is the following:

 then there is @ scheme Y1 (N) ‘wa'nr::h represents rrhrfl
THE;I%&;;&U fﬂfﬁ) is smooth of relative dimension one over Z[1 /N
e irreducible etric :

M‘Ih Miﬂ?ﬂ:ntiaﬂ}' due to Igusa [Igul], but the statement in this fur:nu I
most easily deduced from (2.7.3), (3.7.1) and (4.7.1) of Kaiisz-—?t*fazur [lKaI\uII [ ‘“u
gboﬂ)eIhJ for a sketch of Igusa’s method and statements similar to the one a ]m:
The meaning of “Y;(N) represents Fi(N)" is that for any scheme S over Z[1/N|,
there is a bijection, functorial in S, between the set of maps S — Vi (N ) and the set
of isomorphism classes of pairs (E,P) over S. It follows formally that the scheme
yl{N) with this property is unique up to canonical isomorphism. Note also tha
corresponding to the identity map in the case S = Vi(N) is a pair (Euniv, Puniv )
which can be considered the “universal elliptic curve with a point of order N
Indeed any pair (£, P) over a Z[1/N]-scheme T' is obtained from (Exinivs Puiiv ) by
base-change for a unique morphism T" — Y;(N). Considering the case 5 = €
we find a natural bijection ¢ between Y1(N) and Y;(N)(C). This bijection is au

analytic isomorphism, so (V;(N), ¢) is indeed a model for Y;(N).

VARIANT 8.2.2. It will be convenient at times to use models defined using =
different set of conventions. Giving a section P : § — £ of exact order N amounts to
giving a closed immersion (Z/NZ)s — £ of group schemes over S, where (Z/NZ)-
denotes the constant group scheme Z/NZ over S ([KaMa, (1.4.4)]). Some authors,
G : [Gross| and Katz [Katz1], [Katz2] for example, use a model for Y;(N)
Whl'f':h iml;ead parametrizes pairs (€,1) where i is a closed immersion (py)s < &
mrw;%%ﬁtﬁmlﬂ represented over Z by a smooth affine scheme we
denote b; - We thus obtain a model for }’I{N) over Z, (V,(N),¢,), with ¢,
‘-rm((ﬂ) o JN"'&’A‘HH) for 7 € 5. Here i, denotes the embedding defined by
wm S WER T i gf where (v = Bz"f” . Note that the models are isomorphic

vhen tensored with Z[1/N, Cy]. We caution that there is an isomorphism of schemes
but such an isomorphism does not respect the

Vi(N) 2 Y, (N)zjy/x; over Z[1/N],
A ¢ and ¢,.. m_&m 5 not an isomorphism of models over Z[1/N).

which is complicated slightly by torsion

N > 3 and return later to the casc

o(N) on Z[I/N]-schemeg where F,(N)(S) is the
£ is an elliptic curve over S and
geometric fibers are cyclic groups
f_m' Yo(N) which represents F(/NV).
tomorphisms, multiplication by —!

PR Vi e btler one. We can nonetheless
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proceed as follows. For an integer | e

x lilt-i‘-.'{:h' WIne r ,
over Y1 (N) defines a morphism, V(N v prime to N, the pair (Eyyiy , Py )

: — Vi1{N) which we e
defines a homomorphism G — Ay {)J-H{fijl}hu.*]h:r?-”;]' o [{;l}/ i,rﬁ Then d — (d)
8 Bl o= NL)*, or in other

words, an action of G on Y, (N Tk
‘ 11Y).  Equivalently we ean |

transformation F,(N) — F (N) defined " {E*‘P}L :u{]; 1;; (d}T;L'-_; the natural
a model for the automorphism of Yi(N), whicl L +dP). Note that (d) is
hint (f s ole) = s 1 1nch we also denoted ({I
that (d) o ¢(z) = (d)(2) for all z € ¥,(N). We can |
"i[]hf'“lﬂ y (J'.'\'r) - Ci\y (ﬁ.r "',‘l" : - > Can Lner
Ch V ’ V1Y) We mention some of its properties, proved in [DeRa
Ch. VI] and [KaMa, Ch. 8]. It is a smooth scheme over Z[1/N - :
yrojection Y (N) — Y {,-\.— PR O o -- fd ], and the natural
projec | H “r‘ }Plh hnite and flat, but not necessarily etale. There
n.ll':e al_&;u Irlhllljlh rg.?- : .?"*u(_f"‘- S) — Vo(N J(S), functorial in Z[l/.-"\"]-:-arIMIIm:i S. and
bijective if S5 = Speck for an algebraically closed field k- Applying this for k]- C

i £ ; Yt g it : S =
we find that Yy(N) is a model for Yy(N). As ¢g is not necessarily a bijection
Yo(N) need not represent Fy(N). In any case ¥,(N) has an illli‘fl;rﬂlitiil’]ll AS t
| P “ T enhn M : . ; :: ' : L4 L
coarse moduli scheme “D{"Hﬂ* 51.8], ‘KaMa, 48.1]), but we will not define the
term here. We mention only that for a field k. Vo(N)(k) can be identified with
the set of equivalence classes of pairs (£.C) over k., where two pairs are deemed
equivalent if they are isomorphic over the algebraic closure of k.

), in the sense
| consider the quotient

1

In the case N < 3, a sumilar construction yields a model over Z[1/N] for
Yo(N) = Y (N). Again the scheme Yy(N) = Yi(N) can be interpreted as a coarse
moduli scheme and it has the properties listed above for },(N) in the case N > 3.
For N = 1, we recover the model in Example 8.0.1. We find also that the map
Fo(1)(K) — Yo(1)(k) for a field k is described by sending an elliptic curve to its
j-invariant. Note that this is not a bijection mn the case k = Q; quadratic twists of
an elliptic curve have the same j-invariant, but are not necessarily isomorphic over

Q.

8.3. Models for modular correspondences.
PRIMARY REFERENCES:

[DeRa, §V.1], [MaWi, §2.5| and [KaMa, Chapters 5,6].

We now turn to the problem of defining models for the degeneracy maps and
modular correspondences considered in §7.3. For this we 1:1.'111 IiL‘t*{! a I‘Iﬂl[lflt?] over
Z(1/N] for the curve Y = I\, where I' = I (Nip) = 1_‘1“- ) N Ly(p). WWe aIe S
working in a situation of bad reduction at the prime p, in the sense that the hvr:,-t
model turns out to be regular if N > 3, but the fiber over p is not smooth. The
moduli-theoretic L'f}rlstﬂl{?t—'itlll and analysis of this model 1s due F“ D_rhlgrw-R’n[;-n[‘.-.u_rt
[DeRa], but for a more general construction of such models using Drinfeld’s notion
of “elliptic modules,” see [KaMa]. o les (E. P,C)

First note that we can interpred Y as the h[lf“'*-‘- IJ“T”:“H"“'{'-'”_H-’, “:'PPHIL_*: { *}*1r 1_ .
where E is an elliptic curve over G, [71sa point of order N and C'is a cyclic subgrouj

' i - descripti 1(Np), we
4 : TP (L . . astent “-l[h OUlI (l[?:-_.[]l[][l”“ Hf } |{. .

of order p. To be more explicit, and b GESISLERS A P =dN"' mod A, with
associate to 7 € $ the triple (£, 2, C) where £ = G/, 17 = & -

.t
dp=1mod N, and C 15 genlirqu 1::3;- {; | . ssdidlingn corresponding functor
Mimicking the above duhnl“.ml o TN TS 9 the set of isomorphism
F on Z[1/N|-schemes which assigns o e *
classes of triples (€, P,C) over S, where & 15 an il Lo
of order N and C is a finite flat subgroup scheme .l’;‘.lt & mt
p. Note that if § = F,, then bhegroub :j['ht'”'“; L *[jii:i:i:'phic
as “the cyclic group of order p.- Indeed C may be Ix

such a scheme | _
liptic curve over S, P is a point
geometric fibers of rank
adequately be described
to i, or Z/pZ if £ 1s



is 8U . (See [Sil1, yv
m[gh.t’, §2] for definitions

' '_;-'?-. ﬂf Dqligna and Hﬂpﬂpurl. (S

by a scheme J’ e,

of Y at p if p does not divide \

tﬂ;ﬁoa and plays an important rol,

Mm description of the functor »
and modular correspondences

‘I'B mean a finite flat hﬂmmnnr;;hmn

hm elliptic curve over a scheme S and (

m&m& is an elliptic curve &' = £/C over

el C. Moreover F is naturally isomorphic 1,
cheme S the set of isomorphism classcs of

* ntﬂbsm
i y = yi(N) for the degeneracy maps .

T "'-* \at of (d) in ﬁﬂ We define a model o lur
g ﬂ-,. 5‘: — _ﬁ[N] defined by sending an isopen
(EOCQ that it is necessary to use p/’
) E‘-@Q‘ where ¢ is the isomorphism Y — J/(C/
letr tio b! Yﬂftﬁp]:ﬁ (E,P,C) over C.) We d¢ I111-
) its targe (8' 'P") We can now describe a “model

ﬂummappms

w-mm <)
gives rise to 7-.3 h‘ T*__ﬂ"ﬂg,:r.m:arpl:us:ln of schemes over ), (V|
N) — Y g ). Identifying Y, (N) with Y, (N)(C

R Bl

| 'k, then a correspondenct
d:yiam- on X x Y (see [Shil.

ﬂ a diﬂﬁﬂr in order to avold

s over more general st

ﬁfthﬁ “bad reductiont
:{'5 E efine two natural map-

Euniv )F, over Y1 (N)g, A
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the commutative diagram

& b &
l 1
yl(N]F:J i yl(*N)Fp

where the horizontal maps are the absolute Frobenius endomorphisms. The di

gives rise to Frob : £ — €7 where gLy P 1e diagram
- l 0 o Where 1s the elliptic curve over yl(N] defined

as the base-change of & relative to ¢ ]“hi- map Frob is called the relative Frobenius

of £; it is an isogeny of degree p of elliptic curves over Vi(N)g,. Writing Py for

(‘P""iv) F, and 'P[{,” for Frob o Py, we get an 1I50¢geny

Frob : (&, Py) — (E“’ pl[p)

which defines an element of F(Y(N)g ) and thus a map
i,r- : yl(i\r}pp o }’Fr.

For a more concrete description, recall that a point x : Spec Fp — Vi(N) corre-
sponds to an elliptic curve £, over k = F together with a point P, of order N. Its
image iy o r is the point Speck — Y w 111L11 mrrr:ap-:mflh to the tnple { By P i)
where C is the kernel of the Frobenius £, — E'. Note that E is the ellip-
tic curve obtained by composing x with the absolute Frobenius automorphism of
Speck, or equivalently, by applying the Frobenius of k to the coeflicients of an
equation defining £, over k.

To define a second natural map Y, (N)g, — Yp,, we use the dual isogeny
Ver E“"} — £,. This isogeny, often called t]lt‘ 'ﬂ.’emdue't}um:, is characterized by
the fact that Ver o Frob is multiplication by p on &. Thus

Ver : (*“’] H’”’ ) — (&, Po)

defines a map
v i V(N)r, — F,,
| mod N. For a point z as above, the umbe i,y o x corresponds

where dp =
dual to the Frobe-

(EE-:I’],EIPJEP}, D) where D is the kernel of the isogeny Fxr W E,

nius.
"1 . /
From their effect on pairs (£,P), we can read off the composites of ap and

ﬁ{;-p with i and iy We find t hat

n"F'Ir G if'r = {,ll)) I:Il

{1’FI ofy = @
(8.4.1) B oip = ¢

?
3} . . r
Qs — I{l a

JU-'FF \

In particular, it follows that ix and iy are closed immersions. Using these immer-

te description of Vr, in terms of Y1(N)g,- First consider

< .+ which the geometric fiber of
the non-empty finite set of points on Yi(N)e, over which b }g1 e of Yi(N)F
&, is a supersingular elliptic curve. These form a closed subschem 1(V)F,

¢ Mfine Yo similarly umi consider the
: ¢ denote V) ord — Dehne |
WITEE meI)IEHIILnf“;wL ;’L(N ]””?l {—+ )y”“* A pnmt Speck — yord corresponding
restrictions 1% ] oy
to a triple (Ej P,C) over k15 in the image ol tp if and only if E"nlta ETLIIRH, -
and in the image of iy if and only if C is etale. It follows that 19 114

sions, we can give a comple



F. DIAMOND AND J. IM

74 corresponding to super-

: ints
her hand, the finite ok OF PO fip and 1y, and this

i | IS wo irreducible

“singular elliptic curves lie de that Vg, consists of two irre
forms the singular locus Of'?F" e ;ﬂ;l unne via ipf the other via 1y r“a More
each isomorphic to Vi(N)F,» ross transversally at the supersingular
23 wefu]mg]mahm that the components € ¢ : Speck — N (N) with [,

- e 1 iv o d o for the points
% 1p o T Wlth 1y ©
points, .i_d&ntlf)ﬂﬂs

| mngulll' oo define models for the maps dﬂﬁhnf":d 'tfl Huumrlf
.+ REMARK 8.4.1. We m?} 54 (see (MaWi, §2.5]). For f’l..}]D:-]lLWL‘. int L‘.j.’,E‘l‘l N
; H;ja‘z '[v the m&tl‘iﬁﬁ wy S we can regard the Weil pairing ﬂ::-‘. H.IIIHI]}EII:-.IH‘
4 and an elliptic CUrve 4 U}'FTS is a Z[1/N]-scheme and P is a point in £(S5) of
4 “‘ﬂN] xS EIN] = 1 NS with P defines a surjective morphism of group 5:_'111!1”1-5
8t ) :;w:m 'N'.‘ tﬁ}ﬂﬂﬂ is C — (P)1 the Subgrﬂup Schﬂﬂlﬂ gﬂllﬂriiil.-{’.’{l h:'l,' P
! ﬁ[m-—' f“f.% Z[lfN Ehi!ﬂl- Then EE::‘,’N defines a point of ;LN{.S) Ell:(! thus
oy S B of (E[N]/C)(S) C £'(S) of exact order N where £ is th

| ‘I'I:- i T ;
| i‘ﬁ\‘QTiﬂ:um £/C. We can then naturally define a model for wy on Yi(N)s by
\ i il model w for wy, on Y by sending an

. prime p not dividing N, we can define a nding
ﬁg‘zﬁ P) —;:?E',‘P') to its dual isogeny (€',P') — (53 p’P).. N-Dtc the re]ali %uln
‘lﬁ -"'*-(p) ﬂ:I J? and the relations wFPip = (p)ppiv and wpphr =1 11 characteristic

_ In particular, w interchanges the two irreducible components of yF"'. |
% Similarly ft;l' suitable divisors Q of N we can define models for the involutions

wg on the coarse moduli schemes Yo(N). Furthermore, we can define a model for
w, on Y(Np) which interchanges i5 and iy .

8.5. The Eichler-Shimura relation.
PRIMARY REFERENCES:
[Shil, Chapter 7], [Dell, §4] and [DeRa, §V1.6]

Note that our computation of the four composites in (8.4.1) describes the com-
posite of the normalization ¢ = ip [[iy with the modular correspondence Tg, In

~ characteristic p:
' Vi(N)r, ]_llyl (N)F,
YF,
|
Vi(N)r, x V1(N)F, .
- We have
(8:5.1) Tp, 01 = (®, (p)r,) [1(id, ®).

| Thufamnﬂa can be viewed as a form of the Eichler-Shimura congruence relation
- [Eich], [Shil, Theorem 7.9] (see also [Dell, §4]), which essentially says that the
N g T, In characteristic p is generically the sum of the correspondences
: 6 b}'thﬂmpa (®, (p)r,) and (id , ®). For a precise statement, again consider

| mmhm of schemes over Vi(N) via m,. Taking fibers over an ordinary
point z: SpecF, — Y (N)g, < Yi(N), we have

- mInmw). S oy,
T % Speck x Y, (N).

[l
1
¥
-
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The composite agrees with the one 5t

(‘I’, (P}F,,) U{ifl ). Note that the diy

5.9

(B.d-u) tIl_[J.) 4. {FJ}P‘;,..‘I'.{I)_

The situation for Y(N) for N > | e faudl s
we use a model Y/, (Np) for Yo(Np) [—]-Wr Zi1) v _:1:,[;‘1,:;1[.:1 except that instead of y
Again ?JIIJ(INF)HIU-‘*-'I*] = Yu(Np) is smooth over Zfllf[,;:h’;;r t;f{‘;ug:[;f“mlm;.mflmm?'
then y”(h"”) may not be regular, byt Yo(Np)g. can still be desc J'Ih* lllr:]t' e ‘N1
of two copies ‘_’f Yo(N) crossing transversally at Hll|]f'r5iljgll|l’ll‘d p }[.{ = tlitz.umnn
Shimura relation takes the same form as ip (8.5.1) or (8 ; 2 pm-]?t-h- o Lmhlﬂj-
replaced by the identity. For N = 1 {}e image “f'?-!__ \8-9:2), except that (p) is

tained from the fibe

, o rover x of the morphis
1S0r image of the r phism

esulting morphism is simply

111
y{l{ ] }F: 4 J.};J{ ] }I.‘J = SI}[‘{‘_ I:Fj:!':_].! ‘_JJH
is defined by

(1 = 32)] = 42),

a form of the Eichler-Shimura relation alreadv known to Kronecker

9. Compactification

We 'ﬂ;’ill now explain how to adjoin cusps to compactify the modular curve ['\$H
and obtain a Riemann surface [Shil, Chapter 1]. Following Deligne and Rapoport
[DeRa| we give the moduli-theoretic interpretation for this compactification in the
case I' = ['o(N) or I'|(N) and discuss the properties of the resulting canonical
models.

9.1. The cusps.
PRIMARY REFERENCES:
[Shil, §1.3-1.6] and [Miy2, §1.7,1.84.2].

Let H°* = HU QU {co} and let T be a congruence subgroup of SL2(Z). Using
the natural action of GL»(Q) on P'(Q) = QU {oc} defined by

a b m am -+ bn
c n cm 4+ dn

We now consider the quotient

we extend the action of I' on §) to one on J) OW ¢ 10
C\H*. We write Xo(N) for [y(N)\H™ and X, (N) for T (N)\H". Before liﬂ_inung a
topology on $* and making the quotient a Riemann surface, note that EIL-_-[-ZT)‘H(‘_Th
transitively on P!(Q) and in general \P'(Q) is finite. The elements Hf-{hlh finite
set, which is the complement of '\ in I'\5)", are called the cusps of I'\H".

; TN e — : T 01y,
ExXAMPLE 9.1.1. There is a unique cusp SLy(4) -0 = QU {:’*} on Xo(1)

‘ = : { S (Z/NZ
EXAMPLE 9.1.2. Let B denote the subgroup {:( 2 )} f PSL2(Z/NZ)

o T . set of cusps of Xp(N)isin
and let U denote the subgroup [i( 3 4 ]} [hen the st

bijection with the double coset space
B\PSL2(Z/NZ) JU.

The bijection is defined by |
[o(N) - & = Do(N)-(00) = BTY
c
1 ~ ] S 1 .‘\;Z » hl
| ( a b ) s in SLa(Z) and 7 1S the image of 7 1n PSL»(Z/NZ)
c i i . 5 e
particular, Xy(p) has two cusps [o(p) - 0 and | o(p)
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2 ween the set of cusps of

saction bet .
bijectl bijection with the set

EXAMPLE 9.1.3. Similarly there i: that this is in
PSL,(Z/NZ)/U. Note

c€Z/N
(9.1.1) {(c,d)] s to the pair (c,d) where d is c}

he cusp I (N) - f coTaspen number of cusps on X1(N) is

Expllclﬂ&': t | inati f the
that ad = 1 mod (¢, N)- The determination 0 9]); one finds that X;(1) has onc

straigh forward Theorem 4.2.
they ) {he [Nﬂyﬂ. ; 4. then the number of cusps
- - d that if N # 1, 2 or 4,
cusp, X1(2) has 2, X (4) has 3 an
on Xi(N)is
~1)2
Ly~ g/ = 5 L]l -#7 + M@ =P)']
2

pIN

'whHEtheﬁIatmiﬂnverpoﬂiﬂvediﬁsursdqu.

Let us now define a topology on f*. As a base of open neighborhoods of §°
we use the open subsets of § (with its usual topology) and the sets

v({z +iy|y > C} U {o0})

IHTESL:(Z)md[IECER. Thus § is an open subspace of $* and QU {oo}

is discrete. The quotient space r'\H* is compact and connected. It is the union
of the open subspace I'\$) and the finite set of cusps. We have already defined

a complex structure on I'\$) and we shall now define a complex structure in «
nei of each cusp. For v € SL2(Z), let h be the positive integer such that

£('3 %) generates the stabilizer of oo in the image of 77"y in PSLy(Z). Tl

- map A7) — e2™7/h ~(00) 0 defines a homeomorphism from a neighborhood of
I'y(o0) in I'\H"* to the unit disk in C. The homeomorphism depends only on the
m and not on the choice of 4 and the resulting complex structure is compatible

_th the one we have already defined on I'\$). We may now regard I'\$H" as a

EXAMPLE 9.1.4. Recall that Y;(1) is biholomorphi ' ' -
i phic to C via 7 — j(FE,). Map-
ping SL»(Z) - oo to 0o extends this to an iso his i ——
sphere P1(C). morphism of Xy(1) with the Riemann

ol Wel ?Gﬁo Mﬂg and I are G?HETUEHEE subgroups of SL,(Z) and ~ is an
holomorphi mﬂ»;qu\ﬁ' —fh[?‘t I‘*c 7~ I"7, then Ay v(7) for 7 in $H* induces a
ﬂmﬁmh:l’l’f B oint of I"Eg': The only possible ramification occurs over the

Nowlet]” = : ;
i :ﬂ}z(ge:lldhﬁkt 7 be the identity. The resulting map to SL,(Z)\ 9"
- Wﬂﬂj (m: s[:ﬂmts SL:(Z)!.,. SL2(Z)e™/® and SL,(Z) - 0o, which
i, 'a j {see Example 9.1.4) to the points 1728, 0 and oo in P!(C). Apply-

g the Hurwitz formula to this vering ;
|Sh LPIQP 1.40] o of the Riemann sphere yields the formula

.""-'-m-.l—.,._|l

.
J.
has index 12 in 5L2(Z), we sce that X, (1]

; genus one i » cover X ;
ag.ESEL o s -:ml the:cover A (1) — Xy(11) is cyclic of de 5. Wi
group (Z/11Z)" /{+1}. ' yelic of degree 5, with Galois

X1 (N) has no elliptic points for N = 3
is given by

EXAMPLE 9.1.5. As X (11) h:

S no elliptic poi
10 elliptic points and two cusps, and Ty(11)

) has genus one. We find also that Xi(11)

EXAMPLE 9.1.06. ‘ . : ;
). By the formula of Example 9.1.3 together with the fact that
. A1 1ac 181

we see that the genus of Xy(N)for N >4

o=1+ 57 [J0 -5 - Y o
o 24 I!“ Py .1" H[l ==Y A H;,'[:\'){] - p—!-}‘:]r
Pl HIN

For N < 4 the genus of X (N) is 0: in fact. this is the eace AT s
the genus of ;{”(hr)] oo [Shii! [}I.““. lh_]:ffj I”lL. 15 the case for N < 10. To compute

Lr:?tt,:nEI = 1" = ['y(N) and taking ~ in Ty(N), we obtain the action of
(Z/NZ)* = T'y(N)/T1(N) on X|(N) extending the one on Y, (N). The quotient
of X1(N) by this action is naturally identified with Xo(N). I.\’ut:v uh_@{; 1lhnt the
degeneracy maps Y,(M) — Y,(N) defined by 7 = ¢4 (see §7.3) for divisors d of
11J/N extend to maps Xy(M) — Xy(N). In particular for ,U = Np we denote the
extensions of a and /3 by the same symbols and a o3 gives rise to a correspondence
on Xg(N) which we again denote T},. Similarly using [Pl [y(N)and T =Ty (N)N
I'o(Np) we define the modular correspondence T;, on X (N)

9.2. Generalized elliptic curves.
PRIMARY REFERENCES:
[DeRa, Chapter I} and [Deld].

Our next task is to explain the modular interpretation of the cusps as general-
ized elliptic curves. This interpretation was int roduced by Deligne and Rapoport
[DeRa] in their construction of smooth, proper models over Z[1/N] for X(/N) and
XitN)

To motivate the definition of a generalized elliptic curve, let us first recall that
we identify the point SLa(Z)7 of Yy(l) with the elliptic curve E; = C/(Z % ZT)
(up to isomorphism). Observe that as a complex Lie group, L; 1s isomorphic to
C* /{e?*™"7} via the exponential map z — o™ Moreover f 7 = :%-IJJ wi[h.;r{:‘r:- FL
then an equation for the curve E. over C is obtained by :-.«'Ill]h“ﬂl[l[‘.lg § = ::"I . .m
the power series that appear in the definition of the Tate curve l'_l:-.‘:‘HIIlP"f h-l--ﬂ
This provides the following intuitive description of the behavior of £, as SLa(Z)T
tends to the cusp SLo(Z) - 0o; the real number y tends to oo, ¢ tends to and the

equation for k., degenerates to

(9.2.1) Y=+ XY
So the modular interpretation of the cusp of Xo(1) should be provided by the

ecti ety ove fined by (9.2:1).

“degenerate elliptic curve” C. the projective variely [m_.lrlC ii'la hluu.:;l by }{--J,. [)]

. | Ity s . ordinary double pomt A = = U.

Note that the only singularity of €15 the Ul'.llIl"T y ways “![iml” e
Writing C™* for the smooth locus of €', we can define an “addl

] i T y [ L U I-U'i‘_’ :-r
Cr& x C' — C by substituting ¢ = 0 in the group law for l]hvci 1;1}\:_. Uln‘r;{;I R”:..'
e i oA h - o l S -'Il.:n; . ¥ ._.. ]‘ ) — fin s :

the isomorphism G, = Spec ClZ,Z | — ( definea DY
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. otion P! — C and the diagram
= q)rs to a normalization
i G X P — P!
| !
c% xC — C

: !

arrow is gi the natural action of Gm on P
commutes, where the upper dlgn?ebzdhfs called the Néron l-gon m:ur C. To
The pair (C,+) we Ve ju we shall need to consider Néron poly-

interpret the cusps “f“thmt;l; ;ug:zl N-gon (CN,-F) over an algebraically

We : . -
gons [DeRa, SIL1I r k has N irreducible components,
closed field k as follows. The scheme Cy GEEN edinary. double points. To corn.

