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2
The Birch and Swinnerton-Dyer
Conjecture

This chapter is about the conjecture of Birch and Swinnerton-Dyer on the arith-
metic of abelian varieties. We focus primarily on abelian varieties attached to
modular forms.

In the 1960s, Sir Peter Swinnerton-Dyer worked with the EDSAC computer lab
at Cambridge University, and developed an operating system that ran on that
computer (so he told me once). He and Bryan Birch programmed EDSAC to
compute various quantities associated to elliptic curves. They then formulated the
conjectures in this chapter in the case of dimension 1 (see [Bir65, Bir71, SD67]).
Tate formulated the conjectures in a functorial way for abelian varieties of arbitrary
dimension over global fields in [Tat66], and proved that if the conjecture is true for
an abelian variety A, then it is also true for each abelian variety isogenous to A.

Suitably interpreted, the conjectures may by viewed as generalizing the ana-
lytic class number formula, and Bloch and Kato generalized the conjectures to
Grothendieck motives in [BK90].

2.1 The Rank Conjecture

Let A be an abelian variety over a number field K.

Definition 2.1.1 (Mordell-Weil Group). The Mordell-Weil group of A is the
abelian group AK) of all K-rational points on A.

Theorem 2.1.2 (Mordell-Weil). The Mordell-Weil group A(K) of A is finitely
generated.

The proof is nontrivial and combines two ideas. First, one proves the “weak
Mordell-Weil theorem”: for any integer m the quotient A(K)/mA(K) is finite.
This is proved by combining Galois cohomology techniques with standard finiteness
theorems from algebraic number theory. The second idea is to introduce the Néron-
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Tate canonical height h : A(K) → R≥0 and use properties of h to deduce, from
finiteness of A(K)/mA(K), that A(K) itself is finitely generated.

Definition 2.1.3 (Rank). By the structure theorem A(K) ∼= Zr ⊕Gtor, where r
is a nonnegative integer and Gtor is the torsion subgroup of G. The rank of A is r.

Let f ∈ S2(Γ1(N)) be a newform of level N , and let A = Af ⊂ J1(N) be
the corresponding abelian variety. Let f1, . . . , fd denote the Gal(Q/Q)-conjugates
of f , so if f =

∑
anqn, then fi =

∑
σ(an)qn, for some σ ∈ Gal(Q/Q).

Definition 2.1.4 (L-function of A). We define the L-function of A = Af (or
any abelian variety isogenous to A) to be

L(A, s) =
d∏

i=1

L(fi, s).

By Theorem 1.1.4, each L(fi, s) is an entire function on C, so L(A, s) is entire. In
Section 2.4 we will discuss an intrinsic way to define L(A, s) that does not require
that A be attached to a modular form. However, in general we do not know that
L(A, s) is entire.

Conjecture 2.1.5 (Birch and Swinnerton-Dyer). The rank of A(Q) is equal
to ords=1 L(A, s).

One motivation for Conjecture 2.1.5 is the following formal observation. As-
sume for simplicity of notation that dim A = 1. By Theorem 1.1.6, the L-function
L(A, s) = L(f, s) has an Euler product representation

L(A, s) =
∏

p|N

1

1− app−s
·
∏

p-N

1

1− app−s + p · p−2s
,

which is valid for Re(s) sufficiently large. (Note that ε = 1, since A is a modular el-
liptic curve, hence a quotient of X0(N).) There is no loss in considering the product
L∗(A, s) over only the good primes p - N , since ords=1 L(A, s) = ords=1 L∗(A, s)
(because

∏
p|N

1
1−app−s is nonzero at s = 1). We then have formally that

L∗(A, 1) =
∏

p-N

1

1− app−1 + p−1

=
∏

p-N

p

p− ap + 1

=
∏

p-N

p

#A(Fp)

The intuition is that if the rank of A is large, i.e., A(Q) is large, then each group
A(Fp) will also be large since it has many points coming from reducing the ele-
ments of A(Q) modulo p. It seems likely that if the groups #A(Fp) are unusually
large, then L∗(A, 1) = 0, and computational evidence suggests the more precise
Conjecture 2.1.5.