& # - l arl
each isomorphic to the projective line P, lex the components wit |

g lﬂﬂﬂfcﬁ' up to iﬁﬂﬂ]ﬂfphi‘snl: we in ) o
mtmm require the normalization 1" : | liez/Nz P "’.C” to send
?H;'e::j (0)is1 to the point for each ¢. Thus r restricts to an isomorphism

00 ), i+l same

G.. — C*, and the dual graph of Cy is an N-gon. We let + be the
m (;" X CNN j—* Cx characterized by the commutativity of the diagram
sm Gy

1
icz/nz Gm * [Liez/vzP' — HieziNz :
l
C;? X CH i" CN:
where the vertical arrows are given by r and the top arrow is defined by
((x)i; (0);) = (2Y)it;
mcimd points. In particular, + extends the addition on the group scheme Cy* =
G X Z/NZ to an action of Cy* on Cy, and the induced action on the dual graph
We are now ready to generalize the notion of an elliptic curve so as to include
schemes whose geometric fibers are elliptic curves or Néron polygons. A generalized
elliptic curve ([DeRa, 11.1.4]) over S is a pair (E, +) where E is a scheme of curves
over 5 and + is an S-morphism E™* x5 E — E. We require that + makes "
a commutative group scheme over S acting on E and that the geometric fibers of
(E,+) are elliptic curves or Néron polygons. Two elementary observations are that
lmm elliptic curve over S is smooth if and only if it is an elliptic curve and
that a generalized elliptic curve over an algebraically closed field is either an elliptic

curve or a Néron polygon. The key example is the followin apter

gyl . g (see [DeRa, Chapter
V11 and [Deld, §7):

EXAMPLE 9.2.1. Define the Tate curve E, as in Example 8.1.3, but working

over 5 = Spec (Z{[q]]) rather than Spec (Z((q))). Then E™# ;
. | : g © s the complement of
ﬁ!dmdmm defined by X =Y = q = 0. The group law on the elliptic

:ﬂtml rve E, x s Spec (Z((¢)) extends to a morphism - - EY¢ xs By — E, making EI*
/ . it A : i
seomercpin o1 5. 1 gy < bt (o7, 0% 1 ]~ k defnc
N il i qu“( , then (Eq .k, +1) }E isomorphic to the Néron 1-gon
¥ q) #0, thefl E, x is an elliptic curve. In particular
41y and y > 0, then this elliptic curve is

We can now regard the Ricmann surfyee X (N
*AN) as a moduli space. Its points

e naturally in bijecti : .

{ atur y | _.! ction with the SOMOrphism elysce .. ]

generalized elliptic curve over © and P is 4 poj .I f ,fhr“ pairs (B, P) where E is a
a i f lj ‘} :: pr

ﬁnhgrmm generated h}' P meets CNiery component . | s i, that the

the bijection defined in §7.2 by a natural ”““: - Indeed we shall now complement

set of cusps of X, (N) and the set of i m1~ 'H:lll_w .{',H!I'I"E'.H[J-ifIIl‘.ii*li[fi_‘ between the

a Néron polygon, To a pair of ntegers (¢ ;;JI .,.-:I.“-{ “_*.W*H of i““f_ﬁ ([, P) where E is

the N/(¢, N)-gon over C and P is (e I”‘lim { ._":':‘:;;;_.lFtt.- the pair (E, P) where E is

by P meets every component, and if d is o)

N. The image of the pair (e, d) in (9.1

and the resulting map from the set of ClLS
To define canonical mode

p (S &

| .}' /te.Ny- The group generated
thively prime to (¢, N), then P has order
| _ up to 1somorphism,
Ps Is the desired bijection.

Is for the curves X1(N)

} determines [H,f’}

.+ We proceed as we did for

Y1(NV) in §8.2, but using generalized elliptic curve \ :
ents © ey - : . it o 5. alore [ll'f.’t"-"‘-".'lj,‘1 for a Z[“rln,.:]_
scheme 5 we deline G (N)(S) to be the set of somornli el {g
= " % R E . e L " .
where £ is a generalized elliptic curve and P is 4 section S —, £ RIS e )
We further require th; e N5 — &% of exact order V.
e lurther require that for all geometric points s - Speck — 5. the im: f 1]
sulting immersi ZINT),. — £reX T il - o
gl ]'L”L’l{m ?"{"{‘\ an Ec " meets every component [DeRa, IV.4.14].
By the results of Deligne and Rapoport [DeRa. Chapter 1V] (sce [Gross, Pre s
e SECAT - | ) g o
sition 2.1]), if N > 4, then G1(N) is representable by a stooth curve X, (N) ov
: yoa: urve X (N) over
Spec Z[1/N]
r LI - r » r . : .
T'he bijection X (N) — X, (N)(C) we defined above is holomorphic and we now
have a smooth, proper model for X;(N) over Z[1/N]. One can define an analogous
J - i s "
functor Go(N) and a smooth, proper model for Xo(N) over Z[1/N] is provided by
a scheme AH{N) which can be interpreted as a coarse moduli scheme. (This is
also the case for X|(N) = Xy(N) for N < 4.) We also have a natyral action of
] » o L ; . :
(Z/NZ)* on X, (N) and Xy(N) can be identified with the quotient scheme. There
is a tautological natural transformation F;(N) — G,(N) which identifies Wi (N)
with an open subscheme of X (N), and similarly Y,(N) can be identified with an
open subscheme of X,(N).

EXAMPLE 9.3.1. The isomorphism Y,(1) = Aj = Spec(Z[j]) in §8 extends to
an 1somorphism Aj(l) = P:lﬂ. The resulting bijection Gy(N)(k) — P'(k) for an
algebraically closed field k sends an elliptic curve to its j-invariant and the 1-gon
to 0o0.

EXAMPLE 9.3.2. The curve X;(11)q is of genus one (see Example 9.1.5) and
has a rational point, the cusp at oo for instance. Therefore Xy(11)q can be given
the structure of an elliptic curve over Q. It is known to be isomorphic over Q to
the curve £q where £ is the elliptic curve of Example 8.1.1 (see the tables of [Ant4]
for example).

By |[DeRa, §VI1.2] (sce also [MaWi, §2.10]), a formal neighborhood of the
complement of Fy(N) in Gy(N), or Fi(N) in G,(N), can be described using Tate
curves.

EXAMPLE 9.3.3. The Tate curve I, of FExample 9.2.1 1s a gmwmli:{ml_ vllip?ic
curve over Z[[q]]. It therefore defines an element of Gy(1)(Z][q]]) and thus gives rise

to a morphism o |
é : Spec Zl[q]] — SpecZ[j '] < Aol L) -
45 a formal power series in

4 IS i . made explicit by writing J°~ 1 |
he morphism can be m I ) T A e

g. The complement of Yy(l) in X,(1) is defined by J-
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tion mod ¢ of the Ty,

Z — Ao(1) Z). Moreover ¢ induces ),
of the immersion Spec4 - a Néron 1-gon over &). _ i
considered he completion of Xj (1)
curve (which can be formal scheme Spf Z([q)) and t
between the

| .00 and I'o(p)-0, of Xo(p) = :ﬂ;(;})[rC) S

EXAMPLE 9.3.4. Thﬂtwﬂ%rgg(;)lﬁc,’ D') respﬂﬂti\'ﬂ'}}': where C is th
Go(p)(C) are given by ‘the k e it s G XC™, and C' is the p-gon over
Cand D is e % Pprder P which meets every component. et

1- over
cg::d D' is any subgroup e C?t ;ti]jp][[q]] Then £™% has a Euhgrmlp schene
£ be the Tate curve Eq s over & = : ) defines a morphism ¢ : Spec.S .

be : D

D canonically isomorphic to . The P:dl; Eifthﬂ complex point of Ay (p) given hy
XO(P) and the cusp ru(P) ' ﬂ;[lfp]((ql,fp)) mﬂds to a generali?.ed ﬂllipl-it Cilrve £
g+ 0. The Tate ﬂ:;:" lTase geometric fibers are elliptic curves or p-gons IDeRa,
over §' = Z[l/p![[ﬁ' ] ' —, £ < which is an isomorphism over Z[1/p]((¢"7)) bu
§VII1] (There is a map ts_;' tﬂfsingu]ﬂr geometric fibers of £ which do not mcet
comiracs t.huae mm{:-e £'6 has a finite flat subgroup scheme D’ of degrec
the unis *"t':""') mmPUnen;:. The pair (£/,D’) defines ¢ : Spec 5" — Ay(p) and
p which me:;a;ﬁ the complex point corresponding to I'o (p)+0. The completion
mfm t};e complement of Yp(p) is isomorphic to SpfS]__[ Spf§’. A similur
construction, but involving more cusps, describes a formal neighborhood of the
complement of Yy(N) in Xp(N) for composite N.

EXAMPLE 9.3.5. Note that the cusp I'y (V) - 00 of X, (N) = X1 (N)(C) is usu-
ally not defined over Q, as it corresponds to C together w1t.h a generat.fng section
of py C G = C[**. Rather the closure in X;_(N) of the image of this Ct.}IIl]}h'x
point is isomorphic to Spec Z[1/N, >/~ + e=2m/N]. Moreover a formal neighbor
hood of this closed subscheme can be described as in Example 9.3.4 but now using
the Tate curve over Z[1/N, e2*/¥]([¢]] (see §12.3). In fact, one can give an explici
description of the completion of A} (V) along the complement of Y, (N) as a disjoint
union of formal spectra of power series rings in one variable over etale extensions
of Z[1/N].

VARIANT 9.3.6. Recall that the alternate convention of Variant 8.2.2 provides
a model yﬂ(m for H(N) over Z. Uﬁmg immersions (HN)S «— E£TE instead of
sections § — £°°%, one obtains a model X,,(N) over Z for X, (N) (assuming N > 1
Then &, (N) contains Y, (N) as an open subscheme and the cusp T'; (N )-00 is defir
“.‘““"Q. ﬂiw to,thiﬂ mﬂde:e Tigllﬁ convention will be more convenient for
discussing the g-expansion principle in §12.3.

Although X, (N) is not proper, we have the following [Katz2, §I1.2.5].

THEOREM 9.3.7. The scheme X (N) is sm : - -
ST i ooth over Z with geometrically i1
reducible fibers, and Xu(N)zjany is proper over Z[1/N).

3-§8.5, but now using proper models for the compact-
- §VI]} Suppose P 18 a prime not dividing N and
X 7 fl(m ﬂPﬂ(P) and let X = P\ﬁ'_ We first define a
St [1/N] which parametrizes triples (€, P, D) where now

:.ﬂmptk'mwsm{mmgﬁumetric point Spec k — S the

;3?ﬁ!them ' ey m: ' évery component. We then define
i | n’ﬁ"qul(N) and consequently the

MODULAR FORMS AND

MODULAR cupypg

_ .

modular correspondence IR - 1
; A1(N) x X1 (N)

complication in the case of a. The pair (£
condition on 1]_1!-: geometric fibers {Z;’p]\r!;l{:} {.g!’”f.}-; .
L'”illtiﬂ curve £ over S and a mr:-rl;lhihmjl" ;I ) "l e .
fibers an isomorphis G — 28 =
consisting of the components whic
do not are contracted to P
ample 9.3.4 above.) We (|
the universal triple over v
We can analyze ¥, just

. We remark only On

a slight
does not nece %

ssarily satisfy the
: however 4 generalized
* & which indyces On geometric

the open

! hllhrrr{';” } sche Gor roeg
]] ITliet l}lf" i[”;”!p “f {'?’ J.-'Jln,lll'n'- w I R ”f E
int ' : L
S on the Singular

fine 5 mode] for q 1

where @) g

B kel (Thus those which
.f.n Us. See [DeRa, 11V 1] and Ex-
Sing (&, pmr o P) where (&, P, D) is

SRR Mo Berg s
; i Vi, in §8.4. The definition of

f}' L ;1J| [,.Il'r :l 1.11 — _‘1’}_“.

Is essentially as in §8.4, but shghtly more CHre 1s required to defip |
£P) must be replaced by ; - | todenne iy In particular.
S - T "4 . p ] . | o el I I ¥
components on each singular fiber is divisible by p. (See Exa le 9 -I;IIIHH rx':”
’ " roP (oee bxample 9.3.4.
then obtain (8.4.1), but now for cndomorphisins of V(N ‘u."fti find t] tj Y .
soular at ¥ o - . > B AUy )E * ind that X is
regular and that AF, has two irreducible components. each jc = N
- tri e “ Sy 3 o, CAcrn ]_Hljjnfer;h“_ T‘”'.I'.'EE.'N}F .
EI?Shl‘r]E -rl’ll]h‘h[ F5a } al I'}[Hllth q"l'-hl}r" thl‘ H:,I'.-I“H.I I]": f]lh‘f‘r H‘i— ,;l_r” 1_!-1. H ] -.!_”IH:]"HI[] I”I::]_

(9.3.1) Ly HH- AN )p, H-’tﬂﬁ"JF;_ — Ay

; T B e . y |
identifies X (N )F;- [T (N Jr, with the normalization of Af , which we denote
(XF,)".

A consequence of this description is the formula DeRa, VI (6.11.2)]

I

(9.3.2) i = o]

! . - " - - - :
where ¢’ is the genus of X, g is the genus of X (V) and s is the number of super-
singular points (F, P) in A {N)(F,). Combined with the Hurwitz formula (recall
we assume N > 4 so there are no elliptic elements), this yields

s = —(p = 1)[PSLa(Z) : T\ (N)

Note also that the Eichler-Shimura relation, (8.5.1) or (8.5.2), remains valid for the
correspondence Ap, — X (N)p, x X (N)F, |

One finds a similar description in terms of A, (N) for a coarse moduli :‘"_t_”'““'
Ao (Np) which is a proper model for Xy(Np) over Z[1/N] (see {DUF,{H' ?ikr!'l?ilj .
particular .l’{‘;[:ﬂffi)}“r can be described in terms ul'rl_h{_ﬁ}i-‘,. and the i"_“‘hh""hh”l“_”m
relation holds. (The only changes are that A{(Np) is not necessarily r{_ig”h” et
the formula for the number of supersingular points s shghtly more l"I”“F}'I“'f”'J‘f ) lif
pﬂrt,[m]lar,r fl’;‘;(‘u)pr has two irreducible components, liéulll,l,lm”_“”r“,},m “.j flipfqi J]”J :
P%« A formal neighborhood of the complement of J:i?-”.} ot '1{1{’”_}! . E;;" ; 'HZI
Exaﬂ:u}r as in Example 9.3.4. Note that there in. i “;~11.*.-Illlif.'i] :-111-.:::.:11 }-“f . i]t:_.}:i-,w
whose image in X (p)(C) = Xo(p) is Iy(p) - oo (respectively, Lo(p) - U) an |
image in X}(p)(F,) factors through 14 [r:t'HIH“'“""I-’_‘" ”ﬁ ]'. v dalined i Boe

Finally, we remark that the models for the varions U-OPETatars £L

! = i s "':u. I ‘{j
I'IHII'I-E 8.51.1 can hi“ l.x“.miﬂj O lhp I:rHJ[JH Inn{h s con dere

nbove.
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10. Jacobians of modular curves -
res, thelr reduction
: 1] examine Jacobians of modular curves, t
In this nectlﬂ:n:‘ﬂt:am andum;l;;m induced by Hecke operators.
modulo primes,
jes and Jacobians.

10.1. Abelian wmriﬂt
;ﬂm [anwmglfc;l'ul, (Mil3] and [BLRa, Chapters i

: . varieties and Jacobians of
: generalities concerning abelian
We now review some g

curve e ver an algebraically closed field & is «
We first recall that an abelian variety A © ooth, projective and commutative

i necessarily sm 8 |
proper group variety over 0:31;5: e genzral'l}' abelian schemes, OrF families of
2] One can b base scheme S. An abelian scheme over 5 s
a.b&lihn variﬁtle!, xpan ar mm”3r G whose geﬂmett’ic fibers are abelian varictics
lmh .' pr oper
[hﬁg:kﬁmic A gd nsional abelian variety, then the complex manifold
K= ' -di ' | vector space
s Ak torus V/L where V is a g-dimensiona I
,A[Q}ﬁwwnwﬁgﬁ?rm ggf[Rman, §1]. An arbitrary complex torus

MLiﬂldimtem ; ; ety or C
ST identified with the set of complex points of an abelian variety over
_WL..mbe ks 5 form [Rosen, 83|, i.e., @

w3 oty if V/L possesses a non-degenerate Riemann
ﬁ:"fiﬂ%:gmm form on V whose imaginary part is integer valued on L
Inthhme. the same is true for the complex torus V* JL* where V* C }Ic-m;:,:( V, .C';
3@’@:@ of conjugate linear functions on V (i.e., additive functions ¢ satislying

el ﬂwj=:£¢(ﬂ)hull seC,veV)ad L ={p€ Vele(L) c R+1Z} I 1

T :'-::*;I;{":.': A are abelian varieties satisfying A(C) = V/L and A*(C) = V*/L*, then A

’% lled the dual abelian variety of A [Rosen, §4]. Note that A is isomorphic to

: r"':_':—ﬂ‘h-sm C be a Riemann surface and let W denote the complex vector spact

of holomo phic differentials on C. Consider the complex torus V/L where V =

sl "."".,.; *

 Hom(W,C) and L is the image of the map /1(C, ) — Hom(IV C) defincd by

Mthﬂt the cotangent space of V/L at the origin may be naturally
ified with W. The intersection pairing on H,(C,Z) can be used to define @

Chore g

.. i degen iemann form on V/L, and the resulting abelian variety J is called
‘the J ' 4 ¢§2] Moreover this Riemann form gives rise to a canonical

-'|.
4
¥

pre ation of the Jacobian of C is provided by the Picard functor

; Fic™ (see {Mild, 31). Let Div-“(gr_') denote the group of divisors on C of degret
| :‘.‘fu!y, r:*:j ‘ » Div (C) modulo the group of principal divisors. In-

LI SOOI ients A NabTs. map Div®(C) — V/L which, according to tht
~ Abel-Jacobi theorem, induces a natural isomorphism of groups Pic’(C) = J(C)
choose a base-point P in C and define a mapping C — Pic’(C) by sendin
ne divisor Q- F _|" re :'L _ mp C — V/L is analytic and indUE[iﬁ elll

| 1@"‘ W which is independent of the bast

..........

lism is compatible with the natural identification of

: ' o vVIT 3y
rothendiec ;ﬂdﬁnﬁ ines a relative Picard

e & gt

o
L S
-

"
T Rl 4 B -

AR
B

! 1 .] L] L}

runcl-ﬂr I]i(: "'.‘"Jlr':l'.]" f-]“- S""I[,']”_‘,'I]"'gj lj}' “""j.]].fl"'-ll'.lfq."l - i
i5 -shism ¢ - REAlYIng - the functor which s ;

group Tr! lhm”?”*‘l“h”] classes of invertible sheaves on ':[J : ""*Jll(_h sends T' to the
roneral hypotheses (see (Cly; : N AT =A xeaT . :
;-:,En r }"lt 1 !:’.H{H (see Chapters 8 and 9 of IBLF‘.HH s t.‘: I'. Under quite
is represented by a g T e ; S contravari; ~

‘ ulp T ! : .H.r“”” scheme over S, and we denote its ident; nant functor
Pic'y/s- he definition is functorial in X . s wdentity component

o A, 50 that a1 ’ ’ 5
schemes gives rise to a natural transforimation Pic a morphism ¥ — X of §-

e ; [ )
icY o, We rem; k /s = Picy;g and consequently a
* | Y/S- nark also that formation of PicY, . Cor .
with base change, meaning that Pic! ¥s Sommuses

, s . (X1 18 naturally isomorphic et RN
It A — -S 1S a relative CUrve, meanine that i g : {‘.Ihlr_ to Pic X/§*5 I.
- - £ that 1tas smooth and proper and its
geometric fibers are curves, then Pic'y ¢ is an abel; s BTSRRI RN
v s 15 an abelian scheme which we denote
Jx/s and call the Jacobian of X (over S), [BLRa, £9.2]. If al 9' g S

¥ . 2 N L I dl=() D = ATl &
an algebraically closed field k. then Pie «,o(S) mav be identif = Speck for
. . 2 x/sto) may be identified with the group
of invertible sheaves on X, or equivalently, with Div (X :

- inal divisors. Then Pic' (S} mav b with Div (X) modulo the group of
[J'I'II'I{C}II}d divisors. ien Pic'y, ¢(S) may be identified with Pic’(X), the group
Div?(X) modulo the group of principal divisors. Moreover if k = C, then the

: oo, nRTE e \ i _
I.SDmD?'phl-hlll 1./L = JIC) = Jy,c(C) is analytic, so our two descriptions of the
Jacobian in this case are equivalent.

' . i
morphism Pic’y ¢ — P

The relative Picard functor also provides a general construction of the dual of
an abelian scheme. If A is an abelian scheme over S, then Pic 4,5 15 representable
by a scheme, and PPic !.-lUH is an abelian scheme, [BLRa, §8.4, Theorem 5], [FaCh,
[.1]. We write A* for Pic TUH and call it the dual abelian scheme of A. Again there is
a natural isomorphism A = (A7) Yor a relative curve Y over S there is a general
construction of a “O-divisor” on Jy;s which gives rise to an isomorphism Ox/s
of Jx/s with J;.'f:a‘* IBLRa, £9.4]. The constructions of the dual abelian scheme,
its biduality and the autoduality of the Jacohian are compatible with base-change.
They are also compatible with the descriptions given above in the case S = Spec C.

A morphism 7 : Y — Y of relative curves over S induces by Picard functo-

riality a homomorphism of abelian schemes 7* : Jxzs — Jyys. We obtain also

a homomorphism 7. : Jy;s — Jx/s defined by the composite 9y s 0 (T7)0xys
where (7°)" : Jy 5 — Jy g s sgaln defined by Picard functoriality. We thus hm
two functors from the category of relative curves over 5 to the ['.ML?’UF ‘:"f abelian
schemes over ; the contravariant Picard functor Pic" defined by Pic™(X) = hh
and Pic’(7) = 7°, and the covariant .-"kﬂnl.:19.-u functor Alb {lt*hll‘i“i‘l}:# T“-}a[i'\fi}plji
Jx,s and Alb (7) = w., (Mil3, §6]. f 5 = H[m{..h fnr ar alglih?}“ ; ‘; :TTJ:. s
k, then 7 on Jy,s(S) is induced by the mag Dl — [1)11. L Jr]t L L is the
back of divisors; a ]Jﬂilll T € ;({5} 15 sent 10 :L,Jr;:, |l{.]{‘L,-.J..H 11.1. .11; r}thtfy:.t;wh”ml}
ramification degree. On the other h:miti.ﬂ__ﬂ'- 01l "r‘*"'-‘*\{qb} ’Ihil,]:: TL; = is simply
Div (Y) — Div (X) which saniE 4 & YiE) termly). Deke MRty 58 T '
multiplication by the degree of :T'. ot of e OIL o LD the cotangent sheaf

There 1s 1n g{'nc-rﬂl a natural lﬁm_nna::r:‘phl:.uzu il 1:.}; - this can be
il . along the zero section t - e v Jyss .

L
Ixys/ ary X el & CotolJx/s) (see (Mil3, Proposition
viewed as an lHUlIHJ[’pll]b]ll Gl + and 7. oD t he cotangent spaces al

2.2]). Consider now the maps induced by 7
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__ a commutative diagram
sero of the Jacobians. We get Y, Ls)

: | map
- : i Serre duality from the natura
the upper arrow is obtained by
where t HI(KGF)'*HI(X’Gx)
Py . intion of the map induced by 7, on
and the lower arrow s induced by 7°. The R pull-back of differentials Wy =

: for it is given by _ i
o, 5 e o “—m;g?;'p;;’ ﬂ;‘-‘ For f = C, the isomorphism H'(X, €2y, ) =
HO(X, n-!ff-ﬁ')* — Wy = 1 2OY/S f W with the cotangent space at zero of

' the identification 0
mn(#ﬁiﬁagﬁaﬁ;em:gm is given on complex tori by Vy /Ly — Vi/L X
:ﬁt I; — Vy is dual to the natural pull-back Wy — Wy and Ly — Ly is

defined by Hi(Y(C),Z) — Hi(X(C), 2)

10.2. Models for Jacobians.
PRIMARY R EFERENCES:
[Shil, Chapter 7], [MaWi, §2.1,2.5), [BLRa, Chapter 1] and [Ray3].
ot us consider the Jacobian of the curve Xo(N), denoted Jo(N). The mod.
m ol Ao i ¢ T;“ I‘Egﬂrde{l as an Endgmnrphism of Div (XG(N)) induces an
endomorphism of Jo(N), which we also denote 7). We have thaii T, = a, o 3
~ where a and 3 are the degeneracy maps Xo(Np) — Xo(N) de.ﬁned in §9‘.1 (see e.g.
[ﬂﬁlﬂ,ﬂﬁ]] Since the curve Xo(N) is defined over Q, so is the abelian variety
.&m Moreover, since a and 3 are defined over Q, so is T,. More generally we can
 de e endomorphi T, of JU(N) and of J, (N), the Jacobian of X, (/N). These
are defined over Q as is the action of (Z/NZ)* on J;(N) defined by the operators

84

~ REMARK 10.2.1. Some authors, for example Ribet [Rib4], use T, to denote

q,"":r 1 .' K 10.2.2. The Atkin-Lehner involutions wg give rise to involutions
Thd i,-:-_-l = R R e Y _
% z&@m defined over Q. Similarly, for p not dividing N, the endomorphism

~ involution wy,, of J;(N) is defined over Q(¢2™/¥) and satisfies wy, .7} wy .
Lo n *W w‘ n. Thus wy , intertwines the operators defined us-
- 1§ our conventions and those mentioned in Remark 10.2.1. We find also that

L]

= (d)* for all d relatively prime to N.