Example 2.1.6. Let A0 be the elliptic curve y2 +y = x3−x2, which has rank 0 and
conductor 11, let A1 be the elliptic curve y2 + y = x3 − x, which has rank 1 and
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conductor 37, let A2 be the elliptic curve y2 + y = x3 + x2 − 2x, which has rank 2
and conductor 389, and finally let A3 be the elliptic curve y2 + y = x3 − 7x + 6,
which has rank 3 and conductor 5077. By an exhaustive search, these are known to
be the smallest-conductor elliptic curves of each rank. Conjecture 2.1.5 is known to
be true for them, the most difficult being A3, which relies on the results of [GZ86].

The following diagram illustrates |#Ai(Fp)| for p < 100, for each of these curves.
The height of the red line (first) above the prime p is |#A0(Fp)|, the green line
(second) gives the value for A1, the blue line (third) for A2, and the black line
(fourth) for A3. The intuition described above suggests that the clumps should
look like triangles, with the first line shorter than the second, the second shorter
than the third, and the third shorter than the fourth—however, this is visibly not
the case. The large Mordell-Weil group over Q does not increase the size of every
E(Fp) as much as we might at first suspect. Nonetheless, the first line is no longer
than the last line for every p except p = 41, 79, 83, 97.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Remark 2.1.7. Suppose that L(A, 1) 6= 0. Then assuming the Riemann hypothesis
for L(A, s) (i.e., that L(A, s) 6= 0 for Re(s) > 1), Goldfeld [Gol82] proved that the
Euler product for L(A, s), formally evaluated at 1, converges but does not converge
to L(A, 1). Instead, it converges (very slowly) to L(A, 1)/

√
2. For further details

and insight into this strange behavior, see [Con03].

Remark 2.1.8. The Clay Math Institute has offered a one million dollar prize for
a proof of Conjecture 2.1.5 for elliptic curves over Q. See [Wil00].

Theorem 2.1.9 (Kolyvagin-Logachev). Suppose f ∈ S2(Γ0(N)) is a newform
such that ords=1 L(f, s) ≤ 1. Then Conjecture 2.1.5 is true for Af .
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Theorem 2.1.10 (Kato). Suppose f ∈ S2(Γ1(N)) and L(f, 1) 6= 0. Then Con-
jecture 2.1.5 is true for Af .
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2.2 Refined Rank Zero Conjecture

Let f ∈ S2(Γ1(N)) be a newform of level N , and let Af ⊂ J1(N) be the corre-
sponding abelian variety.

The following conjecture refines Conjecture 2.1.5 in the case L(A, 1) 6= 0. We
recall some of the notation below, where we give a formula for L(A, 1)/ΩA, which
can be computed up to an vinteger, which we call the Manin index. Note that the
definitions, results, and proofs in this section are all true exactly as stated with
X1(N) replaced by X0(N), which is relevant if one wants to do computations.

Conjecture 2.2.1 (Birch and Swinnerton-Dyer). Suppose L(A, 1) 6= 0. Then

L(A, 1)

ΩA
=

#X(A) ·∏p|N cp

#A(Q)tor ·#A∨(Q)tor
.

By Theorem 2.1.10, the group X(A) is finite, so the right hand side makes sense.
The right hand side is a rational number, so if Conjecture 2.2.1 is true, then the
quotient L(A, 1)/ΩA should also be a rational number. In fact, this is true, as we
will prove below (see Theorem 2.2.11). Below we will discuss aspects of the proof
of rationality in the case that A is an elliptic curve, and at the end of this section
we give a proof of the general case.

In to more easily understanding L(A, 1)/ΩA, it will be easiest to work with
A = A∨

f , where A∨
f is the dual of Af . We view A naturally as a quotient of

J1(N) as follows. Dualizing the map Af ↪→ J1(N) we obtain a surjective map
J1(N) → A∨

f . Passing to the dual doesn’t affect whether or not L(A, 1)/ΩA is
rational, since changing A by an isogeny does not change L(A, 1), and only changes
ΩA by multiplication by a nonzero rational number.

2.2.1 The Number of Real Components

Definition 2.2.2 (Real Components). Let c∞ be the number of connected
components of A(R).

If A is an elliptic curve, then c∞ = 1 or 2, depending on whether the graph of
the affine part of A(R) in the plane R2 is connected. For example, Figure 2.2.1
shows the real points of the elliptic curve defined by y2 = x3−x in the three affine
patches that cover P2. The completed curve has two real components.

In general, there is a simple formula for c∞ in terms of the action of complex
conjugation on H1(A(R),Z), which can be computed using modular symbols. The
formula is

log2(c∞) = dimF2
A(R)[2]− dim(A).

2.2.2 The Manin Index

The map J1(N) → A induces a map J → A on Néron models. Pullback of
differentials defines a map

H0(A,Ω1
A/Z)→ H0(J ,Ω1

J /Z). (2.2.1)

One can show that there is a q-expansion map

H0(J ,Ω1
J /Z)→ Z[[q]] (2.2.2)
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FIGURE 2.2.1. Graphs of real solutions to y
2
z = x

3
− xz

2 on three affine patches

which agrees with the usual q-expansion map after tensoring with C. (For us X1(N)
is the curve that parameterizes pairs (E,µN ↪→ E), so that there is a q-expansion
map with values in Z[[q]].)

Let ϕA be the composition of (2.2.1) with (2.2.2).

Definition 2.2.3 (Manin Index). The Manin index cA of A is the index of
ϕA(H0(A,Ω1

A/Z)) in its saturation. I.e., it is the order of the quotient group

(
Z[[q]]

ϕA(H0(A,Ω1
A/Z))

)

tor

.

Open Problem 2.2.4. Find an algorithm to compute cA.

Manin conjectured that cA = 1 when dim A = 1, and I think cA = 1 in general.

Conjecture 2.2.5 (Agashe, Stein). cA = 1.

This conjecture is false if A is not required to be attached to a newform, even
if Af ⊂ J1(N)new. For example, Adam Joyce, a student of Kevin Buzzard, found
an A ⊂ J1(431) (and also A′ ⊂ J0(431)) whose Manin constant is 2. Here A is
isogenous over Q to a product of two elliptic curves. Also, the Manin index for
J0(33) (viewed as a quotient of J0(33)) is divisible by 3, because there is a cusp
form in S2(Γ0(33)) that has integer Fourier expansion at ∞, but not at one of the
other cusps.

Theorem 2.2.6. If f ∈ S2(Γ0(N)) then the Manin index c of A∨
f can only divis-

ible by 2 or primes whose square divides N . Moreover, if 4 - N , then ord2(c) ≤
dim(Af ).

The proof involves applying nontrivial theorems of Raynaud about exactness
of sequences of differentials, then using a trick with the Atkin-Lehner involu-
tion, which was introduced by Mazur in [Maz78], and finally one applies the
“q-expansion principle” in characteristic p to deduce the result (see [AS]). Also,
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Edixhoven claims he can prove that if Af is an elliptic curve then cA is only divis-
ible by 2, 3, 5, or 7. His argument use his semistable models for X0(p

2), but my
understanding is that the details are not all written up.

2.2.3 The Real Volume ΩA

Definition 2.2.7 (Real Volume). The real volume ΩA of A(R) is the vol-
ume of A(R) with respect to a measure obtained by wedging together a basis
for H0(A,Ω1).

If A is an elliptic curve with minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

then one can show that

ω =
dx

2y + a1x + a3
(2.2.3)

is a basis for H0(A,Ω1). Thus

ΩA =

∫

A(R)

dx

2y + a1x + a3
.

There is a fast algorithm for computing ΩA, for A an elliptic curve, which relies on
the quickly-convergent Gauss arithmetic-geometric mean (see [Cre97, §3.7]). For
example, if A is the curve defined by y2 = x3 − x (this is a minimal model), then

ΩA ∼ 2× 2.622057554292119810464839589.