- Wy, of the Jacobian of 'y (N, p)\$* is defined over Q and satisfies w? , = (p).. Tho

:
. i

R B ]

: - ARLY

!.4 e b
e R

1 mmm curves, we would like to construct “good” integral
Gt | Hmdi Mtheir reduction modulo primes. We will then
.E f ’-'It!“_hu rs. To begin, recall that we have defined
‘whic a,‘C ZIL/N]. 1t is obtained from the relative curve Xo(NV)

L
ST b
i .r -

Y
i »

i

EM _} m m-d ui]: mimne parametrizing pairs (£,C) where &
’.;;._::!PMJ;__EI!_I!# ‘@ LIS a “cyclic subgroup scheme” of order N. Its

de] | "* _‘*‘ N}[g[uﬂ] 18 an abelian scheme which can be viewed
s g 1 Melldys Ve 1somorphism of 7. .

g ymetr ,_:’:, 1% S e "’f'}-f%tﬁ)ﬂ[uﬂ] x C with JD(N ) Now

Ty g Yo(N)/z{i/) % & where k is an algebraic closure of Q or

e - -

( U Y t. [ [ & I thI’-.ll]

of F, where ¢ is a prime not div: 1. 85
* ot ¢ s
variety is naturally is -]w“lmg . The Broup of c|os .
y 15 naturally isomorphic Pia u{ PR Lelosed points of this abel;
To obtain a model for - A(N),). S abellan

the endo .
R [ormn ;
first work over Z[]_/Np]_ Eortha i phist
_ 11 We can consider the two

' oAl .
n L] -l':t, N .l' — i # #

'.ﬁ ,“( {) , h*{N)éilfﬁ-'p} of relative CUTrves
phism 7, = & o (5)* of S, () a1y /) x 21 /v Bl
T,. For a prime ¢ not dividing Ny, (771 .+ . P/ISinan

p : j'-, -I!I\\ I}T (?-J'i]}i ‘ 15 gl‘hf'“ h}' lh[*

Il T 114] o
I . ”L’L; t-h[! PH:HI"I!. fUIlffthr lf‘t 115
y : he

Natural ringr:m:ra-::}; maps

; .
Z[l./:\ p|. The endomor-
obvious sense a model for

" ¥ o . F[}II ' ¥ ’ i
We can also describe the effect of 7' o Loz | 1POSite (.“F.I)-G{_d;yq)'.
4 YolN)/Z[1/n)(K) = Pit“(-’};{z‘\-’)k} for al-

guhrm:;nlly Elﬂﬂiﬂﬂ K of characteristic pof dividing Np. 11+,

morphism of Div (X,(N),) which sends (£, C) “5: 1.*-} {J-l' i gf—jit(til flmm the endo-
where the sum is over cyclic subgroups L; <6 9 {,I.rf I."-.’lf.-',l'JI' YIEID, (O D)/D)
contained in C'. The formula assimes that £ i;-u I{In 'H tasordlerp
a natural way to Néron M o < 15 an elliptic curve, |

We would next like to extend T 1o
describe its reduction modulo p for 4 prime p not dividine
in this case since X((Np) does not have it Smooth .
the resulting description will he another manife
gruence relation.

We shall use the theory of Néron models for abelian varieties | begi
recalling some of the facts we need: see | ancties and begin by

BLRa Chapter || or [Artin, §
: _ s & r s pILE _ n, glj. Let R
be a Dedekind domain and K its field of Iractions. A smooth scheme .A] over R

is said to have the Néron mapping property if for each smooth scheme B over R
the natural i Homp(B, A) — Homy (B, Ax) is a bijection. If A is an uhelieu;
scheme over K, then a smooth scheme A over R is called a Néron model for A
if A has the Néron mapping property and there is an isomorphism ¢ : A, — A.
The existence of such a model for A follows from the work of Néron. One checks
formally that the pair (A, @) is unique up to canonical isomorphism, and also that
A naturally inherits the structure of a commutative group scheme over R. If A
1s also proper over R, then A is an abelian scheme over R. Furthermore it is a
consequence of a theorem of Weil that an abelian scheme over R has the Néron
mapping property, so it is necessarily the Néron model of its generic fiber [BLRa,
81.2, Proposition 8].

and is not
ut it extends in
an endomorphism of -)r_‘.t-’lri_‘-_'h’zill.-'_."-q'i and
N. More care is needed
and proper model over Z[1/N];
station of the Eichler-Shimura con-

EXAMPLE 10.2.3. Viewing A;(11)q as an elliptic curve over Q (see Example
9.3.2), we see that its Néron model over Z[1/11] 1s X,(11), the elliptic curve of
Example 8.1.1.

1 ' . . - W y / s

If Ais an Eili[)t-lt.' curve; then the I‘:ru.*;r_«'lhlv Lypes of reduction A x it ﬁx m of a

Néron model A at a maximal ideal m of f% are classified by Néron [Nerﬂn}; See
also [Sil2, §IV.8] and [BLRa, §1.5].

1 Néron model which is not an abelian

where E, is the Tate curve

group scheme

EXAMPLE 10.2.4. For an example of
scheme, let iR = C[[q” and consider Ir, r = E, x s5pec It %
over S = Spec Z|[¢]] (Example 9.2.1). Then the smooth commutative » 1

o - ; et x : = K < ‘nere
A= E8 turns out to be the Néron model for 1ts generi hber -"lh g, Wik

e TR g 155 = - ~ .
K = CF(('?D Recall from §9.2 that Ag g 15 isomorphic to Gy, over RigR=C

: " - » with arbitrary
Although the formation of a Néron model does not {.mmuutLI mr Lti”n rm[}]
.. oo as well as localiza ¢
base change, it does commute with ctale base change, as ‘l'u.l.”]d-b Gftli j:; o
g A e i B yarticular, 1 3 ¢ '
completion at a maximal ideal of R [BLRa, §7.2]. In )



?ﬂ*m Azi/m) is a Néron model oy,
z‘l for Aq,-

.- thh&fﬂﬂm to commute with base char, e,
Qﬁg‘ﬂﬁ and consider Eg i = £ jc x ¢ I
{3 ﬂnmeﬂllmr we find that £, -, (h”)

""fx y) satisfying z = y = 0 mod ¢'/* 1t
PRt .A(R') (mt:h.A as in Exa:mple 10.2.4) we
mm{}f g,k Over R'. Rather, in t}j.
i ; bygllﬂﬂsm c{}plﬂﬁ of .Aﬂr :llﬂng the
i _1 ‘ SNy g wwﬂm b}'thlﬂ leIlt oforder 2. T he
ol W Mﬂfm Néron model need not be connected
"# w lic to the product of G with the constant groy,
s ” M R' k[[glfl*]] and K’ = k((¢'/?)) for a ficl
LS 3 '_ e]_hpt}(: curve 8' UVEI' R’ dﬂﬁﬂ(‘d as n

il

w1
-‘
oy

: 't i .,: | J = J% (21)q/Q Which is an elliptic curve over Q
" Its minimal V i ﬂmmn YQ +Y = v A pTD{IUL{'
? s an elliptic curve over Z[1/3], but Jg, is not

locus of 7 is the identity component JY of the Néron mode]
d by gluing three copies of J along translations of 7,
nd that Jl‘a is homrph.ic to the product of G, with
of order 3. On the other hand, J’ = J;, extends to an

> curve J over O, w! Lﬂfihﬁcﬂkﬂ extension of Q gotten by adjoining
rdina :,- ja J"@f rder 4. Therefore J' is the Néron model of
? 1ple 10.2}5, even formation of the identity component of
odel does not c mthhue change.

| E 39‘ MN) or, to be more precise, its model
Jo(N) denote its Néron model over Z. Then T, ex-
ﬁ*the Néron model. As JA’g{NJfZ[lm] 1S
rphic tﬂﬂiﬁ Néron model JU(N)Z[UN over

7 : " i Tf 1s simply Toa Z[(1/Np|

22 AIer ﬂ M dl\'lding Np. Using for e*-:dmplv
i e __._ﬁlllmhd that the description cx-
'- lc closure of F, and p does not
n of DW (XD(N )x) which sends

......

Jif.E 1S ﬂl‘djnar}r’ DU s the
the etale subgroup schen o

d Diﬂ the unique subgroup

ption in the ordinary

MODuUL, i ]
AR | ORMS AND MEIDULM'l CURVES

where ¢ is the Frobeniys o . 87
Bt iita. conerucnce rﬂlll.t;nd”rfmrl')hmm of the curve X,(N )
. : ation (see §8.5) on the | 0 P . This is the Eichler-
written as acobian of ; (N]
OVY)FR,; it can also be
(10.2.2) T

pF, = FTUI'J + V{‘I’
where Frob is the Frobeniys endo
endomorphism.

The 51tuatmn IS quite biI!lllﬂI‘ on l]n:, Jacobi:

i el 1 i i
T,. Then JI(N)S’IUNI s hL lflﬂ'llhfu-fi '-ch ;}mh:]t,{ijhm define Hecke operators
H.Ild p.Z[1/Np) can be described g a composite ¢ (I;TJI of .3£'1(N) over Z[I/N]
¥ l 0 f
eneracy maps B8 e where
deg y maps from the curve Xz ~pl- Recall frmn §9.3 that ¥ l:ta ?;ddﬁ L
odel over

Z[l/N] for the modul dll CUrve assoe
¢ i 1-.-11:*-:1 t
This gives a description of T © the group Iy (¥, p) = [1(N) N Ty(p).

p.ZI1/n on di ;
which takes the form N LSS, B — 2 p(E/D, P mod D)
(10-2-3) (};}‘FP = l‘.I]" -} O‘OFI“-{IJ'

in characteristic p if p does not divide N

morphisim of Jo(N ) » and Ver is the Verschieb
ebung

an Jy(N) of X1{N). We can again

= Frob + (p)p_  Ver

REMARK 10.2.7. As noted in Remark 109 1, some
which (10.2.3) becomes

authors use I’ in terms of

Typ, =2 + (P)p, . = Ver + (p)p, Frob.

VARIANT 10.2.8. Recall from ‘Jarimn 9.3.6 the alternate model X,(N) for
:){1 (N) Then Jx.(N)q/qQ is @ model over Q for JiI(N) and we let J,(N) denote
its Néron model over Z. Then T}, is defined over Q and we again write T, for its
extension to J7,(N). In this context the Eichler-Shimura relation is

T;J,Fu = ¢° + (j‘]}Fp-'q]' : T.I.F, = IL}' * (}JHJ‘.,‘I}"

B g
10.3. Bad reduction of Jacobians.
PRIMARY REFERENCES:
[Rib4, §2,3], [BLRa, Chapters 7,9] and [DeRa, Chapter V].

Now let us briefly discuss the structure of Jacobians of modular curves in some
situations of bad reduction.

We first recall how some of the terminology used to describe the reduction of
elliptic curves extends to the setting of abelian varieties [BLRa, §7.4]. f misa
maximal ideal of R, A is a Néron model over /7 and Agyy,, 1s an abelian scheme,
then A = A4, is said to have good reduction at m. If the identity component of
AH;,“ is a torus, meaning that it is isomorphic over the algebraic closure of /m

to a product of copies of Gy, then A is said to have multiplicative reduction at

j 2 2 ¢ ‘at .
m. For example, the Tate curve over k((¢"/7)) (Example 10.2.5) has multiplicative
On the other hand, J = Jx,(27)2/Q

reduction at the prime ¢'/7k[[q]] of k[[q]] _ . JamalQ
(Example 10.2.6) has neither good nor multiplicative reduction at 11'11 -—] J?., tlt j

/ i o ) A
said to have potentially good reduction at m since J' = J{_ -htb(%ﬂ]m- ,r:::i;;u .
the primes lying over m in the integral closure of f1n a finite Galois e

that the model X for X = Fl(-N f?\_{j = 11(1*11:*::;‘:1 lht‘ Néron model J over Z

an yonents ot A, are s - : Its of

Of‘}thﬂ lrreduublf‘“LDIﬂH!mmM for the Jacobian of X and we can apply results o
Xq/Q 18 naturally *
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ibe Jz, using th
b4, §2,3]) to descri ;
Bmmd |R;y2 see [BLR& §95] and [R'l tuation the identity component of
MW I]l;(y‘,nﬂldplwpﬂl;ﬁ in m‘:;ﬂ iﬁentlt}' mmpunﬂnt of the ﬂlE{‘L‘-hm
Jg’ﬁnmmn)" to Ipfﬂr’J’ﬂ is mmurphl“ to PIC -'11-' JF,) ".'L'h]fh
m thlh th' PIC;;’;P,?‘I, M Pil: (Xe, )~ /Fp? whEI'ﬂ AR F, 15 the

the a .
Wf“ﬂﬁww to Mt muﬁncﬁ Uf Emﬂﬂth Broup hElllElI]vH
0 of X, In fact there is an

"1--+T"'"'J£ —+B—1
hmhcanbedascribed EXPliEitly in terms

description of (XF, )~ provided by (9.3.1), we
le(N)p . The dimension of the torus 7

ar points on X3 (N)r, (see 9.3.2). W
t group Jr, /J¥, can be computed as in [Rib4, 2]
[Gro?, Exp.IX, §12] (see also [Edil] and [BLRa.

mmut_anw group scheme over a field k£ and that
AT G — B — 1 where B is an abelian scheme
Thﬂl G is uniquely such an extension and is called a semiabelian
: S {55?.4]) Thus (10.3.1) shows that JDP is a semiabelian scheme
-'-.“‘_._.;‘ £ - Jq has semiabelian (or semistable) reduction at p. The situation
ot ,ﬁ not dividing IV is quite similar to that for Jr,, but slightly
m fal:t that Jo(Np) may not be regular. One still finds thal
iiabelian reduction at p, now with B isomorphic to two copies of
b b}'themmgular points of Ay(N)r,. For more details

, §3] and D. Prasad’s article in this volume.
MM an abelian scheme A over K, the field of fractions
' “pote mllymmbeha.n reductlun at all prlmea in N

m:lmtm at all primes in the integral closure of B
.ﬁ(Np)q with p not dividing N. This does not usually
iction at p, but it follows from the properties of the mod¢!
larDel:m and Rapoport that J,(Np)q(c,) has semia
> prime over p, where (, is a primitive pth root of unity
e QL |Derl *Fﬁv-:i] provide the following natural description of
xC lich is valid without the hypothesis N > 4).

&ﬁﬁmmectmn X1 (Np)q — Xq and con-
“?t?-

 0cacacy

T o P ey -':"J"rl" - # l )
ane of =* i"' , ."' I
fout b oL 'i* 5% iz .I :

l."

feate . & *mm of m* composed with

11,1‘-:-.* i.;ﬂ-ir* ?.g J‘ II- .
reduction at p and J/A:

.....
B T L

Is follows from the fact thal
A deeper result of Ribet
M 7 is actually injective.

1

In the case N = 1, the kernel of 7 i

: s the Shimura «
§H.11], [LiOe)). ¢ Shimury subgroup of Jeye

EXAMPLE 10.3.3. Let N = ] and p =3,

e gvoe Ex:
21 and X;({l) h.;u:. genus one. Appealing to the ”llrml::;]}jl't J-1.6, X(33) has genus
I'(11,3)\H° has genus 11. Thys the dimensjop ormula, we find also that

21, 11 and 2. Note that we ¢ > o0, Ay and A, are respectively

can also interchange the
and define abelian subvarieties Al © A, c g L‘iﬂ’:*hf{m?li; of Ilhf primes 3 and 1]
len that :1’ = 0 and A’

coincides with the image of J“(‘“) 7
— 64 ;
and there is a filtration | 1(33)q. Therefore A}

(10.3.2) 0C A, C Abc A, g
We conclude that

o A, is two-dimensional and has multiplic
duction at 3. In fact it is 1SOZEnous

curve of conductor 11.
A5/A; is one-dimensional and has multiplicative
is an elliptic curve of conductor 33
I =
o Az/Aj; is 8-dimensional, has multiplicative reduction at 3 and acquires good
reduction at the prime over 11 in Q¢ ).

o J/A; is 10-dimensional and acquires everywlhere

| P {E-EE [MEZ].,

15 i~d1mr nmmn]

ative reduction at 11 and good re-
Lo two copies of ol Q. an elliptic

reduction at 3 and 11, It

good reduction over Q((43).

The description of suitable models for the curves Xf M) and X (M), and
consequently of the behavior of Néron models for J.,(U} and Jy (M), naturally
becomes more complicated at a prime p when higher powers of p divide M. We will
not pursue this here, but we refer the reader to [KaMa, Chapter 14] and [MaWi,
Chapter 3] for more on the matter. We shall discuss in §12.5 the related problem

of describing the natural Galois action on the Tate modules of these Jacobians.
Finally let us recover the Eichler-Shimura congruence relation from the descrip-
tion of JF:J given by (10.3.1). We first observe that the endomorphism 7, of J,(N)

is the composite of the homomorphisms of Néron models J,(N) — J extending
(6')* and J — J1(N) extending a’,. Thus T, g, can be computed as the composite

\_’;‘T—[(J"S'FJFP — jFI* — L?'l[.'“-r}l:'i
Since J)(N)r, is an abelian scheme, the first map factors through the connected
component of the identity, Jo . For the same reason, the second map restricted
: . B M . 2] - ¥ ) -_—
to JE factors through the projection in (10.3.1) to the abelian scheme B =
P b |
ic i TTio to identify B with Ji(N)g , we are reduced to com-
Pic (Xr, )~ /F," Using iy [[ iy to identify B with { (NV)E, »
puting the composite
Ti(N)E, — TN)E = TN,

: . av arise from the endomor-
f I come into play arise from the enc ‘
The endomorphisms of Ji(N)g : whic f Ve in §9.3. Indeed the first
phisms of X;(N)g, considered in the analysis of AF, et
r 3. and sends a point x in Ji(N)r,(5) to
map arises by Picard functoriality from g, Aan i
(tli"' (:I:) :I?) in JI(N)F ( ) We have used here the extension of (8.4. ) to AF,
) -

' toriality. Sim-
the evident compatibility of Raynaud's description with Picard Ii;:u{:rn :]rl:}dﬂhm
ilarly using the compatibility with Mhdnf-au functoriality (see (Ray

+.(z).
that the second map, which arises from o, sends a point (1, ..1] [j:lfffidr fu(r )ﬂ[ -
Computing the composite we recover (10.2 2.3). The situation 1s |

but (p) is replaced by the identity.



11. Automorphic representa
: write A for the ring of finite adeles
 Let A be the ﬂngofmﬂf Q. W_ﬂ will the open compact subgrn}m of Af
For each positive integer % hich are congruent to 1 mod NZ.

W x=T].2Z} w :
m&mo{z HEH :cuntillllﬂuﬂ homomorphism A™ — C* trivial

that a | i Hecke character
| il _ (Z Nz)}t _..,C”,wﬁa.ﬁﬁﬂﬂlﬂtﬂﬂ.
EA @S 5 IIREEHH that every Hecke character of finite order
a€Q*,z€RSandu€Z

; : ter of A*/Q™ can

HE B Y every continuous quasi-charac |
e 19 WWI:IM some Dirichlet character ¢ and some s € C. We wil
bgm = Eﬁmm-lpt‘ A. We will also use «character” to mean a continuous
Muﬂ them o andﬂﬂ a character unitary if the values have norm 1.

ho Inth'n we discuss how modular forms can be regarded as functions on
m’(ﬂ* These in turn give rise to (infinite-dimensional) automorphic represent -
m dGIa(A) which are, in some sense, generalizations of the Hecke cllarm:h-:"h
Ly | m just defined. We will also discuss how these automorphic
s are described in terms of local factors. The primary reference is
o T slaride [JaLa], but see also the expositions of their work by Godement
~ Before proceeding, we give a word of motivation for this translation to the
. i s, Recaj[ that it is the Ianguage in which class field tllEDr}f ITiost
naturally describes abelian extensions of number fields. In the same spirit, Lang-
#_ng._f ectures are expressed in this language, providing even deeper arithmetic
 information from the theory of modular forms.

[Cas2, §3], [Gelb, §3] and [Cas1, §1].

~ Wiite Gg, Ga, G and G, respectively, for GLy(Q), GL2(A), GL2(R) and
~ GLa(Ag). Put ﬁ*;ﬂ-l‘t We let U, = SO2(R)R*, the stabilizer of i = /-1 ¢
- Cin G, We identify Goo/Us with §* by g — gi, and define j : Goo x H* — C
? W-‘P#M == ( e ) Let S; be the space of functions ¢

| # Hﬂ ﬁvﬁ: In some open compact subgroup U of Gy:
12 Ol9Usc) = J(Uos,1) ™" (det o )§(g) for all ug € Us, g € Ga;

o el i

v | L e
rall g e G the map
- 4 aEcous

o 14 YT
AER %

~
e
4

Li
A F
5

¥

e
S I E)
St e
=t [y
b el
L

-

.
I.I-
TEan i
b

b g(gh)j(h,i)(deth)!

o -

;i "omorphic (the map is well-defined by (2));
1., for every c > 0 and every compact subset A C

i 1

r I. E o

- =

" '

(| f- i A .

x || J|J r | 3
o e :1"- r.---l . 1 - A B
L "'rl ' ':-l-'.‘"
» = L]
II. ¥ o s e AT g .
L] ] -
- ] o - M g
. bl : a1

h‘ijD i ] ) )

01

(5) ¢ is cuspidal, i.e., for all 4 ¢ Qi

[:hﬁd’(( 0 1 )9)de=0,

where dx is a non-trivial Haar measyre

We regard Si as a Ge-module where
For an open compact subgroup {J of Ch i wiite i ri:ght translation.
invariant functions in Sy ic., those ¢ ¢ Se ;m_h' the t[‘ K(U) for the space of (/-
g € Ga. Note that Sy =, Si.(U) over Hll‘-"‘illi_'-}l " at o(gu) = ¢(g) for all 4 g Il

For N > 0, let Uy(N) ([-[_‘H[Jﬂljl_i‘u’{.‘l}'? U (N .
consisting of matrices congruent to ( 1.. . )

the action is given by

=

), Va) be the subgroup of G 2(Z)
I,(r I LSRG IIT % z \ -
Tespectively, ( 0 1 ) the Hlvntitg.'J

modulo Nﬂ‘f:g(Z)- For an element ¢ of Sa—ﬂﬂf."f]}l, we define .:rl function Fsi R

by

JChi) = d(h)j(h, )* (det h)~! for h € GL(R).
(See e.g. [Cas2, Theorem 3] or [Gelb. Proposition 3.1].) '1‘}.:
and ¢ — f, in fact defines an isomorphism

(11.1.1) Sk(Ui(N)) = Si.(I(N)).

Moreover for a mod N Dirichlet character ¢, we find that k(N £) corresponds
to the subspace of 5;(U\(N)) consisting of ¢ such that up = =, (det u)é for all

e

n fo, is in Si(F(N))

u € Up(N). In particular, S, (Uy(N)) corresponds to Si(Fo(N)).
REMARK 11.1.1. One can formulate the definition of a modular curve adeli-
cally as well. For an open compact subgroup U of Gy, define

Xt = Ga\GaJUU...

(Note that X;; need not be connected.) One then has a system of canonical mod-
els defined over Q [Shil, §6.7|, [Del2, §1,2] admitting a natural moduli-theoretic
interpretation in terms of elliptic curves with level structure [Del2, §4,5], [Mill,

§2).

We also find that the Hecke action on the spaces S;.(U/) has a very simple
description. If U, U’ are open compact subgroups in Gy, then for g € G¢ we define
the operator [Ugl’] : Si.(U') — Si(U) by

(11.1.2) (WU ))(g) = 3 (hié)(g) = ) olghi)
where UgU’ = [[ h,U’. Note that if UgU" = (7y.U" as double cosets, lht‘_ll- Ilh.“
operators coincide as well. To recover the classical Hecke u;}pv_r;uu.r:a f]‘['.';II.f[h'Ih.- et

W\ o= { 2t —= o=
Wy € AF be the element such that (@,). = ¢ if v = q and (@y), | :

Define endomorphisms of Si(U/) by
(“-1-3) 5 40 [.fhm.{,f], S, = [UwzgU]

where Ny = ( Tj" {lj ) € Gg. ForU = (N ) Lot Us(N)), _ N o
under (11.1.1) with the operators denoted T, and 5, on Si (1 (V) (or oxllol:

in §3.4; see [Casl, Theorem 1.1] and the example following 1t.

) G S ; npt?rﬂtllrﬁ T.;
: .ontains Vy, then all the o 1
WE ﬁﬂd B.lbU t’hat lf U conta ' 5 T[.\ j_”m;hllt." [vor each t'll-ﬁt‘nthdr.:u ter

for ¢ not dividing N, thus making Sk([f): e s S.(U) for the
0 of T = T(1) we can form the union Si s of the elgenspacts
j o

these are compatible

and §, commute
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| | g (U_N) such that V, '_,C U
restriction of 0 to T, wtfm‘:?:n“:f%“f i’“ﬁ;ﬂ' w"*‘,,;':‘w Si.o(U) for Sko NSk(U).

Then Sk 18 stable under _ . — C such that Sik.0 15 nontriv-
THEO 11.1.2. Let 0 be a hor I there 1§ a unique integer N = N,
HBOREM muc;uc Gf*mﬁ‘ﬂkr and each wrreducible constituen

| Sig ts an 1l : _ ;
mﬂg S;;UI( N)) is deeuuﬂnai. Conversely

2 o or some 0.
-Qfsk is ﬂf.m fm Sk*’f | is deduced from representation-

We shall explain in §11.5 W the t of irreducible admissible
WWG . results, but ﬁmﬂ m&ﬂ :’l{;h:ﬁﬁf local “factors” of such
epresentations. We m by dwinns and then deal with the global theory in
!M.__ W in the next two su B e Sugito weight k cuspidal automorphic
§11.4, In §11.5 :f&mw iﬂh.thenretic multiplicity one theoremn
.ntations of G and represen

that @ is only determined up to equivalence by S, ;.
| if their restriction to T coincides for

each multiple M of Ny, T(M) acts via an

REMARK 11.1.3. Note '
where 0, and 6, are deemed equivalent
some M. However we sha.ll see that for
R . S m Sk.'(VH)_

e --‘n RN S L Recalling the theo of newforms §6.3, we see that the space
| \%;Jm Mﬂﬂg'};ﬁi@ 11,12 i:h;a;me?by ¢ where f, is the newform of ](‘:‘»'L‘% N
o S igencharacter determined by the equivalence class of 6. We therclore
| atural bijections among the following three sets:

valence classes of eigencharacters 0 such that Sy ¢ is nontrivial;

2. irreducible constituents of Si;

In fact, the theory of newforms can be recovered from the analysis of the structure
~ of 8, as a Ge-module provided by the theory of Jacquet and Langlands; sec [Cas2.

ol o W .,
- - -
i e T
N o

¥ L .:*"" EE ‘i-.'.

¥ ;

| representations; p-adic case.

[ foda; 1] and [Gelb, $45)
finite prime. In this subsection only, G denotes the group GL2(Q,,).
‘maximal compact open subgroup GL,(Z,) and Z the set of scalar

! :'he a representation of G on a complex vector space "
7 is said to be admissible if (i) every vector v € V is fixed by

5

! A _Df@, M(ﬁ) for every open compact subgroup U of (7, the
2 -’mvwh‘fﬂ' i finite-dimensional. (See [JaLa, §2] or [Gelb,

- .
11 b PRl -
- LT
o R WL,
TR
R
1

5
bspace of v
Vi i e e
Pt -,-.,..-:.'-;.':."1.,. 1
o Ll EE;- P :'1
oL : R

= TR

TbgToun ﬁGl“Wﬂ‘b& VY for the subspace of vectors

o o open compact subgroups U and U’ and an element g of (7

o 3
- . 7

MODULAR FORMS AND MODuU

AR CURVES

. 3.3
REMARK 11.2.1. A finite-dimension gl

and the only continuous irreducib]e finite

the form g +— U(dﬁt(ﬁ)] where w s

admissib]e represe
-dimensiong) repres
4 character of Q5 [Jala

The classification of irreducible infinite
of G is carried out in [JaLa, §2.3]. (
certain induced representations defined s follows (JaLa, [ We begin with
[GUdE, §1.8].) Let py, p15 be any two charac - wrata, (3., (Gelb, (4.9)],

. ters of Q* g .
all locally constant functions ¢ on (' st . Q; , and consider the space of
- L]

ntation is continuous

entations of G are of
. Gt

. Proposition 2.7].

-dimensional 155]
mensional admissible representations

See also Gode, k1.1 L.11])

1/2

(1)
'*'*j{f”. -1.,1’”] y o & Q; ;

—

(11*2'2) rjj(( L:JI ::; ')y-} = ;n(rll};;._,[”:}

”'_f

here | | ldmmtes Lh{:. usual p-adic metric. The group G acts on the space |
translation, and this representation 1s denoted Py, 11a). The representation i
P 2 I - — _I - - . : o : - .. E Jn lh
reducible if and only if =y i, " = |21 (See [JaLa, Lemma 3.2.3], also [Gode
§1, Theorem 6] or [Gelb, Theorem 4 8]). When it is irreducible it is called 1
l ; . . . i . £
principal series representation.

)y right

If p(z) = l:{r|_l,lthen Py, pt2) has a one-dimensional subrepresentation. Indeed
putting w = 1| 112 = pa| |71/% we see that the function ¢ — w(det(g)) spans a
subspace stable under G. If pu(z) = |z|, then there is a one-dimensional (quotient,
and in either of these cases the infinite-dimensional subquotient of p(py, o) is
irreducible, [JaLa, Lemma 3.2.3]. This subquotient is called the special or Steinberg
representation, and is sometimes denoted sp(ju;, p).

In all of the above cases we let (e, je2) denote the unique infinite dimensional
irreducible subquotient of p(jty, jto). Then w(pty, juo) and 7 (g}, i) are equivalent if
and only if {11, o} = {1}, 115 }. (See [Gode, §1, Theorem 4.7], also [Gelb, Remark
4.19]).

The admissible representations of G which are not of the form 7(p, jta) are
called supercuspidal. (See [JaLa, Proposition 2.17], [Gode, §1, Theorems 3.4].)
These are characterized by the property that for all v € V and all v in V' of 1,
the functions g — ¢(w(g)v), called matrir coeffictents, are compactly supported
modulo the centre Z. Here V denotes the admissible dual of V', the space of linear
functionals ¢ : V — C invariant under some open compact subgroup. ‘

We also note that any irreducible admissible representation of G defines {h}i
Schur’s lemma) a character of the centre Z of G, called the {:tfnf!‘iif character nlr
7. We denote by w, the corresponding character of Q, = 7. For example, I
T =m(puy, po), then w, = pypea.

We sometimes further restrict our atte
the admissible representations on which th
mitian form. The irreducible ones are precisely (see

ntion to unifarizible representations, j.@..
ore is a G-invariant positive-definite Her-

Gode|)

j o fealled continuous series).
o Principal series m(p, jta) with jiy and po unitary e ;i m::*:h 0 < o] <1
- ; — |l? " 5 s redal W
e Principal series 7(j, a~") with pjt = |z|7 for some T¢
(called complementary series). | | - central character.
e Special or supercuspidal representations with unitary ¢

* o eatione are those of the
EXAMPLE 11.2.2. The unitarizible special representations &tt
: W : tary character.
form sp(x| |}/, x| |~1/?%) with x a unitary
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resentations are said to belony
REMARK 11.2.3. Special mdaﬂpﬁfci lmd‘lmﬂmiwnmtinnﬁ are square inf-
, . tarizible discrete integrable modulo tl

to the discrete series. Uni - cients are square

in the sense that their mm’:‘mpoﬁﬁun 2.6).

we can form the completion of V' wit},

REMARK 11.2.4. For unitarizible o vedefinite Hermitian form (sec [Gode,
respect to the norm by, the pos on # of G on a Hilbert space V' fron,

1§ - tati :
§1.17)). This determines l.unitllr)’ repr mmm on K-finite vectors in V. (A vector
which 7 can be-w_“ the I‘EII{)ﬁ 3 finite-dimensional, or equivalently if v is
v is called K-finite if the span of 7( b of G.) Moreover is irreducible if and only

fixed by some open DompE 8% 1. Lemma 10]. We remark also that every

if # is topologically irreducible, [Tpm’ §tatiun of G arises in this way, i.c., as the
ically irreducible m ible representation [Cart, Corollary 2.3].

com 'p'leﬁuﬂ'd'mm uci - B et
The conductor infinite-dimensional irreducible admissi present -

tion iﬂdﬁmd tocl;ref};:nhrgalt ideal ¢ of Z,, such that yUi(e) £ 0, where

(11.23) n@={(2 5)eKled-1€ck

et s space vectors is in fact one-dimensional. (See [Cas2,
x e ;' :]l:?m ader :nﬁ;ik that our definition of the conductor is equivalent
mém bycmdman.) Note that ¢ is divisible by the conductor of wy, and
: ; 2 ¥ T - 4 a h
that v is fixed by U, (c) if and only if 7(g)v = wy(d)v for all g = ( 5 ) € Uy(c),

RS O P e e : ' Iso that c.
| where Up( is defined as the group of matrices in K with c € c. Nﬂtiﬂﬂ €
s is dets #(#J by the restriction of 7 to K. We have the following list of possible

" conductors (see the proof of Theorem 1 in [Cas2]; [Gelb, Remark 4.25)):
% e ;-‘1"__"_:# 1If @ = w(py, p2) is principal series then ¢ = fif2 where f; ( = 1,2) denotes
i &“:_‘.pjfg:: @{xl llﬁ,xl ’—lf!) is special, then ¢, = f2 npzp, where f is the
- conductor of x;
- e Iimis supercuspidal then ¢, = p"Z, for some n > 2.
- Exawmpre 11.2.5. An infinite-dimensional irreducible admissible representa-
Al; F: i alled unramified (or class I or spherical ) if ¢, = Z,, or equivalently
| ..?fvxﬁV fixed by m(K) is one-dimensional. (See [Gelb, §4.3.3))
~ The unramified representations play an important role in global theory; see section
ing to the list above, these are precisely the principal serics
2) for unramified characters iy, jip (with pyp;' # | [*').
med by the function on G defined by

i 1= i a
- L S
g vl R
"-. I 1] lil'
|-l N .- :
- 1 II II ]
i . i T
¥ i 2
e T PO
L
o A

p s 1
b
r
-
o

¥E

| E h-
[ r

Ny a|l/2

%i  PSydo = pus (p)piz(p) o
LT w‘ﬂm eigenvalues of T, and S, on &
: mmmhm class of the unramified

MODULAR FORMS AND MODULAR CURVES

11.3. Admissible representations; real cue

PRIMARY REFERENCES; .
£ ‘ :

[JaLa, §5], [GEdE‘ 52], [Gelb, 31A], [Wal2, Chapters 3 5] and (Wal1, §2
is subsectio e SRS TAERS ' 82, 8.

In t;h.‘:bb . "}[},IE:RJ“[: put G = G, = GL2(R), denote by K 'tf | l |
compact SUDETOUP 7 ), and les 8 be the complexification L (0 | h'“hﬂlmﬂl
of G. 100 8, (C) of the Lie algebra

Let 7 be a unitary representation of (7 op,
G xV — V is continuous, Let Vi be the sy
Remark 11.2.4). Though V; is stabie under
G, unlike the p-adic case. We assume 1hat
every irreducible p : K — GL(W).

rl ' ¥ . - i

; Hilbert space v such that the Map
space of K-finite vectors in V' (see
K it is not necessarily stable

under
o e

W, W) is finite-dimensional for

REMARK 11.3.1. By a theorem of Harish Chand
' . . L a = f ra [Hac l:l h*'.“.* Wl‘. ",
ter 3] and [Gode, §2.1]), this holds if 7 is topologically irrnw:iur]il{}:]e_-IL I

REMARK 11.3-:‘2.: Under our assumption, the vectors in Vi are smooth in the
sense of [Wal2, 1.6.6]; sce [Gode, 42.1}, [Wall, Theorem 2.8].

To such a 7 one can associate, essentially by differentiation. a representation
of the Lie algebra g. For X in the Lie algebra of ¢ and v € Vi, the derivative

d ,
(11.3.1) EW[EKP LX )u|i=p = }@_l‘l{ljf !{77[.1‘3";‘[]1'.\']11 — u)

exists and defines an element of V. (See [Wal2, 1.6.3), [Gelb, (4.5)].) Extending
linearly to g we obtain the desired homomorphism of complex Lie algebras

dm: g — al(Vy).
We denote by mg the pair of representations dn and #|x on V: this pair satisfies
certain continuity and compatibility conditions making V4 a (g, K')-module. (See
[Wal2, §3.3], for example, for the definition of a (g, K)-module.)

A (g, K)-module M is admissible if Homy (W, M) is finite-dimensional for every
irreducible p : K — GL(W); thus V} is automatically admissible. There are natural
notions of homomorphisms and irreducibility for (g, K )-modules. We say that an
admissible (ﬂ, I{)-m{}dule is unitarizible if it is isomorphic to V for some unitary =
as above. The association of 7, to 7 is evidently functorial, but we have moreover
the following theorem of Harish-Chandra (see [Wall, §2|, [Wal2, Theorem 3.4.1 1]).

THEOREM 11.3.3. Let 7 - G — GL(V) and 7' : G — GL(V') be unitary
representations as above. Then V is topologically vrreducible if and only 1f Vy 1s
an irreducible (g, K)-module; in that case, V' 15 isomorphic to V' as topological
G-modules if and only if Vy is isomorphic to Vj as (g, ) -modules.

Thus according to the theorem and Remark 11.3.1, F%u‘- [‘IEL‘:'-::;I bl
ducible unitary representations of G’ is equivalent to that ol 1rrmi1_fc1hlv. unitarizible,
admissible (g, K )-modules (cf. Remark 11.2.1). We have thus shifted our attention
to (g, K)-modules from representations of G.

REMARK 11.3.4. Here we have strayed somew
Jacquet-Langlands [JaLa, §5|, where the focus is inste
cation of irreducible, admissible representations of a cert '
Hecke algebra of G. See also [Gode, §2, (9)] and (Gelb, Defi
there Hp is defined as the algebra

Hp = U(g) Pe-) U(g),

fication of 1irre-

what from the formulation of
ad shifted to the classifi-
ain algebra Hi called the
ition 4.1] for a variant;
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: : here U(g) denotes B -.
wct of distributions, n:mw at the point ( o' ) of G

Yook W.dgmdfﬂiith'ﬂ;:;r;’c
. 3 1.2.1}.

(See also [Flath, §3] and [Cﬂagj G~ has the form £(t) = |t|’5gn(£)"i for some
M that a character € ;R is the tral c,lwmcf,ﬁr of a (9, f‘:. )-Illltllflllll*

| C and m € Z/2Z. % say tﬁ‘:ﬂ"; the center of g acts Viﬂ. multlpllﬂﬂf..-l.ﬂll. by
if {d:l} — K NR* acts via Wf‘ .4 the center of G and C with the. center of g
(where we have identified R* wit ' lemma [Wal2, Lemma 3.3.2] shows
#'( ral character. Note also that if =
al character of the associated

the universal cn-

SR L g ‘oo & les. Anal-
g, K )-module. - : ible admissible (g, K)-modu
("w recall the W,mdmii‘m;lmntaﬁuns of the Hecke algebra (sce
. mmtff T e 5‘11]' [Godﬂ, §2, Theorem 2] and
.3.4) are given in [JaLa.. given here can be deduced from the Lang-
1 ification [Wal2, Theorem 5.4.4], [Wall, §8.4]. .

lands class L m of R*. %A.sﬁ:l [JaLa, §5] (also, [GﬂdE,. QE: (14)],
L .':: ? _#ﬂ be two of all functions ¢ on G Sﬂtle}’lng

1/2

¢(9)

f' Tl | t o t (t ) K
,11:".'-:'?-"_ N _ é(( 0 )g) = (i)l ta
Ff" ﬂ;!ir‘ t tzE R* and which are right K-finite (i.e., the functions g f'ﬁm.m'
BT vk jiﬁlﬂtﬁ 2 tonal ). The action of K is by right translation
SOy @ﬁeﬁ ned as in (11.3.1). Note that the central character of B is p1 .

o et 1 10 = 52

o =
T .

3 :- b y T ' .. ' i m&ule B is irreducible unl p(t) — t"r,l(t) for some nonzero

e Ifult)=t t)ﬁr some integer n > 0, then B contains exactly one proper
; ;:x: . dule B®. It is infinite dimensional; the quotient Bf = B/B* has

e LR

. o bl i e
1 7.
o gty

-.:I.'._.n
I

t'.ﬁt some integer n < 0, then B contains exactly one propcr
B!, 1t is |n|-dimensional; the quotient B* = B/B’ i

et L
Lelanininnhl
el il et

p .. g ...

i
iy -

| -

-

1.

Y i gl
e b ' L
ik e

Sl |

note by (1, p2) the (g, K)-module By, ,, if it is irreducible, but

me Mm In the latter case, the infinite-dimensional
ted oy :it is defined only if u(t) = t"n(t) for some nonzero

d discrete series; m(py, o) is called a limit of discretc

} "‘l:- .-: L .l :.:- e - -
e % )-module is isomorphic to either (., y2) 01
PEIPRLIAE 1 1 and pp. Moreover, the only equivalences among

—-
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Next we list those which are unitarizible

(|Gelb, Remarl .
(Knal)):  Hemark 4.7), (Wal1, 587
e Principal series m(yy,yus) with 11, ang jt2 unitary (
e Principal series m(y, i ') wit, jji = ML” o
(complementary series). |
e Discrete series o(jy, 1y) with unit

conlinuos series)
for some real ¢ with 0 < |g| < |

ary central character.

REMARK 11.3.5. Each (g, K)-module In the above
ducible unitary representation m of G Moreover TS .]},i{ ue > .
and its central character is ITANICY A“”JH,E_; thiese. 1 i }1-1,-.,;1 .1T|I],t“ :H]mf-,r[:-lrnj%[n,
discrete series which arise from square-integrable 1}.7 {H[:{, f i ‘;{H Lh”h1.1!1]“11'1}{,1‘[]'[*
Remark 11.2.3). see c.g [Knal, §1, and

list arises from an irre-

also

Finally, we distinguish the (g, K )-modules which

_ arise in the consideration
5 - . = iy, ' 7 . i I }f
cusps forms of weight k for k& > 2; sce [Roga, Proposi

tion 2.5|. Let
- k—=1)f9 4 L
(11.3.2) o = o] |72 0 R)2pky

These are precisely the unitarizible discrete serjes with central

L b A character 1 or 7.
There is a nonzero subspace of o, consisting of vectors 1 satisfying

cos i sin 7 =y i)
( —sinf  cosf )U =k v for all 0 & R

(_ll _;)1 = 1

(where the first matrix is in A and the sccond in ). The subspace 1s unique and
its existence characterizes o, among the irreducible admissible (g, i )-modules. We
fix such a nonzero vector vy, called a lowest weight vector.

11.4. The global theory.
PRIMARY REFERENCES:
[JaLa, §9], [Gode, §3.2], [Gelb, §4C| and [Flath].

Using the notion of a restricted tensor product enables us to deseribe global
admissible representations in terms of a factorization into local components. The
procedure is analogous to the description of a Hecke character in terms of its local
components.

Suppose that we are given, for cach finite prime p, an irreducible admissible
representation 7w, : GG, — GL(V,) where &), = GL2(Q,). (Here V, n.n.llfl |n:~ one ot
infinite-dimensional.) Suppose also that m, is unramified for all p not in-a hnite set
S. For each p ¢ S, choose a non-zero vector ¢, i the mu*—{1il.m=11:~'in_:11ul sibspace of
K,-fixed vectors in V,,, where K, = GL2(Z,). Let I be the linear span {';fr!vnn*?ﬂ:f
of the form @P Up such that v, = ¢, for all but finitely many p Hli'fl “_{'-{h].h';l:
thE action of Gf CDH]pD]]EIllWiS[‘ on such elements illlfl_i‘xli'l?t.l t]”.: Hl‘ll;li.'rl"i IIIHH.I‘} }.}
to W. This yields an irreducible representation G — GL{.” JF"_"'}““}‘ '5{ “”“'ﬁf: ;;IHI
restricted tensor product of the m, and is denoted &, {*‘f"‘ [JaLa, @J]‘;Ii _f_]w:.
§2]). Up to isomorphism, & 7, is independent “f_”“‘ choice of _{";J}: - I‘UTL-T m_
the G¢-module W is admissible in the sense that (i) every vector it H{'lhi‘ E‘:“ the
some open subgr:}up of Gf, and [ii) for every opeln l’..'l.]lll[J:.tL‘l subgroup ol Lrg, -
subspace of vectors in W fixed by U is fitl“l‘-(“lllt‘lih‘l”ll‘H'.l & 7 Semodiile V

Suppose that we are also given an irreducible ;ul!Ill:é:-ilhlfi l(}g; 1; }-.I.IH 5 i.t ,'_:;:
where g = gl,(C) and K, = O:2(R). We can then ::m].mn.lt_ill 1;“ iaf‘;'“ {g‘h K. )-
(8. Ko) x Gr-module, by which we simply mean that 1t BEE TS R
module and a Gy¢-module. It is irreducible in the sense tha .

(11.3.3)
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admissible in the sense that (i) cvery
Iﬂ of Gy, and (ii) for every open compiact
L]

bmodules. Moreover V
(91 Km) X Grﬂl - 5 6 ved by [/ is an admissible ([1, ff,h )

open subgToUP

her that each mp i unitarizible, t_.i.u.,, i
The resulting Gg-module is the,

4 then form the
' tiva definite Hermitian form. We can
Mﬁmmwm%wmdmaunitw representation of G¢. If V_ is

ilbert spac an admissible unitary representation
also unitarizible, then the mmﬂiﬂiy:lﬁ (ﬂs Knn) % Grsubmmlulu satisfying

ol o whioh ¥ 0 ode, §3.3)).

% | ssible (g, Koo) X Gr-module can be .\nrriltm.
Conversely every hredul::tci]?]e: adn the lt(:al f:.nctnrs V, and Vo are unique uy
| ﬂlmww ’E results of [JaLa, §9); see also [Flath, Theoren,

. suppose furt
REMARK 11.4.1 i 1II|FBmlii: vector for p g5

-

3],#;030: 53‘2] and [GGPEJ;{ we are given an irreducible, admissible represer-
Iﬂ pary 1&“?‘?;3,1,] 7 is isomorphic to X for a collection of local
WH : Gf : C(? —-;GL(“}) Note also that 7 has a central character whicl,
Tepax-t e A R : tations.
factors i the central characters of the local represent:
m Bm t;mﬁ mp is infinite-dimensional. We then define the conductor
ﬂf!‘mhelf-; =[], p"» where for each p, the conductor of m, is p"7Z,. Observe
A | H' is th:lﬁﬂt positive integer N such that there is a nonzero vector in
ﬁ!by U, (N); moreover the space of such vectors is one-dimensional.
B, ,_ll'..'!{- A Af — C* and a Gg-module W, we let W (e odet) denote

: twi ,hf codet, i.e., the Gg-module W ® M where M is the one-dimensional (/'
\f 4 wdule gotten from the representation € o det. Then W is admissible (respectively,
~ irreducible) if and only if W (eodet) is admissible (respectively, irreducible). If 11" is

~ the restrictec tensor product formed from local representations 7, : G, — GL(1/,).
then V(e o det) is formed from the representations 7, ® (g, o det).

| lihm R;qu\GA where we regard R;u as contained in the

65 Of Goo. We let dz be a G a-invariant measure on X and we consider
able functions ¢ : X

only th spac L!?(.K) consisting of ¢ satisfying
AUS ignoring the contribution of Eisenstein

a5l

—
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series; see [Gelb, §8] for example.) e let 1,2

) -"'1‘: (il H Y
function A ) denot, Lhe

(] —» i ] TR
g /Q S Y Ve dy

vanishes almost everywhere on (4 Then L2 V) is a ¢l
* A% Sarc
the action of Ga. It decomposes into,

s€t of ¢ such that the

osed subspace gt

| able under
Irect sum

a Hilbert space

(11.5.1) Lo(X) = @Hm

where the sum is over (a countable set of) closed irreduyci le subs
der the action of GA. The isomorphism classes of uita le subspaces st
GL(Rn_) which arise in this way f'll_’tf called cuspidal automorphic represe '
The existence of such a decomposition cap be established by '-}II '-M.nfflhﬂn.ﬁ.
[GGPS] (see also (Gode, 83.1] and Gela, 82]), along ‘-"i[_h‘:]““; 11:_;{I found in
isomorphism class occurs with only finite meitip“{:m. -Li'lsin;; ti; :L:‘ lh“? E'f”’]‘
uniqueness of Whittaker models, Jacquet-Langlands [juLa £10,11] x h'l.{:nf_.iu and
multiplicities are one. TR prove that the

The theory developed in [JaLa| in fact yields
rem which we state below. To do so, we first switch to the context of admissible
(8) Koo) x Ge-modules by further restricting our attention 1o the space of r:u;sin'dn-{
automorphic forms, denoted A;,. This is the space of smooth, K-finite, 3-finite.
slowly increasing functions in Lfg(\} Here “smooth” is as a function of G, K is
the maximal compact K GL,(Z) and j is the center of U(g) (Remark 11.3.4): we
have already discussed the notions of “linite" (Remark 11.4.1) and “slowly increas-
ing” (§11.1). Note that our A, is the algebraic direct sum over finite order Hecke
characters ¢ of the spaces denoted Ayl(=) in [Gelb, Definition 3.3).

The space A, is a dense subspace of L7 and an admissible (g, A ) xGe-module.

It decomposes into an algebraic direct sum

(11.5.2) Ay~ V.

where for each a, V, is an irreducible admissible (g, A ) x Gg-module dense in
the space R, occurring in (11.5.1); see [Gelb, Theorem 5.1]. Now factor each
Va as explained in §11.4 and denote the corresponding admissible G,-modules (re-
spectively (g, K..)-module) by Vap (respectively, ¥, ). We can now state the
strong maltiplicity one theorem as follows. (See [Gelb, §6], [Cas2, Theorem 2] and

[PSh2).)

THEOREM 11.5.1. Suppose V,, and V; are constituents of :4[1 -"*'H'i‘h that Vi, p =
Vap as Gp-modules for all bui finitely many prines p. Then Vi, = V.

Hh]{: 1n-

ary representations Ga —

a strong multiplicity one theo-

r that V. i 7. are 1somorphic, but
Note that the theorem asserts not only that V,, and V) are 1somorj

that they coincide as subspaces of Aj.

The theorem also incorporates results about 1
forms called Maass forms [Nlaass], but we will conter
sion of the transition back to the setting of §11.1 and the theory of 1
[Cas2, §3) and [Gelb, §5].) |

Recall that for each k > 2, we distinguished
(g, K )-module denoted o. Let

.A[}.,I,; = Hl'.lﬂlm_h' ,__]{”Lw"luL

n-holomorphic automorphic
it ourselves with a discus-
wiorms. (See

a unitarizible discrete series
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Vot = Hom(g, K) (Ok;s Va)s

| V. ¢ is an irreducible
isomorp yhic B Schur’s Lemma, Va, | il
over a such that Va,x s Y Ukmt{jcted tensor pmduct of the Vn.p- Flis

admissible Gg-module mec:?j:e to the irreducible constituents
constituents iuthedmp(Etlﬂﬂ unl':al'iﬂble whereas the factors of Sy “f.“ not
of Sk, but the local Mm Vap “::ﬂst Ao by 8 Hecke character and define ay
To complete the transition, we twist 0,
isomorphism o (| det[41%) 5 Sk |

, hat at the end of §11.3 we characterized oy by

of Gg-modules as follows. Recall t . 1t vector vx. Now if 7 is a homomorphism,

the existence of a mnum“deﬁm the function ¢- on Ga by

i — Ao of (8 Koe
i b (g) = | det(g)|'~*/(r(vx))(9);

o ik 5 | whi under Go and right invariance under an open
'I‘hm or iﬂﬂ 3*' ﬂ;; Gm i% the feﬁnitiﬂnﬂ; the cuspidality and slowly
e mw -iol'm from those of 7(vx); the transformation property witl

GEeng ml | hicity follow from the properties of v (see [Roga.

s i 5, “;13] and [Gelb, Proposition 2.1]). One can show that, conversely,
mmtsgrmsf i WI: yses as a direct sum of admissible irreducible
| Wa = Va,f(l Il_kﬂ)l

3 '.'I ﬂ runs over the constituents of Ay with V, o = ox. Moreover, writing
7 :Gp— GL(W,) as
| s ®“’umf

BR o For each pair (a, p), Ta,p 15 an infinite-dimensional, admissible, irreducible
~ representation of G,,. (See [JaLa, Proposition 9.3], also [Cas1, §1].)
- e Foreach a, m, , is unramified for all but finitely many p.
F T ﬁg,ﬁtaﬂ but finitely many p, then the constituents W, and IV,
~ coincide (by Theorem 115.1).

- '
1
=
¥
L

PN i MM Theorem 11.1.2 from the results we have collected (scc

2, §3]). Indeed each S 4 is a sum of constituents Wo. If W, is such a con-

i .'I.- :.1 'T_r‘;‘." il _' .:"Il-' P ... ire . "1‘ - '- _ .:.l='___' i . - |
e Rk et for ﬂl but finitely many p, 7, p is the unramified principal
Ij_l I ¥ 13 - d { 4 | '.|_." o 'r'- - - "'I 5 r

(41, 12) charact
s ; .'-_jg.ﬂ@)):o{f{'p); P (p)a(p) = 0(pS,)

- &%), Lherefore W, is unique, and conversely each 1V, is an
5 Mmm by the above formulas. Furthermore,
i “ve integer N such that Sk,0(U1(N)) is one-
‘ ,"‘", “: a unique newform corresponding to
RS , ter ¢ of the newform is determined by the
i -ﬂ h be precise, the central character i

Ll

i
-
al §
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MARK 11.5.2. Note that .
RE i.Ur fl.“ jj, :IT”'I" l:.‘:‘. i[h.'T. |—-_],.Jr j._:!f-_, )

for all but ﬁnltul.y thany p, 14 1s an unramified principal secis lfﬂ'r]lfirumri;cil::le, and
¥ * TR WL - a J e L ., 1 p! " HP

a cﬂﬂtlnl:lnl.'tﬁ series representation for all by finitely mag - that it is in facy

Ramanujan-Petersson conjecture that T TN P IS equivalent to the

t’}(’f},] < plk-1)/2

for all but finitely many p (sce [Sata. 8], [Gelb. p
2.14] and Remark 5.0.1). By proving ang |
[Dﬂu]: {Delﬁ] shows that this holds for all
Mo {SEE Remark 12.5.10 hu]uw)

Toposition 5.17), 'Roga. Theorem
flI}l_J]}'"IE; the Weil conjectures Deligne
primes p not dividing the conductor of

Whereas the unramified local represe

by the eigenvalues of T}, and S, on the n
case in general. Lel us consider some e
the type of ramified local represent

ntations Tap are completely

determined
ewlorm corr -

esponding to a, this is not the
xamples where we can

. | at least determine
ations occurring in the

factorization.