For a general abelian variety A, it is an open problem to compute ΩA. However, we
can compute ΩA/cA, where cA is the Manin index of A, by explicitly computing A
as a complex torus using the period mapping Φ, which we define in the next section.

2.2.4 The Period Mapping

Let
Φ : H1(X1(N),Z)→ HomC(Cf1 + · · ·+ Cfd,C)

be the period mapping on integral homology induced by integrating homology
classes on X0(N) against the C-vector space spanned by the Gal(Q/Q)-conjugates
fi of f . Extend Φ to H1(X1(N),Q) by Q-linearity. We normalize Φ so that
Φ({0,∞})(f) = L(f, 1). More explicitly, for α, β ∈ P1(Q), we have

Φ({α, β})(f) = −2πi

∫ β

α

f(z)dz.

The motivation for this normalization is that

L(f, 1) = −2πi

∫ i∞

0

f(z)dz, (2.2.4)

which we see immediately from the Mellin transform definition of L(f, s):

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iz)sf(z)
dz

z
.
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2.2.5 Manin-Drinfeld Theorem

Recall the Manin-Drinfeld theorem, which we proved long ago, asserts that {0,∞} ∈
H1(X0(N),Q). We proved this by explicitly computing (p + 1 − Tp)({0,∞}), for
p - N , noting that the result is in H1(X0(N),Z), and inverting p + 1 − Tp. Thus
there is an integer n such that n{0,∞} ∈ H1(X0(N),Z).

Suppose that A = A∨
f is an elliptic curve quotient of J0(N). Rewriting (2.2.4)

in terms of Φ, we have Φ({0,∞}) = L(f, 1). Let ω be a minimal differential on A,
as in (2.2.3), so ω = −cA · 2πif(z)dz, where cA is the Manin index of A, and the
equality is after pulling ω back to H0(X0(N),Ω) ∼= S2(Γ0(N)). Note that when
we defined cA, there was no factor of 2πi, since we compared ω with f(q) dq

q , and

q = e2πiz, so dq/q = 2πidz.

2.2.6 The Period Lattice

The period lattice of A with respect to a nonzero differential g on A is

Lg =

{∫

γ

g : γ ∈ H1(A,Z)

}
,

and we have A(C) ∼= C/Lg. This is the Abel-Jacobi theorem, and the signifi-
cance of g is that we are choosing a basis for the one-dimensional C-vector space
Hom(H0(A,Ω),C), in order to embed the image of H1(A,Z) in C.

The integral
∫

A(R)
g is “visible” in terms of the complex torus representation

of A(C) = C/Lg. More precisely, if Lg is not rectangular, then A(R) may be
identified with the part of the real line in a fundamental domain for Lg, and∫

A(R)
g is the length of this segment of the real line. If Lg is rectangular, then

it is that line along with another line above it that is midway to the top of the
fundamental domain.

The real volume, which appears in Conjecture 2.2.1, is

ΩA =

∫

A(R)

ω = −cA · 2πi

∫

A(R)

f.

Thus ΩA is the least positive real number in Lω = −cA · 2πiLf , when the period
lattice is not rectangular, and twice the least positive real number when it is.

2.2.7 The Special Value L(A, 1)

Proposition 2.2.8. We have L(f, 1) ∈ R.

Proof. With the right setup, this would follow immediately from the fact that
z 7→ −z fixes the homology class {0,∞}. However, we don’t have such a setup, so
we give a direct proof.

Just as in the proof of the functional equation for Λ(f, s), use that f is an
eigenvector for the Atkin-Lehner operator WN and (2.2.4) to write L(f, 1) as the
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sum of two integrals from i/
√

N to i∞. Then use the calculation

2πi

∫ i∞

i/
√

N

∞∑

n=1

ane2πinzdz = −2πi
∞∑

n=1

an

∫ i∞

i/
√

N

e2πinzdz

= −2πi

∞∑

n=1

an
1

2πin
e−2πn/

√
N

= 2πi

∞∑

n=1

an
1

2πin
e2πn/

√
N

to see that L(f, 1) = L(f, 1).