EXAMPLE 11.5.3. Consider the 20 newforms of weight 2 and level dividing 33
i.e., the 20 a's such that w, has conductor dividing 33. (See Examples 6 w < o
and 10.3.3.) Since 33 is square-free, it follows from the e L
in §11.2 that no 7., is supercuspidal. Morcover if m, ) is ramified, but its central
character is not, then Wy =8N |42, x| |72) for some X. (Note that since k = 2
the central character has finite order and hence so does \.) On the other llilllt-j“.
if both 74, and its central character are ramified. then Fap = Ty, 1o for oms
unitary py and po, exactly one of which is ramified. As there are two n-g_-wfmrms of
level 33 for each of the 10 even Dirichlet characters. we find

list of possible conductors

¢ one 7 of conductor 11 with =, special

e one 7 of conductor 33 with 74 and =, special:

e eight 7 of conductor 33 with 7y special and #,, principal series:
e ten 7 of conductor 33 with w4 and 7, principal series.

In the first two cases, the central character is trivial, so the special representa-
tions are of the form sp(x/| |'/=, v| |7!/%) where yv may be either the trivial or the
unramified quadratic character.

EXAMPLE 11.5.4. As another example, consider the unique newform of weight
two, level 27 and trivial character. Since the central character is trivial and the
conductor of 4 is 27, we see that my is supercuspidal. This follows again from the
list of possible conductors: the conductor of a principal series or special represen-
tation 7, with unramified central character must be of the form p°Z, where & i
either even or 1.

REMARK 11.5.5. Recall that the [-function associated to a Ilt-x'-'f“r,ﬂ,l J has
an Euler product and satisfies a functional equation (sec H“”ml;k R 11.11" [E.l':
ory of Jacquet-Langlands offers another interpretation of llllt‘ Euler _prur?m £ v
may view the L-function as being attached to the corresponding ““"]J_“hd ‘%“ml,”.mt
phic representation and the Euler factor at a prime p can be “I'"“‘;”.l]h“} & G[':clll:
of the corresponding local representations m, (sce [JaLa, 1 hu'ﬂ"n-liln n_-lt‘:rl] -.J_][L] -:vriv:;
§1.14], [Gelb, Theorem 6.15]). For example, if m, is the unramified principal s
"(#1:#2): then the local factor is

L(m,,8) = L(py,s)L(t2,5)

— 1

(1 —m(p)p™) (L= (@)



| he Euler factor at p f
| at s+1/20ft
simply the value

5/ | ~ Gode, §1.14,1.15] and [Gelb,
B .. ) Mw(un) A pm} (see also Irs of an L-function associnte(|

% -factor E(ans) which plays g
define also an ¢

in th | Tatel]. They : analogous construction of /.
mlﬂmwm uation and there 1s an One feature

. eq i, Theorem 5_15])_ ature of

role in the local ﬁmctmﬂl , 8 [Go;big] i [Gelb: Theorem 6.14]), o

the pair of functions
together with

12. Sheaves and cohomology
: | 3 'f rms can be viewed as sections of
In this section we explain how modﬁu; the Eichler-Shimura isomorphisn,

mwmnmduhrwcumm We allfgy of modular curves ([Shil, Chapter §]),

' eigeufurms for the Hecke o perators
er 7], [Del1], [DeSe]).

P ey S ‘ weight, or weight & > |
ey : M aaly Y iﬂﬁmﬂ?rb:r:ﬁ?&ﬂmg?he start that, as we
| m Wm results are much simpler in the setting of cusp forms
5 bx‘i'm';iw the relevant line bundle is simply the cotangent l:-u_nrllr-,
GRErT oY groups are defined using constant coefficients, and the associated
entations are constructed from the Jacobian of the modular curve.

explain how modular forms may be viewed as holomorphic sections of
N es on modular curves, Much of the discussion is a reformulation in tli

- language o nfrmﬁts found in [Shil, §2.3-2.6], and we refer the reader
- Let k be an integer and I a congruence subgroup of SL,(Z). We let X denotc

the modular curve "\H* and Y the open subspace I'\H. We shall say that I is A-
) *-* wa khﬁxed in the discussion), if the following two conditions

]
LT §
1 _.“.-- . ol

B
[
=g 5 jeal B " l| : I
.I ' lII . : "r e
. 1
r [

=
-

| =1 4 Jf':'.-I‘
- L
o

b ‘Mﬁmaafl‘ in PSLy(Z) has no nontrivial elements of finite

-::- - -h
- _:Ilur-.ﬁ"_l-k II-| ]

é ; }7-1') For 'examp]g, if N > 4, then I')(N) i

A

A D et E*'”"ﬂ elliptic or parabolic element of
L e : T,,.'- I':"":-f-;-::';_.-. thﬁeforﬂ tr (‘T) o 2 (EE’E [M1y21

- — e e =
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]
for @ = ( . ) € SL2(Z), 2 ¢ 5 and EeC. Ifr i
F\(ﬁxc]! with the IIELLIII'H..I projection Map to Y, has the strmr
bundle over Y. Moreover, it extends to a line by, P complex line

I“i]i' Ovor ELF ze
ighborhood ¢ ' CUSDS (spe B e A Using the trivialis.
over a neighborho of the Cusps (see ?;U.l) defined B3 g Nvializat

[ 7(z,€) (T -%(2),¢)
for v € SL2(Z) and z = ¢ + ) with 3 > We let ¢
] e ’ ; - kL U Eh:nl::tu

bundle and write ¢ : G — X for the Projection map

Next we consider the sheaf G, o of hn]mnr]r;;hi{' ——
is an invertible sheaf of Oy -modules where O :'g gt
functions on X. If f is a modular form of w;:ip,ht
can define an element of G,.(Y) by 1. . ,, [ (2, f(2)). The condir:
be holomorphic at the cusps translates to the C“rl:i /). 1he condition that f
holomorphic section ¢, : X — . W, find that f
bijection between the spaces M(I') and Gi(X) = H”{,‘f,g})

If I is not small, then choose a small congruence 511};”1"::;11;1 I normal in T ;
let ™ denote the natural ]}I'Djli]{:[iﬂn map from __\;' ~— !“"'-R_ﬁ 'Um 3 Rl-pl'u-:l ui I m[[,f
in the definition of Gy, we obtain an invertible sheaf G of O\-r-mmiu;“; “i w.k-rjj.,‘ml
an action of I' on the sheaf 7.4, which factors through ]"/[”.‘ We also find ll'mt,tthe
action of v on 7, G, (X) = G (X') = M(I) is simply the operator |[v 7', defined
in §2.1. Thus M (I') = (7.G})"(X) where (7.G1)" is the subsheaf of %G Fien
by sections invariant under I'. Thus for arbitrary k |

(12.1.1) M, (T) = H(X, G;.)

where Gy is defined to be (7,G,)". We find that Gy is an invertible sheaf of O -
modules on X (unless & is odd and —1 isin I'. in which case M (I') and G, are
both zero). It is independent of the choice of T in the sense that a different choice
produces a sheaf canonically isomorphic to G,.. Moreover in the case that [ = g
this definition of G, coincides with the previous one.

We can proceed similarly to interpret the cusp forms of weight & with respect
to I' as global sections of a certain invertible sheaf on X Assume first that [ is
small. Let C;. C Oy denote the sheaf of holomorphic functions on X which vanish
at the cusps. We define F; to be the invertible sheaf G; 2oy Cr of Oyx-modules
on X. Then F. is naturally a subsheaf of G and we may identify F.(X) C Gi(X)
with §i.(I') C M. (T"). For arbitrary I', we again choose a small normal subgroup

g '- Y . " L 2 f vk 1o o
I, and consider the Oy -sheaf Fi € Gi on X', The action of I' on 7.4y restricts
to one on m.F; and we let Fy = (w.F")'. Then F; 1s independent of the choice of
E : ) . « S ol oy o NP
I’ and the definition agrees with the earlier one if I' = I"". We now have
-~ u } E e
(12.1.2) Sp(l) = HY(X, Fi)
where 7. is an invertible @ v-subsheaf of Gy, and the identification 1s compatible
with (12.1.1). The equation
(1213) Fi. = 6 @0, Ck .
-nhie functions which vanish
remains valid where C}. is defined as the sheaf of holomorphic functions :

e ie pven [see 1Il., 24| or
at the regular cusps if k is odd, and at all cusps if k is cven (see [Shil, §2.4]

[Miy2, §2.3)).
EXAMPLE 12.1.1. If k = 0, then Gy = Ox, Mull
constant functions C and Sy(I") = 0.

all, then the quotient

100N

the resulting line

f Gr. Thus g,

| af of holomorphic
K with respect to T, then we

0 1S the she

ition that this extends to a

= &y establishes a natural

and I', we can write

) = Ox(.X) is the space of
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| i the case of k = 2. We fing
xi_ntmm& of mmurphic diﬂ'ercntials on X. For

the Ox-shed rst suppose that I’ is small and take

; W{\itﬁ g‘m = f(z) dz for a hulmm_rrphir
e e patiralmap ) = X For U° = Uny,
'I(U)-;;mg jefined by I' - z — r- (2 f(2) 15(;}’)' clement o
il or mﬂp sl s ] element ¢w of F> . Morecovoer
?:wa) = F2(U°) wohidf ;)xtendﬂ uniquelyh?:ma?l.lx () — F2(U) compatible witl,
W' 6 defnes an O (U iness 507

Q}r > Fo.

: ' » I’ and checking
_ __ 12.1.4) by choosing a suitable | 0
Iﬂ.ﬁmﬂﬂl, then we Eﬁhﬂé‘mm n,atu)ral action of I'. In general, (12.1.4) to.
Mn}ﬁ 9"}; is compatl _ hism ([Shil Corollary 2171, [Mi}'2, Theoren

04 (X) = S2(T) - 1

T L e - (z) where o'w = f(z)dz. In pa‘artn_:u ar, note t‘mt. the
A %{Iﬁ; i:juﬁ?he genus of X which we recall is given by (9.1.2).

: Snal] . N ute the dimension of M(I') and Sk (') using the
mmﬂl‘:{, we can m::juk # 1. To do so, we first compute the degrees
ﬁﬂh tible sheaves Gi and Fi. If I is k-small for all &, then we find that
:.'4' h mu}, isomorphic to Gy and hence gf"x" & Gr. Together with the
~ isomorphisms (12.1.4) and (12.1.3), this gives

Fie 2 G2 ®0x Q-

Moreover the formula (9.1.2) gives

o k k
e L5 degFi=(g— Dk +vel(z—1) = 75 —vo
~ where g is the genus of X, u is the index of the image of T in PSLy(Z), and v
- is the number of cusps on X. Thus if k is negative, so is the degree of G, and

e =4_§'g(1’)= 0. On the other hand, if k > 2 then the degree of G, is greater
.,,,,,I o ':H

F ] —
i

(1219 dimoMy(D) = (g - (k- 1)+ vy
by the Riemann-Roch formula. Similarly, if k > 2 then
D =(@-1Dk~-1D)+ve(=-1)=Ep_1- Y=

: It ) m(2 1) 12(# 1) 5 "

e --;B.yf"mg'lvﬁs we see that if N > 4 and k > 2, then the

A jLd’

ro |

Sy 4 Yo
12(1: 1) + >

] Rt

x

N B L
o ——
I "-..r-r v

e 11 5 s 4 H(I =P+ (N)(1 - P ' )%).
Becamwrite | cangethe “+" 102 “_ " and if = 2 then add
AEIY)) = Su(Ty(N) @ £4(Ty (V)

| e m (He §2.2) which can be described

MODULAR FORMS

AND MODULAR CURVES

We shall briefly describe the sity,

r”_if F e o
see [Shil, §2.4,2.6] (especially Mowhen I s nog e

Theorems 2.9 -
i - 'S & . ~-lj “.I]{l 2 L . ¥
lllﬂt S 1 [ s I X P =1 3 | o Fa ‘21-] r : = -
suppose ¢ hen we still have (12.1.4) anq ['1'3’)] :; ['IT::T?T 45}, Fir
€2l 'C Natural map

@ﬂ‘rk - 11 ATERE4 TR § 1 l-
— ). may fail to be ap Isomorphism ay ellipti i
i C pomts

! .
of X. Computing on stalks at these points gives instend |

- = ANstead that
o, k
T G, 26, ¢, -
(12 ) 71 = G Yoy Dy & Oy &

where Dy (respectively, Ex) 1s the sheaf of hnlr:mur]:hir functi
> lunctions

order at lﬂﬂ.ﬂtj k/2 (respectively, k/3 and k/4) at irregular cis
points over j = 0 and 1728). We finy that if k > 9 t]:;, e

and irregular Cusps

with zerges of
respectively, elliptic
n .M, has dimension

T /L : 1/ Sy 4
(k= 1) + 6a(k) = + h;;{ﬁ;}%‘ + (k)= 4
\ A ‘)

if k 2 2, where u (respectively, 1') is the number of regular (respect; . :
cusps on X, 6, (k) = ”[k/“l — k + 1 and the rest of ['}’:{‘ nnt-r:'hp{{:.“TE.I".;‘ lr.mg”m”
have a similar expression for the dimension of o1 (T); rt'lll;:-:“-r-l,- : {]Lﬁruj *{Ul We
terms involving u and u', and add 1 if k = 2. 11 - ] 1S ir11 I thf-n wf: ’u;:fu :{; '1.“ t‘h{f
and obtain the same dimension formulis using GO~ K2 o SIB R L even

~f — Ly 5 g E “-];_h“:‘f
g - . = W % - b fld ﬂf

12:1.7); no distinction is needed between resalar and : Ox © ¢
( )i ctween regular and irregular cusps in this case.

EXAMPLE 12.1.4. "'.’f.’e shall now give a complete description of
forms of level at most 4 in terms of the examples of §2.2.

First note tj'lmi, we have dim M, (SL.(Z)) = [k/12]+1 for even positive k. unless
k= 2mod 12 in which case the dimension is |A/12]. Similarly dim Sk(SLy(Z)) =
[£/12], unless £ > 12 and k& = 2 mod 12 in which case the [Iill;!'IIHi{]II 1:~ [L‘;"ﬁl'_?-'] — 1.
One deduces that the Eisenstein series Ly and By of Example 2.2.1 are alaebraically
independent and that &, M (SL,(Z)) is isomorphic to a polynomial ring in the
variables &y and Ej (see [Shil, Proposition 2:27) or |Berl; VIL3.2]):

For even positive &, M.(I';(2)) has dimension [k/4] + 1. Consider the algebra
homomorphism

the modular

¢: ClX,Y]| — &M (T(2))

defined by X — F,, Y — E, where F, is the Eisenstein series £,(z) — 2E»(2z) of
Example 2.2.6. One can check from the explicit Fourier expansions that F5 and E,
~are linearly independent. It follows that so are F; and F) [, and therefore £ is in
the image. The injectivity of ¢ then follows from the algebraic independence of E,
and Eg, and comparing dimensions for each k we conclude that ¢ Is an isomorphisimn.
Thus @, M (T';(2)) is generated as an algebra by Fo and Ey. |
Similarly we find that for N = 3 (respectively, ) and any wvightlk = 1,
M(T) (N)) has dimension [k/3] + 1 (respectively, k/2] + 1). We also fkmd t_h::n
B (MI') (N)) is a polynomial ring in two variables gvnt.*r:ujsd by the Els}*n:.:u:*tfl
series Ey y . and E3 n . (respectively, £y v and F»), where £15 t]]l‘ [.[llii.{ir-'i'[lt‘ F‘.hm-
acter of conductor NV (see Example 2.2.2 for the dvfiniti'm]..-ml] I*_f.}mfwr l:.x[j.ﬂln'bl{ii;);
Finally, in each of the cases with N < 4, &, Si(I'1(V)) 15 8 1";'1;_‘_:“”[_7'“1 “1}“3 i“ 1“1
algebra of modular forms. The generators are 4, {&(:):ﬁf*—’iﬂi (A(z)A(32))
and EE,:‘E(&(2E))UE, respectively. (See Examples 2.2.7 and 0.9 8).

12.2. Cohomology.
PRIMARY REFERENCES: ——
[Shi1, Chapter 8], [Hida3, §6.1, 6.2 and Lang2, Chapter V1.



3 3 which relate modular fory
Mﬁlptmhl, t;lﬂ notation of the pruueding

: ek | - "Mea somewhat different form in Shimury's
of the curves X and Y as well a

: §5.2lffnd (Del1, (2.10)].)

until §12.4 discussion of the Hecke action o

REMARK 12.2.1. We postpone tion for the moment to cohomology witl

cohomology, and we also restrict our
aun;iexmﬁcim- | l T |
| : lain later how the results are
' case of weight two, and exp! § vainy g
R ; iohi first consider H'(X, C) defined using blljglllill‘
generalized to Ww]mﬂy' ﬁ cuzhomulog of the constant sheaf C on X' B3y
| uﬂ:g:olﬂﬂ Ri Tm H‘(J'f C) is naturally isomorphic to Hpgr (X). Recall that
g‘;{_{) is the ith cohomology group of the complex

0 — CO(X) — C'(X) = C*(X) — 0

AT A of smooth complex-valued differential n-forms on X" and
Mﬂ‘m&m rerentiation. In particular H*(X,C) can be identified witi,

tﬁm of closed 1-forms on X modulo the space of exact 1-forms. Furthermore,
a ding to the Hodge decomposition theorem, the natural map

S0 H'(X) ® H\(X) — Hbg (X)

L:r an where H'(X) (respectively, H%'(X)) is the space of holo-

| {mﬁvely, antiholomorphic) 1-forms on X. Next recall that we have
 identifie W{X) = HY(X, Q) with S§3(I'). Note also that f — f(z)dz defines «
~ conjugate linear isomorphism S,(I') — H%!(X) and thus a C-linear isomorphism
k2 8,(I) = H'O(X) where S,(I") denotes the complex vector space C ®c Sa(I'), the

8 (T) & 8,(T) = H'(X, C).

oduct can be expressed in terms of the Petersson inner product

e e O sider the cobomology of the non-compact curve Y. Let U be the
s %mimﬁd@nﬂy small neighborhood of the cusps of X. We find

.'I. -
N

B
<1 [ B t-.'_ o2 e
I O H(X.0) » H'(Y,C) ~ H'(U,C)

. id the s ih:i;;hm?g, 29+ Vo — 1 and v,. We find also that

-~ n H(Y, C) coincides with that of H!(Y,C) — H'(Y,C)
* ive if 1 ' with compact support. Note that this map is
et ko l.;_m_ denote the image H!(Y, C)

o
. .
. 1 K .
TR RS AAASGALL
(T b i ot -.._ = S =y

‘i_ &
1 '." “_‘:.‘ I':__:'“ = - r - ﬂ.-

- . ' 1= .'-'L'\..“-.

Mo L

H‘(Y,C) = HBH(Y), but now the
mwa (Indeed HO(Y, },) is infinite-
iensional.) Consider instead the com-

£

5
u
u

3 ) TR e e T -
1 e e T W
i
| 1 - Y L |
= i : R
& H X X I - -
E : la, S o
. ;
] ¢ - & - ]
I &
bl I
& ] .
1] . " :
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where the middle injection is defined e 107

(12'1,3) and (12.1.4). We thus obtain
b= S2(I) - M,y
| 1( Lo M (') /8, (1)

Tl v

S EAG) — Blne) fﬂ(ér C)
: ws. The ma: ” - ~ '

with (?:J'Em:l. rﬂ. ‘II] \p M.,(F)‘ s & {5 C) can be described exnlicil., -
of residues ﬂtlth'e cusps and we find the kernel s preciselv S i;.ulllff:lll}' In terms
yertical map is injective, and since the first iy, i i“.ilf'f"}iv '1}“ )- Thus the Jagt
that so is (12.2.2). Comparing dimensions we conclude 111th - all,
isomorphism "= st we have pro

(12.2.3) Ma(T) & S,(T) = H(y, C)

We can also relate the cohomology of X and V' 14}, of t}
. . w i ) “-; "-i.{. L] - .
small, then ) — Y is the universal cover and hence T is 1, i up LI T s
. ) b L
Y. We therefore have a natural isomorphism

(12.2.4) H'(Y,C) 2 H'(I",C) = Hom(T, C).

We check that (12.2.4) holds for arbitrary I" by Passing to a small normal sube

I'. The isomorphism H'(Y',C) = K (I, C) is compatible with tlu; 11;1;11;'*1| ‘rif:‘f“l}
of I and one checks that H' LY, C) (HFHI}"?‘-‘-”"'“I,‘*H H' (T, C)) maps isomor J]:if'{ill‘»'uin
Hl(}d’c)r (respectively, H'(I",C)"). As in [Shil, §8.2] or Hidal. ?J.'*;‘.I [ht.lIt [‘Ilf.]'t:.-f
that we are working with coefficients in C), one can ZIvVe a very H.\:;JIH'i{ hi’ﬁ('!‘i[ﬂif}n
of the composite -

Ing the

IS0morphism @
& Commut

allve diagrapy,

v P #

S

duced ap

amental group of

M (T) & S»(I) S HY(T, C).
The form f € Ma(T') is sent to the homomorphism I' — C defined by

1(z0)
Y= / flzidz

for a fixed choice of base point z; € $, and the map on So(I') is described similarly
by integrating antiholomorphic differentials. We can also identify the image of
H;(K. C), or equivalently of S»(I") & S4(T'), in H'(I',C) as H)(I',C). the group
of parabolic cohomology classes. If M is a -module, then we say that a class in
H'(T, M) is parabolic if its image under restriction in f{*(T,, M) is trivial for each
§ € Q U {m} (GI' equiva!ent]}f, for each s in a set of representatives for the cusps
of X), where I'y denotes the stabilizer in I' of s (se¢ [Shil, 18.1], [Hida2, §4).
Note that H; (T, C) can be identified with Hom(I'/N,C) where N is the normal
subgroup generated by the I';. |

Next we briefly explain how this generalizes to weight & = :? ir}.'. I‘*"I??*i“l'“ﬁ C
with a certain (k — 1)-dimensional representation of SL2(Z). (See [Shil, *ﬂb--"'r}_“'ﬁ" ¢
let Vi = Symm E“E(CE) with an action of SLy(Z) gotten from the standard onc on
C=. For f in M (I') we define a class in H'(I', Vi) by the cocycle

1(z0)
(12.2.5) 'r'-—-[ f&(5)

L

fo
dz.

k—d 2
s L] ' i TR ...‘ . g H .Ill[-l-l c j
Here 29 is a basepoint, v*~* denotes the image of v @ *]”i v:‘_.-_“h ) -‘.iIEIilHI‘
d the integral is that of a vector-valued differential lnp,]tt 1er .
ructi R T : 5 ain a C-linear nui
Construction for antiholomorphic differentials, we obtain a G-l

3 : M ([) ® Si(T") — H (I Vi)



> 2 we sketch a proof whicl,
see 8150 [Hid&3, §62] First one
r:9—-Y is the univers'al cover, and
_ 'm (#'Vk)(ﬁ) >~ V. where Vi IS'LII{E' locally
| fmm Y to I“\(ﬁ X Vk): where Vi is given the
%ﬁlﬁ the natural maps

[Mum1, §2, Appendix]. These groups vanis

a:Mg(r]ﬁgk(r)-*Hl(Kvk)

L O b HM(T, Vi) = HY(Y, Vi)-
deote the compoite o it (6018, 20 s 07, Vi) where 1
moomdﬁ 5 4 of the cusps of X. We find that r is surjective with

— ﬂ‘ /v, (the image of H; (Y, Vi) and that the kernel of 7o a is preciscly

h for i # 1 assuming

v
&4

e @3{:&) | [300 [Hi.' 1 2, 55] for such an argument in the context ol group

 cohomology.) Thus o restricts to a homomorphism
SR a, : Si(T) & Sk(T) = Hy (Y Vi).
R o= a and a,, are isomorphisms follows on combining the assertions
i x

sl e fé’% dimg H' (Y, Vi) = dimc Mi(T') + dimc S(I)-
\ ' _ mmﬁm mn* we use the cup product to construct a ])ﬂil‘illf_’,

......

J 1 is compatible with the Petersson inner product discussed in

. First ﬁhﬂtr acts trivially on A% (V3), so the standard alternating pairing
v @ w — det v,w) defines a I-linear map 7 : V3 ®c Vz — C, where C has trivial
- T-action. Next one checks that there is a unique I-linear map
Yo A RO SR

T :Vi®c Vi = C

. r'|- Y 3
7 S Y LT TN
P TR T e S e -

. E 5

ﬁ- et Hexe T '_.I

X' 1 I |+
il e

e 5Ty . e

4
2 =i ')
CLIIEIL Ot 1S
- - .

F.. ) Hi

-2
P

-

L (ﬂ@ﬂ)"" (mngthe notation introduced following

Vi ®c Vi — C of sheaves on Y.

=82 = Cul(f1,02) + (-1)* (2, 91)),
nlv 2 ,-_._;_:':'IE:_:f_ _? ‘ j J A .
A gl E‘s,_;:_ written 9; for 1 ® gi € 5;—([‘)'

Jectivity of a;, then follows from the

e -

S5 II I _F:“: | | __':!I" Ay
it s 'ﬁﬁ ‘Lﬁ) and (12.1.6) we have
o F o aui A

PR
b

]
-|I

.E'Ti

-

B —— S — P ——
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where x(}’) = Z(—l)i dimgc H'(Y, C) is the Fuler charac

. : aracteristicof Y. W
he Mayer-Vietoris sequence Hmes OLY. We can the
aPP“" to t y juence for sheaf cohomology tq check that i ther

Y (—1)'dimg H'(Y,V,) = x(Y) dimg (V)
and we are done since H'(Y, V) =0 for # 1.

REMARK 12.2.3. Note l-hﬂ.t. we may also regard the quotient T'\(§ x v
vector bundle over Y and consider the Oy -sheaf V, =~ v, 5 -O} X 11;? Vi) EL‘;‘ A
" e olomorphic

sections. The map H x C — H x V. defined by
> - z =2
(*1E)b_ (ﬁq-&( 1 ) )
induces a morphism (Gx_2)|ly — Vi of Oy-sheaves on Y. Tensoring with @ ly —
s 2y —

n%,f (EE:E (12-1.4))1‘ we Ubtﬁ.i“ gL“:' —_— Vﬁ.‘ ':':'(j.lr. !.’2.].1'.
can then be described as the composite

M (T) = Gi(Y) — (Vi @0, Q))(Y) — H(Y,V,),

the last map coming from the de Rham isomorphism.

The restriction of a to M ()

12.3. The g-expansion principle.
PRIMARY REFERENCES:
[DeRa, §VIIL.3], ([Katzl, Chapter 1] and [Mazl, §I1.41L5].

We now discuss some of the theory of modular forms with coefficients in rings
other than C. Such a theory is useful, for example, in the study of congruences
between eigenvalues of Hecke operators.

Let I' = I'g(N) or I'} (V) and consider the injective map

(12.3.1) Mi(T) — Cllq]]

sending a modular form to its g-expansion, iLe., its Fourier expansion al oo as
in (2.1.1). Let My([';Z) denote the preimage of Z(lq]], i.e., set of clements of
M;.(T") with Fourier coefficients in 7 For an arbitrary ring A, we write M(I'; A)
for Mi(I';Z) @ A. Since M, (T;Z2) — Z[lq])] has torsion-free cokernel, the map
M, (T'; A) — A[[g]] obtained by tensoring with A is also injective. We define
Si(I'; A) similarly using cusp forms, and we identify it with an A-submodule of
M, (T; A). (Note that Si(I'; Z) = M (I Z) NSi(L).)

Let us naively call My (I'; A) (respectively, Sx(1 A)) the .-1-11‘1uFi|:1ln;1 E_}f umln:lula.u'
forms (respectively, cusp forms) with coefficients in A. The definition is naive in
that we have not shown that M (I"; Z) contains bases for M (I") and Sk (L), “”f-i B
need this in order to identify My (I'; C) with M (T). The v;wzifatf?m'v_. of :ﬁlll‘hlfﬁ.b{‘h IJ:-.
due to Shimura; see [Shil, Theorem 3.52] for the case of Sk(') with k 2 ol Hf‘f““
however, we shall explain how to deduce the gmwru! result from tllv’f,’-t‘iﬂhll]“f(flit
principle of Deligne-Rapoport [DeRa, §VIL3] and hatz [Katz1, Chapter 1} {3
also [Katz2, Chapter 2|). . il -

The iﬂjEctiviti of NR(F; A) ey A[[q]] may be viewed as a nmlx & x;fw;;;lluilf;:;il
€Xpansion principle. To state a more powerful vershuIL we ll[ﬂ,l an a ;,ti- rfw -
of a modular form with coefficients in an arbitrary riis A. We beg” {)}l‘ J?ﬂhlt‘lll:&
the sheaves G, (see §12.1) as arising naturally in the context of the modull |
discussed in §7.2 and §8.

For simplicity, we restrict our att
Rﬂcall from §8.2 that there is a universal e
over the model Y, (N) for Y;(N) = T1(N)\9)

moment to [, (V) with N > —1;
point of order N
{ g-expansions

ention for the ‘
lliptic curve with a
In the consideration o0
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i yF{N) of Variant 8.2.2. Let E.mh. oW

y the : the canonical immniers;j
it is more convenient to US¢ N)), and funiv s
it is ' (w yF( J)' lex p{)iﬂtﬂ of Euniv; thus ‘Hlmn-

curve
denote the universal elliptic the comp 2mi/N
denote N). We choose e?™'/N Our

e Eﬂﬂ'\"‘ : ) Y
i(:fg;:;?amdyﬂc Mﬂi,ofell'lpﬂﬂ ];42 the corresponding family f
Nth root of unity and let Funiv -
1 ' j 1ght actj
points of order N'glmn by ‘:;i&'}, concretely as follows. Define a rig etion
We can describe Eupiv univ

Z x Z on § x C by
s (z,C)-(m.ﬂ)=(ﬂrC+'"”")

tient is naturally a family of elliptic curve,
fm'm,ﬂ = Z, zZE fl S;}dﬂ()' (= C. Ttefqaz?ﬂ;l:lf pollltrﬁ Df order N. Now define a left
mui‘ﬁ:;?d(;')";:fmq o 50 that 7 = ( : 5 ) sends the orbit of (z, ()
action of 11(/ uotient
that of (7(z), (cz + d)7'¢). The quotient
Iy (N\(($ x C)/(Z x 2)),

viewed as an elliptic curve over Y1 (V) can be identified with E,,,iv , and the section
defined by z — 1/N can be identified with Puniy -
The line bundle G|y, (x) On Yi(N) (see §12.1) i
restriction along the zero-section of the relative cotangent bundle of E, .. over
Y;(N). To make this identification precise, note that the latter bundle is canonically

(1232) L (N\( x V),

where V is the cotangent space of C at the origin and the action of v = ( e )
on § x V is given by (z,d() — (7(2), (cz + d)d(). We identify this with G|,

5 (2,€) < (2, 2migd().

~ We can extend the moduli-theoretic description of G; to the cusps by consid-
ering the universal generalized elliptic curve with an immersion of 5 (see Varian
9.3.6). Again denote the universal curve &,y;, (now over X,(N)) and consider its
- compiex poir ;thﬂwﬁﬂl‘m a complex analytic family of generalized elliptic curves
Euniy over Xj(N). We can again give a concrete description of E,.. : in partic-
STrE ) ﬂbﬂ:mm l:pr I'\(N)-o0is simply C/Z, the point of order N being
i & "rmmﬁm of B,y in these terms near other cusps is slightly
e (M@.ﬁ and [DeRa, VI1.4]), and we will not go into detail here

A R SR i M of Euniv over X,(N) restricted to the zero section

can now be identified with

: I s S ) again be identified with (.
e ﬁwﬁmﬁqdmﬁpﬁm of G, is that the base need not
: - the line hundl Y ﬂﬂtm\r'ﬂl'tlble sheaf on X, (N) which is a “canonical
Yt o _;I._ IE < w denote the I_-‘vllﬂ-bad: along the zero section
:: M;{%{’f} Then w is an invertible sheaf on AL (N),
f we denoted In i ' ﬂN) associated to we can be identified with
Vol .‘“. ) __'._."_ _ﬁ 2!1! W$ m ha"m w@k 9 i
Al Loltection vie m - W as a deEI fﬂr gk' 1}“
: . : =. .'--_- . ‘qu_._- , Wm

"

T

Nl
b =

oW

b
¥
-]

fine: jm Z‘D Moreover the complement
T, M We write £ for the corresponding

M 7 ; !
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invertible sheaf on A, (N). Then (12.3.3) 111

w2

(12&3'4) = El]\. N/ ) I:
The isomorphism is compatible wit} that of
Qg{k-—ﬂ] & Q}\’,,[NNZ as a model for F, |

For an arbitrary ring A, we define o mod
re&PECt to F;(N)) to be an {fl{'l[ufnt of

{) r o P
I {;1"“{.-"\' }_.1,-.4;_;1' : ¥
gimilarly, we define a cusp form over A .. an element of
07 s (k-2
}’I (flj;(hr}."’n'lw‘,\ ]‘-'E.-{El

XL (N), 1‘}
We write My (I'1(N); A) for the A-module of modul
Sk(FI(N)? A) for the cusp forms which we regard

via (12.3.4).

REMARK 12.3.1. Note the terminology over A 16 distinguish this from ¢
naive definition of modular forms with coefficients m A . s from the

El:{t[.' " " -
ends tg an ISomorphism

1 ‘
ar form over A lof weight k with

ar forms over A We Write

45 a submodule of M (T (N); A)

Identifying Ui with the complex analytic sheaf associated to wi*, we obtai
] ' ) R W, We obtain
natural isomorphisms C

(12.3.5) M (T1(N); C) = M (T (N)); Si(T1(N); C) = 8,.(Ty(N)).

Base change arguments (see [Katz1, §1.7] and [Maz1, [1.3]) together with Theorem
9.3.7 yield the following result.

THEOREM 12.3.2. If B 1s an A-algebra and either of the follounng hold

e B 1s flat over A;
e k>1 and N 1is invertible in B,

then the natural maps

ME(T(N);,A)@4 B — M (['(N), B):
Si(CH(N);, A)®4 B — Si(I'(N); B)

are isomorphisms.

REMARK 12.3.3. The definition we have given for a modular form over A is
most convenient for the applications below. However it is not necessarily the most
suitable if, for example, A is a field of characteristic p dividing V. Moreover we
have restricted our attention here to (V) with ¥ > 4. For discussion of various
notions of modular forms over a ring A, base-change and g-expansion in a more
general context, see [DeRa, VIL3], [Katzl, §1.7, 1.8], [Katz2, §11.2.2], [Mazl,

I1.4] and [Gross, §10).

We now explain how Deligne and Rapoport’s
allows us to define the g-expansion of a modular
found in [DeRa, VII.3] and [Katz1, A.1.3]. See also
the context of modular forms with respect to 'y (V).

In our discussion in §9.3 of the work of Deligne-Rapopor _
how the cusps of X(N) correspond to degenerate elliptic curves. v (V) along
indicated how Tate curves can be used to describe the completion ol . I[I : 1.‘ 1153
D, the cuspidal divisor. However in the present discussion we shall continue to
the models discussed in Variant 9.3.0.

algebraic description of the cusps
form over A. More details can be
(Gross, §2] for statements in

t [DeRal, we described
Moreover we



| he generalimfl ellip-
of Au(N)C ol e The image of s i
M@d Mﬂg w],tnh PI(N) « OO0, -[ h[' “lr'l.]}
write X, (N) for the completion of
over Z[[q}] hﬂﬂ a canonical immersioy,

Wz:'.';ipjhﬂmun defined by ¢ 0. This givey

2}) Moreover the isomorphisim

sheaf on Spf Z[[g]] corresponding to the
zero section of Eq. But this is a free

denoted wean in [Katzl, A.1.3]. Using
w@k and working over an arbitrary ring

4., A M],(FI(N): A) — Allall

a1 R S maps to qA[[q]] The maps ¢oc,4 are functorial in
“ Lol e e the usual g-expansion at oo in (2.1.1).
FIRE "“' imﬁilﬂ fh# fmi thh.mbm;mﬁp]g of [DeRa Theorem VIIL.3. 9] N our
: E Epa provec wgm 9.3.7 and the arguments of Deligne-Rapoport
atz, [Katz ,51.61

3.4. " 1. The g-ezpansion homomorphism ¢ o 15 njective

m that a modular form over A is deter-
m* m second part of the theorem shows in par-

¢ .rg _ 11{-_:?_-%) in My(Ty(N); C) = M(T;(N)) is pre-
&), Nore 1.-_.1-_.__.-.! nif R s a EUbrlng of C, we may identify

_____ > forms by the third part of the theorem

.;?-l-:::é%,\‘ 1 m ﬂﬁd Z[1/N,e*"/N].algebra A, e

..T_,., s _,u|r; Ii SIT] él.d mt.h va,luES 111 A“q ”

R | %u i
L I RE e "ﬂf The&rem 12.3.4 (see [Deﬂﬂ
g ) i., 3,. len its g-expansion ¢ (/) i
e : , -i y zero for all cusps 5
o cients in a Z[1/N, >/ |-

expﬂ-ﬂﬂmnh have integer coeflicients at Cusps other than T
however that the denominators of the cocfficients of 0,

are boundﬂd (SLL lDERﬂ Coroll: ary VIIL.3. 'jl] lKﬂtdl Al ,_—,]

that of Variant 9.3.6, the cusp I'y (N) - oo would not he

bine Theorem 12.3.4 with Theorem 12.3.2 to obtain the follow

forms whose Fourier coefficients at oo lic in
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An element of My(I'i(N); A) is in S,y (N); 4
of the g-expansion vanishes at al| Cusps. :

For f € M‘-(Fl N) Z) C M‘(F (N} It need not be

) if and only if the constant

the case that the Fourier
1 (V) - . One can show

AU € ZN/N, 2N

MARK 12.3.6. Had we used the
RE ‘e model Xy (N) for X, (A ") of §9.3 rather than

defined over Q. We would

ve had to restrict our attentior
then ha o throughout to algebras over Z(1/N, e2m/N I

We now record some conse quences of the g-expansion prine Iple.

I Irst, we com-
JNg.

THEOREM 12.3.7. The natural maps

Mi(T1(N);A) —  Mu([,(N): A);
Sj;(r](jﬁ"kf);;i) = S;;fFﬂ.N}l:”
are injective, and are 1somorphisms pronded one of the follounng holds

o A is flat over Z;
e k> 1 and N s invertible in A,

Note especially that this holds if £ > 1 and A is a field of characteristic prime
to N. (Recall that we are assuming N > 1))
Note also that Theorem 12.3.7 holds if A = C yielding the following corollary.

CoROLLARY 12.3.8. For all positive integers N and k, the space M.(I'1(N))
(respectively, Sx(I'1(N))) has a basis in My (' (N ), Z) (respectively, 5i(I'(N):Z)).

Note that we have removed the assumption that N > 1. Indeed Example 12.1.4
shows that for N < 4, the 'ipﬂ{,'{“% are spanned by monomials in forms with integer
Fourier coefficients (see (2.2.5) and Example 2.2.7).

COROLLARY 12.3.9. Suppose that f =5 a,q" 15 i My (I N)) (respectively,
Sik(I'1(N))) and o is an automnorphismn of C. Then thereis a form f7 m M (T (N))

(respectively, Si.(I'y (N))) with Fourier expansion _ a7q".

This follows from Corollary 12.3.8, or in case N > directly from the g-
expansion principle Theorem 12.3.4 applied to o : A — B with A=B=C.

COROLLARY 12.3.10. Suppose that k > 0 and f=5 a,q" 1510 M (T (N)).
Let K be the the subfield of C generated by { an|n > 0}. Then ay 1s m .

The proof is as follows ([Shi6, Proposition 1. 3)). 1f o is a field nutmlu:-rpl{l:«'[_n.
of C fixing K, then the constant aj —ay = fo—fisin M, (T (N)) and hence is
equal to 0.

Again assume that N > 4 and let Euiv denote
curve over X, (N) with immersion Zuiv Of K- For d 1n
(d) the automorphism of A:'”(N) corresponding to the pair
18 a model over Z for (d) : X,(N) — X {(N). Moreover we
w and thus obtain an action of (Z/NZ)" on

My (D3 (N); Z) = HOWXu (V) @), N
actions of (Z/NZ)™ on M (Ci(N): A)
functorial 1mn A and respects the

the universal generalized elliptic
(Z/NZ)™, we denote by

(me ‘hmm) Then (ff)
may identify {d)"w with

More generally we can define in this way
MSE(PI(N) A) for arbitrary A. The action 18



£. DIAMOND AND J: M
.0 ible via (12.3 7
0 _ Moreover it is compatl i ))
) A)d :Mk'(TI(M’ A). ators denoted (d)y in §2 |
Z/NZ)> on /V'k

1. The subsets M, (T (N); Z) and Sk(I'1(N); 7

| sirioN 12.3.11. NZ)*.
Pt by e griers 0 66, o et v
Mi(N,€)s

9. If f isin |
_ mma'ﬂt'- -
= e qu Jllows from the fact that (d) commutes with f i fo
The second assertion f for N < 4 each (d) acts by 1|

Note that both assertions hold for all N 2 1, since %

ie Aﬁfm the “trace” map -
T (@ M) Mi(To(N)).

: .'.dé{zﬁfzjl-_ triction to M (To(N)) is multiplication by ¢(N) —

mwxml J “”fu m12.3.11, we see that M (L1 (N);Z) is mapped to

3 ﬁgﬁ() N)I‘ZJBi Mk(rl(ﬁ)'; Z) N M(To(N)). The same assertions hold for cusp

. COROLLARY 12.3.12. Let I' = T'o(N) *l'**“"'Ill(“"‘r)f"‘“""’rl N 2 1. Then M(T’)
*(respectively, Sx(T)) has a basis in M(I'; Z) (respectively, Sk (I’ Z)).

" This holds also for T' satisfying I'((N) C T C [o(N). One alsni finds tha
| m _j_M;(N,E)_ﬂﬂﬂ Se(N,€) are spanned by forms with g-expansions in Z |
 where Z[¢] denotes the ring generated by the values of ¢.

S o J in My(T'1(N)) and n > 0, let us write a,,(f) for the nth Fourier coefficient
~ in the g-expansior of f at oo. For each positive integer m, Proposition 3.4.3 gives

an(Tuf) = ) d* agn/a((d) f),

positive divisors d of (m,n) which are relatively prime to N

o * r- 08 %’fﬂk"ﬂ ﬁﬂdfm be positive fntegers, and let ' = ['y(N)
o 5 in My(T3Z), then so is Ty f, and similarly for Sy (T'; Z,).

i _t; mdﬂ not need to appeal to Proposition 12.3.1]

St Ll
| = i
T

LT position 12.4.1 is immediate from (12.4.1).

P r ﬂlﬁﬂubmg of End M k(I') generated by
N T &% Al m*ﬂ?ﬁlﬂ!\’ﬂhﬂﬁh’ by the {Tp, (ff),t;} for all

sition 12.4.1 we may regard M. (I'; Z) as

_llrll s

i

Ry
T e
v

[ ]

'''''''

L
-

. we e mmp F — End M, (T Z) s

-
Tl
!:.: ]

1,

-

A7)
i

[ =i
11111
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LARY 12.4.3. The ring T ic o £
COROL ‘911 a finitely generapeg e Desmaduls

REMARK 12.4.4. See the discussion follow

_ Ny pl.{. e '
nate proof in the case k > 2 using the Eichle > FOPOsition 12.4.10 for

r-Shimura Isomorp)
The result has the following application to Hecke o
. ' - CIFC] "¢ e AP
[Shil! §3.5) or [Shl&j{tl]*) Suppose that fie M () senvalues. (See for example

: 1S & simultaneoys of
] r ¥ _" # L Ellr_::
for the operators in T and consider the eigencharacter g - T C melﬂrm
T ' ' ' - defined by

fIT = B(T)f',The. PIRLE _Uf the ring T in C js finitely generated as - Z

hence is c_ﬂ_ntmned in the ring of algebraic integers of n‘numha-r ﬁ@ s a Z-module,
o € Gal (Q/Q) and d € (Z/NZ)”, it follows from (12.4.1)
fi f7 with f — (d)f that T, f* = (T, f)".

COROLLARY 12.4.5. Let k and N be positive mtegers and ¢ q mod N Diricl
let character. Suppose that [ = 3" a,.q" is a normalized cigenform m--'VI {-\ftj
(Wﬂiuegyl Si(N,€)) for the Hecke operators T, for all ;! > 1. Thr*‘n ;;u:rn‘: .-I"i
a number field wimﬁﬂ_ﬁ“ﬂ of mtegers contains the Fourter f:ﬂ;ﬂitu,'m'aiu fr;r-ﬂif
nzl. For o € Gal (Q/Q)-' the form 7 is a normalized ewgenform in _*uIT;.['N E”)
(respectively, Sk(N, %)) for the operators T, for all n > 1. Moreover U} f ‘r,z-: :
newform, then so is [°.

an alter-
S,

ld. Moreover. for
and the compatibility of

REMARK 12.4.6. If f is a newform then the field K generated by the elgen-
values a,, is either totally real or CM (i.e., a totally imaginary quadratic extension
of a totally real field). This follows from [Shil, Proposition 3.56] (see [Shi3, §1] or
[Shi5, Lemma 2]).

REMARK 12.4.7. If I is an ideal of a ring A, we say that two forms f and
g in My (I'; A) are congruent mod I if their images in My(I'; A/I) coincide, or
equivalently, if the coefficients of the associated g-expansions " a,q", 3 b,¢" in
Al[q]] satisfy a,, = b,, mod [ for all n > 0.

Most interesting is the case where A is the ring of integers of a number field
and f and g are eigenforms for the action of the Hecke operators. The study of 5‘11{:11
congruences arises naturally in the context of the associated Galois ['l*[]l'l::-':f‘[ltc’itlt}rlzi
(see Remark 12.5.5) in the recent work of Ribet [Rib4] and Wiles [Wil2]. For
earlier work on the subject, see for example [Ser2], SwDy|, [Katzl], DoOh],
[Hidal] and [Rib3].

: : » Hecke -ators on some of the
We shall now describe the natural action of the Hecke operators ¢

objects we related to modular forms in the preceding sections. [ =

Let us first consider the case of cusp forms of “-l:-igllt_.Lt‘l.l.ﬂ with ['l‘::]-)tu;;! 11: [:\—3
I‘l(N) or [y(N). Let A denote the currez;[:-{}lwtciizlg 5&1nlgrm‘11} QELE(?'] I{jrnléilhl"'
in the notation of §3.1. Let X = ['\$". For o &f 3 wrm.j ]-—lli]:ﬁ [2) Let
and X° for X = '°\$H*. (Recall from §3.2 that I;::immt_v:« :‘Jl ;il-” i:.z{lucvtl
m: X% — X be the canonical projection. and let s : X° = X be 1 1;_. I; [}Iqhu'lf 0L
by 2 — §=!2. Recall that the isomorphism (12'1‘"” i"‘h.]“.“htiﬁ f} ‘;I‘ lf Illitfﬁtth}P:‘rn-t;r
of holomorphic differentials and hence S(I') with HO(X, (). T |

['éI’ on the space S,(I") is then given by
e
(12.4.2) HO(X, QL) — HO(X?, Q) = HIX %)

trace ms.. ON differentials.

the first map being the pullback 77, t he second being the
(See [Shi1, (7.2.6)).)



that for I =~ denoted M (I 4
ll that 108 ) lar forms over A, D &
MOGES Ofmdmm Mk(FiA) — M (I A) s 4,
b ﬂs‘t y mﬂ@M;(ﬁAJ inherits an action of },,.

s i description of the action of (],,.
g° with the one on M (I'; A). O,

) is invertible in A; see [Katz)

=5 ; Y R cohomology groups considered in §12 9
«cuss the Hecke action on the

 §83)). weight k = 2, (12:2.3) and (12.2.4) related H'(I", C)
| Wmd g = (tol"- We now consider H'(I',Z)

R(T,A). For 6 € A, we define ap

Sy ion. the second is gotten from conjugation by & and
B the m_ )map The map depends only on the dcfui)lu cosct
O i st i -'mm.zin denoted z|(T4T) (see [Shil, §8.3], [Hidal, §3])

" Extending linearly, we obtain the desired action of R(T', A). o
 Recall that for k > 2, we let Vj denote the I-module Symm & *(C?). Now

comsider My = SymmA-(2?) with is action not only of I, but also of A I
| e coset 6T in ngﬁ)i we define an endomorphism of H YT, M) by a
e g R T {'134,3)’ but let us instead give a more explicit description

H'(T,MY) — H\D,My)
B e s 2| (T4T)

Sail, . mm’i&htwde representing = and we decompose ['al’
it u H" b ﬁﬂl;‘-ﬂ' ij;-;-_u_a ,7. Now for v € I" and for each i, we have

AL

iy

- 0005;) € T for some j(i). We then define a map v : I' — Mj, by

o ;-.'-i.;.-.':‘___ lﬁ;:i'f-: - e
b X . ." %) i __-:-.'. .In_ .-I _, ! 1l -_r'.-_'.- L il : _1
- g .:.Ir-“'m e

i il -
e T
T _:l-.-'ilt.';! i_.-" 4
1 13 RIRREMT S g
. 2
#

P),;ﬂ-,the anti-involution defined by g+ 3 =

| | i '*"' .
e BRSNS, AL
et S ey t

XV  class depends only z and the double

® cosets extends linearly to define an

:Mk)lﬂ preserved by R(I', ).

& 0N cohomology groups 1 (I', My.).)

€ the group cohomology can be identi-

Ay ghﬂ double coset operator has
Wi \n '.1’: 1dal KiAT
i :'-.:;_.g;.--,_ d! 3%
oA lr‘  with the composite

-

-\."';.—
g

'o consider the direct limit of cohomology groups of Auy
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where Y = ['\$ and Y° = [\ §. This works
describe the action on H,(T',Z).

For k > 2, assume l:‘ = I't'(N) with N -
covering maps and there is a canonica) i::'.umf.urphi
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also using t}
, 1€ compactif
3

Then t}
. 1€ maps T - .
S11) PsS ™ and 75 are

If](l'ﬂ! -ﬁ'fh-) y Jffl(}:M)

where M is the locally constant sheaf of continuous se

Writing M? for the corresponding sheaf oy y¢ Clions Y —, (5 x M,).

+ = z|(Tal) becomes

(12r4-ﬁ) ffl(ymm)—-*ifl(}’f’*rvlﬁ_}—"?ffl{}ﬂ“-‘nghr{‘)‘_" fj'l y |
where the maps are defined as follows. The first Map is just - M
c&ﬂDﬂiCﬂJ identification of 7*M with M?°. The h{flf:['}l']lfl.]l‘i’:
sheaves defined by 8‘. The last is a trace Combined 1.-.11}1;?

tion for cohomology with compact Support, one obtains also
endomorphism I'6I" on H ' (I, Af,.). .

" together with the
given by 4 map on
@ similar constrye-
a description of the

We can similarly define an action of £(T", A)on HY(T, v,
(and indeed on H'(T, M, ® A) for any abelian group 1) .
with the canonical maps -

P A Y r- 1 r
) preserving H1.(T, Vi)
. The action is compatible

Hi(r,ﬂfg) — III(F,JU‘_.):-}C = Hl{l"!{.r":}
Hp(rﬁﬂ"r&) = f'f;l,flﬁ,:"-h.-}:'-:c = H;(r.].";_.j.

More importantly, we have (see [Shil, Proposition 8.5])

PROPOSITION 12.4.10. The Eichler-Shimura isomorphisms 3 and 8, of The-
orem 12.2.2 are compatible with the action of R(I', A)

This gives another proof, due to Shimura [Shil, §3.5], of Corollary 12.4.3 in
the case k > 2. Indeed H'(I', M) is finitely generated (using for example that T
has a subgroup of finite index which is a finitely generated free group). Thus the

image of R(I', A) in End H' (I, My) is finitely generated. Now observe that T is a
quotient of that image.