Remark 2.2.9. The BSD conjecture implies that L(f, 1) ≥ 0, but this is unknown
(it follows from GRH for L(f, s)).

2.2.8 Rationality of L(A, 1)/ΩA

Proposition 2.2.10. Suppose A = Af is an elliptic curve. Then L(A, 1)/ΩA ∈ Q.
More precisely, if n is the smallest multiple of {0,∞} that lies in H1(X0(N),Z)
and cA is the Manin constant of A, then 2n · cA · L(A, 1)/ΩA ∈ Z.

Proof. By the Manin-Drinfeld theorem n{0,∞} ∈ H1(X0(N),Z), so

n · L(f, 1) = −n · 2πi ·
∫ i∞

0

f(z)dz ∈ −2πi · Lf =
1

cA
Lω.

Combining this with Proposition 2.2.8, we see that

n · cA · L(f, 1) ∈ L+
ω ,

where L+
ω is the submodule fixed by complex conjugation (i.e., L+

ω = L∩R). When
the period lattice is not rectangular, ΩA generates L+

ω , and when it is rectangular,
1
2ΩA generates. Thus n · cA · L(f, 1) is an integer multiple of 1

2ΩA, which proves
the proposition.

Proposition 2.2.10 can be more precise and generalized to abelian varieties A =
A∨

f attached to newforms. One can also replace n by the order of the image of
(0)− (∞) in A(Q).

Theorem 2.2.11 (Agashe, Stein). Suppose f ∈ S2(Γ1(N)) is a newform and let
A = A∨

f be the abelian variety attached to f . Then we have the following equality
of rational numbers:

|L(A, 1)|
ΩA

=
1

c∞ · cA
· [Φ(H1(X1(N),Z))+ : Φ(T{0,∞})].

Note that L(A, 1) ∈ R, so |L(A, 1)| = ±L(A, 1), and one expects, of course, that
L(A, 1) ≥ 0.
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For V and W lattices in an R-vector space M , the lattice index [V : W ] is by
definition the absolute value of the determinant of a change of basis taking a basis
for V to a basis for W , or 0 if W has rank smaller than the dimension of M .

Proof. Let Ω̃A be the measure of A(R) with respect to a basis for S2(Γ1(N),Z)[If ],

where If is the annihilator in T of f . Note that Ω̃A · cA = ΩA, where cA is the
Manin index. Unwinding the definitions, we find that

Ω̃A = c∞ · [Hom(S2(Γ1(N),Z)[If ],Z) : Φ(H1(X0(N),Z))+].

For any ring R the pairing

TR × S2(Γ1(N), R)→ R

given by 〈Tn, f〉 = a1(Tnf) is perfect, so (T/If )⊗R ∼= Hom(S2(Γ1(N), R)[If ], R).
Using this pairing, we may view Φ as a map

Φ : H1(X1(N),Q)→ (T/If )⊗C,

so that

Ω̃A = c∞ · [T/If : Φ(H1(X0(N),Z))+].

Note that (T/If )⊗C is isomorphic as a ring to a product of copies of C, with
one copy corresponding to each Galois conjugate fi of f . Let πi ∈ (T/If )⊗C be
the projector onto the subspace of (T/If )⊗C corresponding to fi. Then

Φ({0,∞}) · πi = L(fi, 1) · πi.

Since the πi form a basis for the complex vector space (T/If ) ⊗ C, if we view
Φ({0,∞}) as the operator “left-multiplication by Φ({0,∞})”, then

det(Φ({0,∞})) =
∏

i

L(fi, 1) = L(A, 1),

Letting H = H1(X0(N),Z), we have

[Φ(H)+ : Φ(T{0,∞})] = [Φ(H)+ : (T/If ) · Φ({0,∞})]
= [Φ(H)+ : T/If ] · [T/If : T/If · Φ({0,∞})]
=

c∞

Ω̃A

· |det(Φ({0,∞}))|

=
c∞cA

ΩA
· |L(A, 1)|,

which proves the theorem.