REMARK 12.4.11. We note a variant in the case k = 2 which makes use of an
important observation. Recall that the Jacobian J = J(N) (respectively, Jy(N))
of X = X1(N) (respectively, Xo(N)) can be identified with Hom(I}, C)/L, where
W=HOX, Q}.{f{?) and L is the image of H,(.X,Z) in Hom(1V, C) under the canon-
ical map defined by integration (see §10). We have explained how the modular cor-
respondences on the curve X give rise to endomorphismis of J: in fact they :ichnp
an action of R(T, ﬁ) >~ T » on J. This in turn dehnes an action of Ty on Cot y(J),

the cotangent space of J at the origin, and this space is canonically isomorphic to
H(J, QL) = HY(X,Q)) = 8:(T)

(see §12.1). The action of Ty on S»(I) is precisely the one we
§3.4. Moreover, the map End J — End (CotyJ) is injective. We i
the image T of T in End S,(T) with the image of Tw in End J. As ”;f’ ?II ;FS";
finitely generated over Z (indeed it can be dentified with a subring of knd L),

T is also finitely generated.

first considered in
may thus identify

action on the cohomology of
ark 11.1.1). It is then natural
i s

over all open compact

REMARK 12.4.12. The description of the Hecke
Modular curves extends to the adelic setting (sce Rem



sheaves, the direct limy .
es considered in §11 g,

of the Hecke modules we have hu "
context of cusp forms, fix a weight &

T dellOtﬂ the image of T in Ltl[]b;[ }.
mmmdes with the lnmgjv of T Az

k 12.4.11.) Now regard Sy (1", 4,

S, (I; A4) 18 isomorphic to Hom (T, 1)

showing that (f, T) =y ﬂl(fiT) 1S & perfect
atendingm (See [Shil, §3.5) and [Rib2

| i ste plﬂx yvector space S.l..( )f"""g C where
th;tmm:b“h(r)m wthe For g € Si(I') we write g for g 21 iy,

(f,9) ~ — (f,Wn9) defines an isomorphisin of
 5,(r) & Homo(Sk(1),©)

WW to S, as a module for T ® C as each is iso-
IB Sk(T') ;a;}mfreeufrank one over T @ C. In fact,

. l““ 0! \13:&-»14- Hﬂ‘lﬂﬂﬁdd ﬂfchﬂf‘ﬂﬂfﬂmnﬂ 0, then S;.(T'; A) s free
m# lfk>2, MHI(I' Mk) ® A is free of rank two over

sm (Theorem 12.2. 2) and its Hecke compatibility (Propo-
Mthn follows from that of A = C.

With a brief ssion of the structure of the Hecke ring

ra, it canonically decomposes as the

m are the primes ideals p of T

- Qfﬂ#bmc numbers in C, each such

. 3 u ned up to Galois EDlljll[L,ﬂ{'* In
@ as an eigencharacter 6 for a unique nol-

3}) Thus the factors in (1217

d eigenforms (see Propositio!

MODULAR FORMS AND MODULAR CuRygs

119
12.4.5). Proposition 12.4.13 provides more information g
implies the existence of a (non- -Canonical) 1Somorphism JOut the structyre. It
(12-4-3) ToQx Homg(T, Q)
and hence
(12.4.9) Ty = Homq(T,, Q).

Similarly T ® Z¢ is a product of |oea) rings (T e 7 \
the maximal ideals of T containing £, T} e, I'“dxlm;] ol
wrrespundcnce with (nll FI'/I-.{) {(m]u;’*u y classes of nrjr“h; ‘-‘a.rp 1N one-to-one
S, (I Fe). (Recall that Sy (I Fy) is defined as Si(T52) ¢ 1]f;lfui I-cigenforms in
natural action of Gal (F¢/F¢) as well as B R DTigion o ¢ We thus obtaip 5
normalized means that the coefficient of ¢ is ) 3 ap to F([[q]).
The factor (T @ Zf)m may be identified with T I'm, the comple
It is & finite flat Z-algebra and T ® Q¢ can be identified “1’;}{;11‘;‘11 OE o
Ty ®qQ Q¢ where p runs over the minimal primes contained in m. rll[ﬁ.n}]md-u{ft of
primes py and p2 are contained in the same m if and only if the L(}TT?SII;:;II;E;EE

eigenforms are, up to Gal (Q/Q) conjugacy, CONETBHE modal . _
the sense of Remark 12.4.7). Q170 a prime over ¢ (in

m Where m ryps through

As usual,

REMARK 12.4.15. The rings T, thus contain information about congruences
between modular forms. Their structure, much finer than that of the rings T plays
an important role in the work of Wiles [Wil2|. Henceforth in this remark we ?":Jst;ivﬂ
our attention to the case k = 2; this is the case with which Wiles is concerned an::i
in which the structure is best understood. Combining the g-expansion principle
with properties of the Jacobian, Mazur [Maz1, §9 14 15| proves the analogue of
(12.4.9),

(12.4.10) rH-lm = I'IDIHZ;(THIT ZI)1

under certain hypotheses. The result has since been generalized by several authors:
see Remark 12.5.7 for a brief discussion of Mazur's method and the hypotheses
required. The existence of such an isomorphism (12.4.10) is known to be equivalent
to the ring T,,, being Gorenstein. An even stronger ring-theoretic property of Ty,
is established by Taylor and Wiles [TaWi| under certain hypotheses. This stronger
property, that T,, be a complete intersection, was a crucial ingredient in Wiles
proof of the Shimura-Taniyama-Weil conjecture for semistable elliptic curves.

12.5. f-adic representations.
PRIMARY REFERENCES:
[Shil, Chapter 7], [Dell], [Ser3, Part I] and [Cara, §0].

In this subsection we discuss how Galois representations are attac hed to mod-
ular forms.

Let k and N be positive integers. Let [ be an elem
a normalized eigenform for the Hecke operators in Ty
generated by the operators T), for all primes p, and 5,
N. Let K b}; a nui{;er field Lc}ntdlnu?g Ky (the field generated by the e:gmt\alu;:b
of these Hecke operators acting on f), and let O be its ring of integers. 1 [{M:;i 1)::
the Nebentypus character, and write ¢ for the eigencharacter Ty — K dehne

the action on Cf.le.,

ent of Sk(I1(N)) which is
Recall that this is the ring
for all primes p not dividing

T}, — “,rra)(f)
' S, — pep).



for k = 2, Deliguu [I}{]]l] {or
1, attaches to f a certain compatib|
y :

. ﬁar-ucﬁ'primep not dividing
is
(125.2) X2 — 0(T,)X +pO(Sp)-

yelotomie
\ i *1, where x¢ denotes the fth cyc Lo ¢

mdmunant of pr 18 th:';ﬂiﬁ the finite order character of Gal (Q/Q)
character. (We hﬂWD@?d FiH0 ¢.) In particular, px is odd in the sense
: - to thﬂ i]‘,‘lﬂhlﬂt ﬂhﬂ.m:tﬂf. . :
St gt () = ~1 o any complex: conjgation ©

e : i Frob , is an arithmetic Frobenius
" REMARK 12.5.1. Our convention here is that P : S

o TR gi;mnm an element, choose a preimage in o € Gal (Q“/Q’"}
2 automorphism of the residue field F,. Now choose an embedding
Frob » be the image of a, under the inclusion

- Q-Q,andlet
@253 000 Gal(@,/Q,)—Ga@Q).
' The racy class of p(Frob ,) is independent of the choice of such an clement.

P ARK 12.5.2. The term “compatible” refers to the fact that for primes p
" ot dividing N, the characteristic polynomial of p(Frob ,) for A is independent of

 REMARK 12.5.3. The representation depends only on the newform associatcd
tof,a -J:hm be viewed as arising from the corresponding automorphic rep-

- Using the continuity of p) and the compactness of Gal (Q/Q) we find that
~ thereis ¢ lattice in Eim under the action of Gal (Q/Q). This lattice yields a

Gal(Q/ Q) — GL,(0,);

i D isomorphism class of the representa-
iBonti = 2 .0 laependent of the choice of lattice. However its
e and we denote it . It may be

nple representation unramified out-

'i-...-
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REMARK 12,5.4_. The I*IZ![JI'{:H&nt_:’ll'l{JHH Px are known tq b iad

rem 2.3), but g\ may be reducible., Opq T Particularly irnlr educible
. £

reduCihle pa. Serre has conjectured [Serd) tha
mpmsentatiunﬁ

[Rihl,
the ir-
odd. il"I'E'ri'lll.'fihl.E:

| rested in
all continuoys.

Gal (Q/Q) — GL,(F)
ise from modular forms by the above construction

See H. D
this volume.

armon’s article ip
E R ! -4 3 r M Er O ;

REMARK 12.5.9. Consider two eigenforms fiand f, as above, with w

and k; and levels N, and J.“Vg, qnml lu:zL“}\ be a prime of a field o

From the above characterization of j,, we see t)ay the associ

1A and p2 A are isomorphic if and only if ol ) = an( fs)

n relatively prime to NNyt

lghts k&,
taining KKy,
ated representations
mod A for al Integers

Now we briefly explain the construction of t}e represent

2 (see [Shil, §7.6]). The construction proceeds by considering the Jacobian Ji(N)

of the modular curve X,(N). Let J,(N)[¢"] denote the kernel of multiplication by

¢ in J1(N), and let Ta;(J,(N)) denote the f-adic Tate module of Ji(N), ie.
lim J; (N)["]

Tt

ations py in the case - =

where the maps used to define the inverse limit are multiplication by £, Then
Tae(J1(N)) is a free Z¢-module of rank 2g where ¢ is the genus of X\(N). The
action of Ty on J1(N) induces an action of Tx on Ta(J, (N)). Moreover the
action factors through T, which acts faithfully on J,{ N and hence on Ta (J,(N))
(see Remark 12.4.11). One checks also that

We(J1(V)) = Ta(J,(N)) 2z, Q;

is free of rank two over T ® Q. Indeed this is a variant of Proposition 12.4.14
provided by the canonical isomorphism between /(X (N), Z;) and Ta,(J,(N)).
Next we consider the Galois action on J;(N). Recall that X|(N) ]l.&l.‘-'-. a canon-
ical model over Z[1/N] which we denoted X (N). Its Jacobian J = Jfl{:\'):;,i_.f.x';
is an abelian scheme over Z[1/N], and is a model for J;(.V). We may thus iden-
tify JI(N)[EH] with j(ﬁ)[ﬁ”] and obtain an action of Q on J.(_f‘.'}l[f”j,_ |IL‘I]-I‘.'tE on
Tay(J1(N)) and hence on W(J,(V)). Moreover, the existence ”I_ Illmit‘ilﬁ fU.f ?
and (g) as endomorphisms of 7 shows that the action of Gal (Q/Q) on i} ((Ji(V))
18 compatible with that of T. | . Bt A
We are now ready to define p, as the representation on the K\|Gal(W/Q)]
module |
H-"}(.h (-MJ) XT2Qy A A1
where the map T ® Q, — K is defined by the eigencharacter & Shimura relation.
To see that p) has the desired properties, we use t]u;'_ EM:IHFL\::EI-LIU:-[~|- .
1 . L J. i )
in o IRl no¢ dividing N, then Jg Aas e {lm;u”:‘ln:uliiplirnlmu by (" on
consider the finite flat group scheme J[("]z,, the Lirfu v stale. and the natural
Jz,. If p % ¢, then this finite flat group scheme over Z, 1s etale,
maps .
J[EH](QHII[‘) — j[iul(z;:m) e, L’f[f ]{Fp] 1
P -y - wne "t t 1€
: , o A sms respec
e 1Somorphisms ([SeTa, Lemma 2). [he lbm”-{i”]l“ - cover the 1somor-
: [ Gal (F /F,). Moreove
Gﬂﬁp/ Q,), which factors through that ol Lal{Zp/ =y ¢ the Hecke operators.
Phisms and Galois action are compatible with the action (

action of
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| . relation (10.2.3)
Now recall e vob & {p}r,,.-VE” |
(1.2"5'4) pEr murphiﬂmﬂ of JF,.' Since the Cliclo)-

- endo
cented as a0 identity of . e Ver Frob = p, we obtain t)
iem Frob induces P

-1
equation T, = Frob, + (P)PFrob»

~ 7l tﬁ ). The equation
Y () = THN D Frob? — TpFrob +p(p)

: - Q(TP)PA(HﬂbP) 7 pﬁ(S,,).

. P.l(Fl'nbp)E h e .
oo show that Frob,, and (p)pTob,, - AVE LHE sime

tﬂr;“ﬂ:::dlj:d@u;“ﬂ:ﬁ Eﬁﬂnl.ffact the characteristic polynomial.

. Shid, Theorem 1]), we could let p = kerg

REMARK jant (see
Mdﬂ ti:sugtl:; ZET?NS/FJE(N). Then A is an abelian viu‘-iul.}* {1_u:~iim-{|
::- Q and the fctmn of T on Ji(N) induces one of T/p on A. Let K = Ky and

: : .2 0. Then we find that the dimension of A is [N - Q]
MWT&?A?;:tE;KEvﬁI; of rank two over K®Qq. Thus it can be written as 4
product over the pri;nes )\ of K dividing £. The factors, viewed as K, [Gal (Q/Q)|-

modules, give rise to the representations py. |
; Not;fhat in the case that f has rational coefficients, K equals Q and A is

elliptic curve.

REMARK 12.5.7. We can now say a little more about the hypotheses and proof
for (12.4.10). First assume that £ does not divide 2N, and that p, is irreducible
Let m be the the preimage of A under § : T — O, and let F = T/m. Consider
Jy(N)[m], where [m] denotes the intersection of the kernels of elements of m. An
analysis of the action of F[Gal (Q/Q)] shows that J, (N)[m] is a direct sum of copics
of a model over F for p). (See [BLRil.)

- In short, Mazur's argument in [Maz1, §14] uses Dieudonné theory to compare
Jr,[f] with Sy(T'1(N); F¢). One obtains

dimp S5(T'y(N);F¢) @1 F = ';"dimr J1(N)[m] = dimg S3(I", (N); F¢)[m],

;hichbyfhe g-expansion principle is one (see Proposition 12.4.13). Applying

Rerzc T;mm one deduces thaing(Pl(N);zf)m is free over T,,,, and (12.4.10)

Mﬁﬁm F.forlpx ;;ttam al::he “multiplicity one” result that J,(N)[m] is a modc!

ST SRIARAY RS an integral version of Proposition 12.4.14. namely thal

Hluﬂﬁjgmpﬁf:&eof oy gty position .14, namely

- though technically more difficult, the generalizati . in which

4 disides 2N are based on the el ions to many cases 1 Wik
. { divides 3 are based on the same principle (see [Edi2, 9] and [Wil2, 52 1))

one [De ﬁﬂ*a‘ Eﬁ'mht k> 2:the representations px were constructed by

i ‘ngdwmups in the place of W,. The definition

call it Vi, mirrors that of the sheaves Vi and V. which

€Iy roughly ki N. [ : .
the f-adic Tate o MHE: Vi (respectively, Vy, V) comes fron

Al A -i,(-‘mctmlm de Rham complex, singula!

LT

[
=7

e e
e 'l
. B o j
h LT
H =
{1 = :
-'- -

~
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REMARK 12.5.9. The case of k = 1 i 5% o -
[DeSe] (see also [Ser3, & ¥ S ESTE S b

and Serre o 5 : rd, §3)) construe

tons associated to oc nt e : | | 5

resentations Mpruent eigenforimg oof higher weig] o1 using the
b welght,

case, one actually obtains a continuous, odq irredueih)
: NE repr

o Gfll(Q/’Q} = GL‘:[C}
unramified outside V. The characteristic polynomial of o1 |
N is then X% —=0(T,)X + 0((p)) (cf. {12.5,1{'}1‘;_ ;]'],,:t. ,:I}_{:{ii'mh’jl ff_” P not dividing
can be chosen S0 that the image of p is in GL.(0) (%{:':rt’. uf. pis i%nih: and a basis
family” of px, each being p itself)) C 7 RIS again a tcompatibe

An important feature of the case k = | i the existe
due to Langlands |[Lngl2] and Tunnell Tunn). [f ,;, h i
solvable, then p arises from a cusp form of weight t’:Iu*-

‘iiiﬂ:rﬁ“t

nature, Del;

ren-
However In this
e€sentation

£ of converse results
as above

» and its image is
REMARK 12.5.10. The Ramanujan-Petersson conjecture (see R
b S smarks 5
and 11.5.2) follows from the fact that the roots of (125 PREES B0
k—-1)/2 vage b = 9 1< g 3 3
pt /2 In t?m case k = 2, this fn::n.]l{;-u 5 from the Eichler-Shimura theory o, Aapplying
the Weil conjectures to the abelian variety Ji{N)r_ (see [Shil 'l'h;unnl l" i-:r]j-h
" 1 x| 1 -.11 - : . . & 2 N. ’ : : 8 T i ’
For k > 2, one uses DLllgtlL S u‘:hmnulugu:n! version ol the Weil conjectures {%J
T — . - W 7 . = S .{l
[DE]L §5|) and for k = 1, one uses that p has finite image, [Ser3. 45

) i
2) have absolute valye

From now on, let us assume that f is a newform (see Remark 12.5.3)

Let p be a prime not dividing N and consider the the Tt'h|['i{‘tli’;[|-{].f oy to a
decomposition group D, meaning the image of an embedding as in H‘i’.:’:.:i}f This
restriction is completely determined by py(Frob ), whose characteristic polynomial
is determined by the eigenvalues of S, and T,,. We may view this relationship as
an equality of local factors of L-functions. The local factor at p of the L-function
attached to the representation p, 1s defined as

(12,5'5) det(f — pr(Frob,)p~7)

(see [Del3, §9]), and this is the same as the local factor at p of L(f,s). Moreover in
the case k = 2, this is related to the L-function of the abelian variety A in Remark
12.5.6, see [Shil, §7.5].

REMARK 12.5.11. Note that the charactenstic polynomial of pr(Frob,
determines the semisimplification of py|p,. In the case & = 1, thv.rv:at I'.Il_“ll%l.'rll B
semisimple as its image is finite. In the case k = 2, the ['L'r_iII'Iif_‘liull 15 :;nfnn:«uupiv
because this is known, by work of Tate (see [Mill, Theorem 5.1]), to huhi. i },’,L‘Ih:"['&ll
for the representation of Gal (FJ;/F,;) on the f-adic Tate module of an Fih{vlmxll x;n;n}
over F,,. It is not known whether the representations pa|p, are semisimple for & > =

(where p is a prime not dividing N{).

-1

) only

e to f. Recall that each
. provided p does not

The representation prlD, 18 thus re-

lationship that one also :ivsml:u'-:f
(See |Cara, §0.5], (PShl]

expressed by

Let 7 be the automorphic representation {'urru.a;;:nluln

local factor m, is determined by the eigenvalues of T, and Oy
divide the conductor N (see Example 11.2.9).
l-?:&d to the representation . It is via such a re "
the r .ions . at ramified primes p 7 © =
epresentations palp, at ramified | ) This relationship is
and the discussion at the end of §4 of [Lngll].) 1= —
the local Langlﬂnds curreﬁpmulvncu: the F'I'“U[ of th {Mhl- s mrre*:-']mmlmu‘v 1S
dence was completed by Kutzko, [Kutz| The local Lane '”it'h(‘i (Q,) and two-
2 s . ns of GLaikp
a bl.lﬂﬂtlﬂn between irreducible, admissible rt Weil-Deligne group at
dimensional F-semisimple complex represent

L*”[rt'ﬁl]ﬂn'

»presental 10
at1ons of the



it Weil-Deligne group
definitions of tI}e _
(See [’Ihtﬁ?] and [DOlsn §8] fm[:(h:aﬂ {or further discussion of the local L.

meplidtj'; mlx;?ﬁ:};fweﬂmﬁ““ of the Weil-Deligne group is define|
lands wrmpmdm J iate a continuous representﬂtlﬂﬂ

Gal (Q,/Qp) GL2(K)- o
descri lands correspondence by saying thi
?ﬁﬂt]}i;:::ﬁrzﬂfnfhe Galﬂiﬂ I‘Eprﬂﬁﬂnl'.ut.inn lu‘.*i:u: as in
it respects ¢ factors, ' iy
1(fi2 5.5) (buf ﬁricted to the coinvariants under inertia)

OnNS omorphic rer-

: o5 of conventions for the mil'r:u.mup D

REMARK 12.5.12. With :uur Chrzﬁatinns above, we are implicitly choosing

resentations in §11 m;d ?};‘Uﬁ rﬁl},anglaﬂds correspondence than usually used iy
different conventions 10T local

the literature.

ARK 12.5.13. The analogue
Rm:if GL, is provided by local class field theory.

rred ' ‘ Is via class-
' _. 1o, admissible representation of GL2(Q,) corresponds Vi ,
terwoftmw- umziehewruﬂntﬁt 01; the corresponding Galois representation. i

is chﬂrmt:ﬂ: of Q, with values in K™, we will write x* for the character
X is a

D, 2 Gal (Q,/Qp) — K2 corresponding to X via local class field theory.
P —

Given a newform f, a rational prime p and a prime A of A not dividing p, the
ocal L l ' o the factor m, of the automorphic
Jocal Langlands correspondence aﬁoclat.&i (via ?
representation) a continuous representation

Gal (@, /Qp) — GLa(K):

Work of Deligne, Langlands [Lngll, §7] and Carayol [Cara] establishes that this
representation is isomorphic to the F-semisimplification of pi|p,. The result,

(Cara, Théoréme (A)], has the following corollary.

‘THEOREM 12.5.14. For each prime A\ not dividing p,

o the Artin conductor of py|p, is the power of p dividing N;
e the Euler factor at p of L(f,s) coincides with

L(pﬁlﬂra 3)'

Thoﬁmt assertion follows from the fact that the local Langlands correspondence

respects conductors, the second from its compatibility with the formation of L-
- functions. (A similar statement holds for e-factors.)

AR WBMM the meaning of the Deligne-Langlands-Carayol theorem in spe-

of the local Langlands correspondence in the
Moreover, the central charac-

. Rt F o RO
- ENIue ™
_1| el %, _'--..'I . 2] e
;_' - X i'_:-i_'-‘ o
w : -

alee o
- Ir.‘ B F I
'4' = »

.-

& .._'l.iu--- :(Pll |”21ﬁ2l |1ﬂ), then the semisimplification
hic to i’ ® g (extending scalars if necessary).

-
4 TR ‘
! b e

L e o R

s
<

..

3. l“" - i
5 M F-- i

(® " 7 18 the special representation sp(x| |'/2, x| |~'/2), then py

B B -

R LR el 8
o }

i = -

i
] » Bl e

L - -

- q

. -

‘ a ]

5 =
b

Iesenta

v | o [ Dy is 150-
ﬂhﬁ'ﬁ 0 can be characterized up to isomorphism as the

R I
[ = = :4--_ L _;“1-_ &P
- [ o K 5 : - ¥
I T e = . y 4
. ] ¥ B : '] . N B b .l |
" = i
= | 3
! VR , } Lo 0 1 .
T [T i L o =3 ¥ b v 1EN y
| yinjpma di \Leal =) i _a{::rr_ N
., N g
¥ i ' Pl ik er | £
[ lI . -.'.'._‘-.11 | LY
'..' - , o ;"

i ) l. Wﬁlm remark that ﬂJnlD,, is irreducible.
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Note that if p does not divide N, the descri

of the fact that the representation i un
teristic polynomial (12.5.2).

Now we examine the situation when k = 2 and 1), R
Pbut not p” (see [Cﬂsll) .‘w“ have seen then that there are tx;r: tr\,'{;f.f 1:; [111""“.;"}?1*’ oy
for mp: We give an indication of the proof in each case that the rt:IET{:{.} el
is a8 described by the local Langlands correspondence. e

If the central character of 7 is unramified at p, then 7. =4 (] 11/2 )
for some unrun'liﬁﬂl’l character x of finite order. One t_':rmplh;-.nl ‘1\1. lll illl i
of Deligne-Rapoport and Raynaud discussed in 4103, 1, Ii?trlir!uili}r} IT‘] I::-"Fl‘?ﬂ.llls-‘.
variety A of Remark lﬂrjb must have multiplicative Ti"’“li'lin-ll :ﬂljl IL dilt 15
subquotient Ef Ay /A2 in the notation of Theorem 1031 Ay analysis of Hull.»iui
tion of Gal (F,/Fp) on the character group of the torus T in (10.3.1) shows t
Frob, = P(p)_lr‘r}r QL T(F,). Applying general results about abelian 1‘.51;"11*1&5;; w;tlli
multiplicative reduction ([Rayl] or [Mumz2}). one deduces that 1he uwurismhlﬂ un-
der inertia at p of Ta((A) @z, Qe viewed as 4 Y »"Jr.{-;ni'{Q].-fQ;:J-!-Hmthl]l:. aAre
free of rank one over Ky, and that Frob, acts via pf((p)- ey (':‘:rnbmwll it
the knowledge of the determinant and the formula O(T;) = H'f-i'jj_-f!, it follows that
palp, has the desired form.

On the other hand, suppose that the central character is ramified at p. Then
T, = ‘ﬂ'(ﬂll |1f9”“21 [UE) with g, unramified and ;. of conductor p. In this case,
the abelian variety A is a subquotient of J,(Np)/A, and acquires good reduction
over QP(CF) 0110 (1{3(111{:{35 fI'f‘:uIll this that [;J_\ }|Jr;: 1s a sum of two characters, each
of conductor dividing p. One knows also that the determinant is as predicted, so it
suffices to identify one of these characters as the unramified character uf. This was
carried out using the methods described by Langlands in [Lngll].

I'Jliﬁl] ( ' T
f ﬂ-}'-!flp 1S Just

: A il I.'l"_*fr_} a
ramified and thy rmy

P\ Froh p) has

1ities

ation py |y,
¥

)

elian

REMARK 12.5.15. The restriction of py to a decomposition group Dy 1s more
difficult to describe. If k = 2 and { does not divide N, then py|p, arises from
an f-divisible group over Z;. This follows from the fact that 71 (N)q has good
reduction at ¢, and hence its (-divisible group extends to one over Z;,. e

For arbitrary k and N, if 6(7;) is a unit mod A, then pa|p, is “ordinary” in th
sense that it is of the form |

Xl 2
U X2

where y, is unramified (see [Will, Theorem '3.‘31}. Moreover \»
€ divides N, and is the unit root of the polynomial

X2 -0(T )X + {0(S¢)

(Frob ) 18 g(T;) if

if £ does not divide N.

13. Shimurﬂ—Taniyama-Weil Conjecture

PRIMARY REFERENCES: 191
[SDBi]: [Maz2], [Kna2, Chapter X111] and [W1 - ylar if there is & Bow
Given an elliptic curve E over Q, we say that it 1s modt
Ti ¥ . ..,-'1_ i ‘__-.\r.
tonstant map Xy(N)q — £ for some positive mltﬁi.,tl"
The Shimura-Taniyama-Weil conjecture asserts
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ed over Q s modular.