Remark 2.2.12. Theorem 2.2.11 is false, in general, when A is a quotient of J1(N)
not attached to a single Gal(Q/Q)-orbit of newforms. It could be modified to
handle this more general case, but the generalization seems not to has been written
down.
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2.3 General Refined Conjecture

Conjecture 2.3.1 (Birch and Swinnerton-Dyer). Let r = ords=1 L(A, s).
Then r is the rank of A(Q), the group X(A) is finite, and

L(r)(A, 1)

r!
=

#X(A) · ΩA · RegA ·
∏

p|N cp

#A(Q)tor ·#A∨(Q)tor
.
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2.4 The Conjecture for Non-Modular Abelian Varieties

Conjecture 2.3.1 can be extended to general abelian varieties over global fields.
Here we discuss only the case of a general abelian variety A over Q. We follow the
discussion in [Lan91, 95-94] (Lang, Number Theory III), which describes Gross’s
formulation of the conjecture for abelian varieties over number fields, and to which
we refer the reader for more details.

For each prime number `, the `-adic Tate module associated to A is

Ta`(A) = lim←−
n

A(Q)[`n].

Since A(Q)[`n] ∼= (Z/`nZ)2 dim(A), we see that Ta`(A) is free of rank 2 dim(A) as a
Z`-module. Also, since the group structure on A is defined over Q, Ta`(A) comes
equipped with an action of Gal(Q/Q):

ρA,` : Gal(Q/Q)→ Aut(Ta`(A)) ≈ GL2d(Z`).

Suppose p is a prime and let ` 6= p be another prime. Fix any embedding
Q ↪→ Qp, and notice that restriction defines a homorphism r : Gal(Qp/Qp) →
Gal(Q/Q). Let Gp ⊂ Gal(Q/Q) be the image of r. The inertia group Ip ⊂ Gp is
the kernel of the natural surjective reduction map, and we have an exact sequence

0→ Ip → Gal(Qp/Qp)→ Gal(Fp/Fp)→ 0.

The Galois group Gal(Fp/Fp) is isomorphic to Ẑ with canonical generator x 7→ xp.
Lifting this generator, we obtain an element Frobp ∈ Gal(Qp/Qp), which is well-

defined up to an element of Ip. Viewed as an element of Gp ⊂ Gal(Q/Q), the
element Frobp is well-defined up Ip and our choice of embedding Q ↪→ Qp. One

can show that this implies that Frobp ∈ Gal(Q/Q) is well-defined up to Ip and
conjugation by an element of Gal(Q/Q).

For a Gp-module M , let

M Ip = {x ∈M : σ(x) = x all σ ∈ Ip}.
Because Ip acts trivially on M Ip , the action of the element Frobp ∈ Gal(Q/Q)
on M Ip is well-defined up to conjugation (Ip acts trivially, so the “up to Ip”
obstruction vanishes). Thus the characteristic polynomial of Frobp on M Ip is well-
defined, which is why Lp(A, s) is well-defined. The local L-factor of L(A, s) at p
is

Lp(A, s) =
1

det
(
I − p−s Frob−1

p |HomZ`
(Ta`(A),Z`)Ip

) .

Definition 2.4.1. L(A, s) =
∏

all p

Lp(A, s)

For all but finitely many primes Ta`(A)Ip = Ta`(A). For example, if A = Af is
attached to a newform f =

∑
anqn of level N and p - `·N , then Ta`(A)Ip = Ta`(A).

In this case, the Eichler-Shimura relation implies that Lp(A, s) equals
∏

Lp(fi, s),
where the fi =

∑
an,iq

n are the Galois conjugates of f and Lp(fi, s) = (1− ap,i ·
p−s + p1−2s)−1. The point is that Eichler-Shimura can be used to show that the

characteristic polynomial of Frobp is
∏dim(A)

i=1 (X2 − ap,iX + p1−2s).

Theorem 2.4.2. L(Af , s) =
∏d

i=1 L(fi, s).
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