Every elliptic curve £ defin
[Diam], this is now know,

and Taylor [WilZ], [TaWi], . ,
for a large class of elliptic curves, including all those with iﬂﬂl}f:‘:tilhl[‘f reduction
at the primes 3 and 5. As their methods andq resul?,ﬁ are discussed {!l_:-:uwl.mr{. i
this volume, we con ith a discussion of a number ol equivalent

isting them in Theorem 13.0.5, we recall iy
4 results, some of them discussed earlier

ConJECTURE 13.0-1.
Through work of Wiles

REMARK 13.0.2. Let E be an elliptic curve defined over Q, and let Ny denote

its conductor. For each prime p let Ap =P + 1 — By where B, is the number of
projective solutions OVer F, of the minimal Weierstrass equation for E. Let £(p) = |
or 0 . to whether or not E has good reduction at p. The Hasse-Weil .-

function L(E, s) is defined by the Euler product [Sil2, §11.10]
[T -4~ + ep' )
p
The local factor at p, Lp(E, s) can be described as follows:
e if E has good reduction at p, then B, = #& (F,) where £ is the Néron modc!
of E over Z, p does not divide Ng and L,(E,s) = (1 - App~* +p'—) 1
o if E has split (respectively, non-split) multiplicative reduction at p, then
o N and Ly(E, s) = (1 - p~*)~" (respectively, (1+77*) ")
o if B has additive reduction at p, then p*|Ng and Ly(E,s) = 1.
For primes £ ;‘-'p, the local factor L,(E, s) coincides with L,(pE,e,s) where py; i 1s
tl_le'r?mmntatmu of Gal (Q/Q) on Ta;(E) ®z, Qe In particular, for primes p not
dividing Ng¢, pe ¢(Frob ) has characteristic polynomial |

X?—A,X +p.

mig;ni?m 13.‘0*3. Given a newform f of weight 2, level N, trivial character and
gty ﬁlq-h_exganﬂlon, we have seen hnw the ?heur}r of Eichler and Shimura associates |
i m; bf;‘ curve ;:der 93 This EE the elliptic curve denoted A in Remark 12.5.6,
natural maps 6 a quotient of Jy(N)q, as well as of Ji1(N)q, via the |
JU(N)Q =2 Jl(N) — A
Writing py ¢ for the re ' 5 |
presentation d i
£ by construction. Moreover byrihen[‘;etgl pa in (12.5.1), we have py ¢ = pp ¢ for all
e Deligne-Langlands-Carayol Theorem 12.5.14,

we have L(s, E) = L(s, f) and N = N.

REMARK 13.0.4. -
morpbim © Xg(mqsip?f;e?em B*mndulm- elliptic curve with a nonconstant
primes p not dividing N. Let w be Pa00) 7 O. Then E has good reduction al
generators of HO(E, 1) Pl alNérun differential for E, i.e., one of the two

£ where £ is the Néron model of E over Z. Its pullback

% p"w defines an element h of ¢
Sa(To(N ))- One can deduce from the Eichler-Shimura

r .

ralatinet Fl hiﬂﬂT(N} 1o a,
relation that with eigenvalues Ap € Z of T), satisfying A\, = 4,

@:@ﬂlpmﬁbdxmdmg N. (See [SDBI, §3).)

.-‘r'j*- |

!

~Amogwiar. conditions for an elliptic curve over Q to be
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-Constant |
Lolomor

Xi(N) — B(C) P mapping

ere exist ositive inteqgers N
R There p wegers N and D, and o TWND)

with coefficients in a number field K such that “Cigenform f in S (T(V))
ALY

PE§ I:r’i’Q, .hr;.,' ca r‘if.,:‘n.
for some prime A of K.
L. There erist positive integers N and D and o TWND)
such that -C1genform f in S_'{rl{-"ur)}
Ly(s,f) = Ly(s, E),
for all primes p not dividing ND.
X, There exists a surjective morphism

Xy (NE;)Q s B

of curves over Q.
J. There ezists a surjective homomorphism

To(Nr)q — E

of abelian varieties over Q.
R; There emists a newform f in So(I'y(Ng);Z) such thal

PE i = ﬂf{

for all primes €.
L, There exists a newform f in So(Lg(Ng);Z) such that

L{s; [} =.Lis;E].

In eac 4 | . _
h case, it is clear that the strong assertion (s) implies the corresponding

weaklfassertinn (w). We discuss the remaining equivalences,
mﬂl’PhJ]:;l 1:;135&;0;'15, then Albanea;fif functoriality (see §10.1)
i () obians. Conversely, if J; holds, one vlmmfvs a .hi pais ne
ot 0 g — Ju(N_)q E.’llllil checks tl.mt the composite with Jo(N ).Q - f 15
ant and hence surjective. The equivalence between J.. and X 18 similar.
; If L holds, then for p not dividing Np(, the characteristic polynomials of the
fl;i;sinufti‘mbp coincide uncpler PE ¢ and pys¢ (HI_L {1333] and Remark lléi-llq.‘l_].
follow g the Cebotarev density theorem and continuity ol the repru;*::mftau_u_rrx% It
Th s that the characteristic polynomials coincide for all elements of Gal (Q/Q).
‘m:;:esRﬂ ;:H_GWEE fI'.Dm the irreducibility of the I'l.‘]]l't‘:lt‘lﬂElth}ll.:-‘r.
Briine )7 18 similar. Moreover the converse 11_01115, and we m
e with “all primes A" in the statement of R
By Remark 13.0.4, X, provides a TNV D) _eigenform f o
: ReplﬂCiﬂg h with the associated newform f and applymg the r":ﬁ_”hhl.:]t‘
L(E e, Langlands and Carayol (see Remark 13.0.3), We¢ find _lhf‘t H“’i 1Imtp1 ::
' '.3) = L(fsﬂ)- Moreover [ has trivial characterl, conductol N and 1nteg

urier coefficients, so we conclude that L. holds.

defines a surjective

wepoint to define

The proofl that L.

ay replace “some

for which L. is satis-



A\ ’W thﬁﬂrﬂm [Fﬂlt, 55, (.‘H['{l”;”-}r-
m‘q associated to the newformn, I by

.I.I:ﬂpueﬂ Ly (BG‘B also [Maz2], especially

)tf 30 We assume that [ (IUE:?H Mok hati
. (1t the map Xi(N) — E(C) is algebrie
t h_|.']i; F. We thus obtain a surjective iy,

thm A is the abelian variety associat (|

ot

&k 12.5.6) to some TM-eigenform f =3 a,.q" iy
lmmmuma that f is a newform. We now

) I‘, mﬁiﬂ!ﬁ ‘ Orf Gﬂl (a/Q) OI1 Tﬂf(fl) ﬁ:'?zr Q;

. ‘14?* iﬂdﬁxed b}r pﬂirﬂ (A, L) “"IIUI'U A is a
. .: . H e aibaddi KA s af' USng thﬁt E does not

- :—F Il,._.‘ "1_ . =

R : ”)%f ;rmﬁctiom to Gal (FXF) of Pl 1:;3]{3’ Q“.
‘1 A and L). One next shows that the

isomorphic, but with py \ replaced by a twist by
L

1 ,}?‘f? btk ﬁ: Thus for all but finitely many

I."-"-- L ]
*.

o™ +X()e(p)p )
he cor! *.‘r Dirichlet character (which in fact

1 the fact that 3 x(n)a,g" is a TV -
nd D; see [Shil, Proposition 3.64).

T a5
" 4

TR L
v lll g o
"

5 el
.'-:I. 5 3

A
=c— 'i_:i =
7y, ¢ G 1

Ny -
- '--." ‘.l 4- i L
AAWyo LLUL
QT B | PRy T
..-‘-'-ﬁr b |
N’ anc

¥
rr
i =
e k
i

-
[
v
.

tion, then Ly is known by work of

I..' _ r ri-.':;;...l. 1))

a4
g

o MODULAR FORMS AND MODULAR cURyEs
43 X -

i References
CONFERENCE PROCEEDINGS

i ijk (ed.), Modular forms of one variable _
i 1 wW. Kuijk (E‘ : ne variable [, Lecture \ _ f
l.m ] Verlag, Berlin, Heidelbers; and New Yors 1074 ure Notes in Math, 320, Springer-

!ﬁﬂta P. Deligne, W. Kuvk (eds.), Modular forms af one variahle JJ 1 e ;

& © 349, Springurﬂkwlug. Berlin, Heidelberg and New e + Lecture Notes in Math,

'ljhﬂ W. Kuyk, J.-F. Serre (eds.), Modular forms of one vartable [, Leet : :

¥ 380, Springur*\:’urrlng. B{.'liliu. Heidelberg and New York, 1973 RS R

Iﬁnt'd B. Bif'[?h, W. I"’».'ll}'k {L‘t].‘-‘-.j, Modular fnr'm_a. “JF ane vartable [V

| 476, Springur-\ﬁ?rlug. Berlin, Heidelberg and Now York, I'Ei';':“;ki

[Bol'lﬂll J.-P. Serre, D. Zagier (eds.), Modular functions of one variable
Math. 601, Springer-Verlag, Berling Heidelberg and New York, 1977

[Bonn2] J.-P. Serre, D. *f:i'lj.',n_?r !{Hfﬁ']' "."!”f“””r JI“"””””E-" of one varable, Vi Lecture Notes in
Math. 627, Springer-Verlag, Berlin, Heidelbery and New York 1977

[EOU-“ A. Borel, G. Mostow (eds. ), .-'H'Ir,rrhrrnr qroups and descontinuons
Pure Math. 9, Amer. NMath. Soc., Providence, 1966,

[GDI'” A. Bﬂr‘“l' W. Casselman .ff"'iﬁ""' Automorphie forms, representations and L-fun
Proc. Symp. Pure Math. 33, Part 1, Amer. Math, Soc Providence, 1979

[Cﬂfg: A1 B{)HII, ‘ﬂrr. CEL‘;HL':IHHHI -fL'li'-L.}l. .'lm’ﬂmrn‘ph[-' fr:?'rrh, re e senifaltons 17141 L'J’.ilnlr_'a‘mn_-:r

| Proc. Symp. Pure Math. 33, Part 2, Amer. Math Soc, Providence, 1979

[GOSi G. Cornell and J. ”.'Hih‘tri'llliul (eds.), Arthinetie quontetry, H[H’lll'.it'l’-‘lfrrlng;_ Berlin,
Heidelberg and New York, 19806,

{Dlll'h] A. Frohlich (ed.), Algebraic mumber fields (L-funetions and Galows properties), Academic
Press, New York, 1977,

[Sag't] U. Jannsen, et al {(eds.), Motives, Proc. Symp. Pure Math, 55, Amer. Math. Soc.. Prov-
idence, 1994.

Leeture Notes i Math.

V, Lecture NOtes in

qroups, Proc Symp.

clions,

BOOKS AND ARTICLES

M. Artin, Néron models, Chapter VI of [CoSil, pp. 213 230

A. O. L. Atkin and J. Lehner, Heeke operators on UG, Math, Ann. 185 (1970), 134+
160. ‘ |
A. O. L. Atkin and W. W. Li, Tuwists of newforms and pscudo-cigenvalues of -
operators, Inv. Math. 48 (1978}, 221 243

B. Birch, Some calculations of modular relations, in [Antl], pp. 175130,

A. Borel, Introduction to automorphie foris. im ‘Boul|. pp. 119-210.

A. Borel and H. Jacquet, Auwtomorphee formes and automorphic representations,
Corl], pp. 189-202. ‘ _ |

iS- BDJEhF:p“’. Liitkebohmert and M. Ravnaud, Neron m'mf{.'f.ﬂ. Frpehnisse der Math,
3.F‘UIEE 21, Springur-‘h’m'lng, 1.3'..'I'1i11, ”t.‘il.li.‘”ll.'r!—i atud New Yurk, Lysh wa-dimenstonal
N. Boston, H. Lenstra, K. Ribet, Quoticnts af group rigs fl.T'ii..‘*.“f'_‘Jl;&“”f two-dimenston

representations, C. R. Acad. Sci. Paris, Serie | 312 (1991), 323-325. nlaores de Hilbert,
H. Carayol, Sur les représentations £-udigues @ssocie STt Rl

Ann. Sci. E. N. S. 19 (19806), 109168,

P_- Cartier, Representations of p-adic groups:
W. Casselman, On representations of GLz and th
[Ant2], pp. 107-141.

) o W, Cﬂ.ﬂselma.n, On some results of

-

¢s aur forme

A survey, in [Corl], pp. 111 156

arithmetic of madular curves, 10

Atkin and Lehner, \ath. Ann. 201 (1973}, 3Ul J13.
[Cas3] W. Casselman, GL,,, in [Durh|, pp. G634 TOL.
Dell P Deligne, Formes modulaires vt représentations Hf
- Lecture Notes in Math. 179, Springer-Verlag, Berlin,
. PP 139172, -
& P. Deligne, Travaux de¢ Shunura, Semin
| . 4, Springer-Verlag, Berlin, Heidelberg and
#F P Deligne, Les constantes locales des équations o
' 1;';:I 501_595' I f rrulaire .["tf'-:lp;r‘tf.ﬂ J [ate), I [Al:l":]"iﬂlj' 53 -73.
s elliptiques: for nao4a (19, 273-301.
f,f‘fi;;'.‘fm’.ﬂ T Weil. 1, Publ. Math, IHES 43 (1970

Bourbakl, no. 335,
| New York, 1971,

digues, Séminalre
Heidelberg and

3]
..‘.
3

N0, Lecture Notes In NMath.

123-165. |
tions L, in [Ant2),

aire Bourbaki, no
New York, 1971, pp-
fonctionnt les des fonc



F. DIAMOND AND J. IM

t, Les schémas de m
poids 1, Ann. Sci. Ec. Norm. Sup. 7 (17,

bmuﬂhﬁﬂ Kurve vom Ge ﬁhuhh Iins |} i
(19531 8504, (1955), 13-52, (1956), 37-76, (1157) »,

mlnwd deform rings and Hecke rings, prepri int.
.lS Doi, M Gha&: On am:iw;@umfm between cusp forms on L'o(N), in [Bounz| |,

: -.'*1"105 Russian) 94 (1974), 594627 (1,
Drinfeld, modules, Math. Sbornik ( i
E;Ehm Mltfmvsgﬂ. Shornik 28, No. 4 (1974), 561~ -592,

‘algébre de Hecke sur les groupes de composantes es Jicab;
B Ediih’ww LE ﬂ-ﬂ'::mﬁ dcl ll,!!u@mt ﬂmmtﬂﬂ'" ﬁnténsque 196197 “U'H;l 1H9-170

B Edixhoven, The weight in Serre's conjectures on modular forms, luv. Math 109

gm]r 563-594 Formen und die Riemannsche Vermutung fie

quadratische
mn.mtquﬂwn,m Math. 5 (1954), 355-366.
G. Faltings, Endlichkeitssdtze fir abelsche Varietdten tiber Zahlkorpern, Inv. Ml 774

(1983, 349-366. {w& translation: Chapter 1 of [CoSi], pp. 9-27.)

P . and O.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Nt}

3.Folge 22, Springer-Verlag, Berliu. Heidelberg and New York, 1990.

ath] D. M Decomnm ofrepmuntatmm into tensor pmduc!.s, i [CDI‘I] pp. 179 183
S. Gelbart, Amrpﬁwfm on adele groups, Ann. Math. Stud. 83, Princeton Upiy

- Press, Princeton, 1975.

- R ' '_ ﬂ.ﬂdbutmdl-[. Jacquet, Forms of GLy from the analytic point of view, in [Corl], ),

. ’Lw M. Graev and 1. Piatetski-Shapiro, Representation theory and automorph

N ', ﬁwnd&nf’hﬂaddphh, 1969.

’B »H«ﬁm A mmﬁﬂ‘ Galois representations associated to modular forms
Mp, Dﬂh Math. J. 61 (1990), 445-517.

, Fondements de la géométrie algébrique, Séminaire Bourbaki, no. 232
e - mdﬂ M‘ﬂc algébrique 7, I, Lecture Notes in Math. 28
Verlag, Berlir ﬂdddhuzand New York, 1972.

of semisimple Lie groups, I, Trans. AMS 75 (1053).

* geometry, Graduate Texts in Math. 52, Springer-Verlag, Berlin,
Yatk. 1977. g e

Wm Vandenhoeck and Ruprecht, Gottingen, 1959.

Rethen héherer Stufe und thre Anwendung auf
Abh. Math. Sem. Hamburg 5 (1927), 199 224. (No

m*‘wﬂhﬁhﬂﬂ Rethen m;t Eulerscher Produk-
m{lﬁﬂf} 1-28, 316-351. (No. 35,36 in [Hecke|, pp.

odules de courbes elliptiques, i Aty

[Koikel M. Koike, Congruences between cusp froms and hinear repr

MODULAR FOIMMS AND MODuUy ATt
ot CURY ES

D. Husemoller, Elliptic curves, Ciradunte g o
Heidelberg and New York, 1956, T Math,
Il-ll.l.‘K-ll M. N. Huxley, Scattering matrees Jor CONYTUeTLer
Rankin (ed.), John Wiley and Sons, New York,
"‘ul J.-1. Igusa, Fibre systems of Jacobian VRIrTe e
Amer. J. Math. 81, 45317 (1959)

kerwan mode!
9] J.-L. Igusa, Kronee et of fields of elliptie r
[l!u 81, 661~ -BT7T (1959). A Pltc modutar IIHIE'EIHFH.
[15“3 J.-1. Igusa, On the algebrawe the
{19(53], 96G-106.
[IM] Y. “,"lr“' On modular curves aver finty fields iy Proceed
loguium on discrete subgroups of [y yrou
pp. 161~ 202.
{JaLl] H. Jacquet, R. P. Langlands Automorphie formns on GL,
S or-Verl Berlin, Heidelt <2+ Ltcture Noges i A
pringer-Verlag, Berling Heidelberg and Now York, 1970 Math, 114,
{Kltﬂll N. Katz, p- adic properties of modular scheme and modulgr form
Katz2] N. Katz, p-adic interpolation of real analytic Esenstein e, by, in JAnt3) Pp. 70-189
| 459-5T71. “ries, Ann. Math. 104 (197g)
K_,M;] N. Katz and B. Mazur, Arithmetic modul of elliptre ey
' Princeton Univ. Press, Princeton, 1085

Knal] A. W. Knapp, Hepresentations of GLo(R) and C LY i Corl],

[Khﬂ A. W. Knapp, Ellptic curves, Princeton Math Notes 40, Prinee

ton, 1993.

(Kna3 A. W. Knapp, The local Langlands correspondene
Part 2, pp. 393-410.

[Kt}hl] N. Koblitz, Intreduction to clhiptic curves and modular forms,

. : :  Graduate Texts in Math.
97, Springer-Verlag, Berlin, Heidelberg and New York, 1981

u:f.if,rnm;n in A T
E [
o il cilular fy, ns,

s, HI: F

L.

i &
T systerms of elliptic CUTVE S

Amer. ) Math.

ory of ethptie modilgr functions

Math. Soc. Japan 20

WL
15 of th tmternational col-

Ps and appheationy g modult, Boml 5
Hibay, 14973

Fees, Ann, Math Studies 108,

[JI:I .""uT [”.
tan Univ, Press, Prince-

: HH. ,"lri hlmr-dfur: Cilse, 11 'Suati

sentations of the Galows

group, Nagoya Math. J., 64 (1976}, 63 55
[K“bﬂl T. Kubota, The elementary theory of Ersenstem series. John Wiley and Sans, New York,
1973.
[Kudlu] S. Kudla, The local Langlands correspondence: the non- Archumedean case. in Seat!,
Part 2, pp. 365-391. |
fl'_(ut:] P. Kutzko, The local Langlands conjecture for GL(2) of a focal field, Ann. Math, 112
(1980), 381-412.
S. Lang, Algebraic number theory, Addison-Wesley, Reading, MA, 1970,

MUIIlfDI‘d, Abelian varieties, Oxford Univ

S. Lang, Introduction to modular forms, Grundl Math. Wiss. 222, Springer-Verlag,
Berlin, Heidelberg and New York, 1970,

R. P. Langlands, Modular forms and (-adic representations, in [Ant2], pp. 361 500,
R. P. Langlands, Base change for GL(2), Ann Math. Stud. 96, Princeton Univ. Press,
Princeton, 1980.

3. Ling, J. Qesterlé, The Shimura subgroup of Jy{M
203.

H. Maass, Uber eine neue Art von nicht analytis
die Bestimmung von Dirichlet Rethen durch funktionale
(1949), 141-183. g a7
B_ Miﬂlll‘, Mudufnr CUTVES {”“! the Eisenstetn iurlrulf, l’lll]l ."'-E-"-lll. ]HL.,"" 47 {1.]“].
33-186.

B. Mazur, Number theory as gadfly,
B. Mazur and A. Wiles, Class ficlds of abehan cxtenstons
179-330.

J.S. Milne, Points on Shimura varicties i
J.S. Milne, Abt.hun varieties, Chapter V of [CoSi
Pl J.S. Milne, Abelian varietic s, Chapter VI ofi[SosY), R 1“1' ::u
Syl T. Miyake, On automorphic forms on GLz2 and Hecke operat

~ 174-189. org and New York, 1989

Mivol ™ 14 p s rlin, Hedelb
SR T- MIME.. Modular fﬂﬁﬂ-ﬁu Springer =L, Bii:iil.‘:wq Oxford, 1971,

CAstérisque 196-197 (1991, g

hen automorphen Funktionen und
Glerchungen, Matho Ann. 121

! 4 593010,
Math. Monthly 98 (14491), o : |
e of Q, lnv. Math, 76 (1984),

od p, in [Cor2], pp. 165- 184

I, pp- 105 1 50).

12 )
Ann. Math. 94 (1% 1),



of degeneruty degeneruting abelian varieties oy, ,
appendix to [FaChl].)

nes sur les corps locanr el ogtnby,,,

i ”H:;“', f,

s mm' (Also
A f&‘ - des variétés

'rfj“ w@mm)‘ &Iﬁ;ﬂw W. A. Benjamin, New York, |ug

lar forms and Of sdular curves, in [Antﬂ] Pp. 317360

one theorems, in [Corl], pp. 200-212.

n;t M"‘" nytdc. in Actes, Congr, Int. Maty, i

r ;‘J
'

du foncteur de Picard, Publ. Math. LH.E.S. 38 (107, .

= o

mmmm et opérateurs de Hecke, Astiric.. 1o,
miﬂ eigenforms with Nebentypus, i, [Bony.

i and congruences between modular forms, [ Mty
1, -l m mufﬂrfﬂWH, in Proe. Int. C'!'.H'tjjl". Aath

R

ons of Gal (Q/Q) arising from moduiar forms, |

fis
| forms, the Ramanujan conjecture and the Juacquct. Lengleasii,
X m. A. Lubotzky, Discrete groups, expanding qraphs und 1,

m 125 Birkhauser, Boston, 1994, pp. 135 170,

wﬁ, Chapter IV of [CoSi], pp. 79-101.

ﬂiﬂmwndcm conjecture, in [Boul], pp. 255

% .Ehum oo);mnologv Atkin-Swinnerton- Dye
ﬂ .

e ATy Mﬁm Grundl. Math. Wiss. 203, Springer-\erly,
Ne ;_'N’cﬂﬁ 1974, .
ar 1etic .-ﬁ!'ldlutﬂ Texts in Math. 7, Springer-Ver

2]

IR T

'111."'1 }il'rll]l

Mhuu Séminaire Bourbaki, no. 116, Lo,
Hﬁrliu Heidelberg and New Yﬂrk 1973, pp. 310

t one and Galois representations, [Durh], pp

idc d@féz de Gal (ﬁfQJ, Duke Natly )

won o,
o “:: B

, n varieties, Ann. Math. 88 (1968), 192 517,
5, Jorma EW wp-dfwisibie groups, Chapter 111 of [CoSi|.

M’Y of automorphic functions, Iwanan
13?1 |
l

‘as factors of the jacobians of
, 199-208,

e ld "'!4 Hecke operators, Ann. Nath 95

i-

'.-" r' "'
|

P L — I ' B
* L '- --

ﬂf# Wrﬁlﬂctmn field, J. Math.

MODULAR FORMS AND Mopy LAR CURyvpg

133
J. H. Silverman, The artthriety of elliptic UPtesy pre = o
ﬂprlnsef'v‘“l““' Berlin, Heidelberg ang N, W York, 14sg; Catate Texes gy, Math. 104
. 4 .
T H, Silverman, Advanced topies 1, Hie ””””“”“ - :
- _ M‘th 151. bi"illh:ll‘ 1'I|.-"|,-|,'|I'.j. F34: I‘|Il[ 1 1;1. H“’l’i! Al e N {: ‘LPI ey, {;r.'i:lu;u_., FI-I':I:'I'. oy
LR N ijr R

H P. F. Swinnerton-Dyer, Oy #. :m’:r

WEEL nodular forms, in [Antd], pp. 1 57
w1 H. P. F. Swinnerton-Dyer, 13, Hm;ll. Ellipty

pp. 2-32.

J, Tate, Fourter analysts i number fiefdy anel ek,

theory, JW.S. Casscls and A. Frohliel, {Hi-. . -

J. Tate, Number-theoretic background, |

R. Taylor and A. Wiles, fing theorety, [

141 (1995), 553-572.

J. Tunnell, Artin's conjecture for

5 (1981), 173-175

N. Wallach, Representations of reductiee 1,

N. Wa]la.cl1:_ Real reductive groups, [, Acud

A. Weil, Uber die Bestinvnung [Direhl

Math. Ann. 168 (19G7), 119156,

A. Wiles, On ordinary A-adic representalions associgted —

94 (1988), 520-573.

A. Wiles, Modular elliptic curves and Fermar's |

443-551.

Uetices fur TR of

I
Ml oy, funic tign. it

S CUMTe s
L IAnty),

el furietyy, i Ay,
.1!11 e |

(.;-UT"I Py K

I‘I Pl .\II l’- ‘I‘J[r:-\. l Ir"
.E+b

Perbics of certay H
. ke ul'r_;f I'.r.'f:'ﬁ "|
_ BoaAnn Matg,
Tepresernitalion, of octasak, !

il tape . Bl ANS (N L

GToutps, 1n f_(jur] 1] E I Y

N York IRETS
e tere ), Fron b

e Pross

‘tsrhier

Ktionalylere fg nyen,

dar forms, L Math,

st Theorem, Aun Math 149 18495

BP*M M.S., UNIVERSITY OF CAMBRIDGE, ("4 JHRIDGE B2 18h
m&addﬂ:ss fdiamond@pmms.cam.ac.uk

SITED IS G O

MARI‘HENT OF MATHEMATICS, UNIWERSITY OF

mm

ﬁdﬁ-md address: imj@math.toronto.edu

=

-

[N
]

Toronto, TorosTo ONTamio, (Caxana



