Modular Forms

Kenneth A. Ribet William A. Stein
November 17, 2003

Contents

1 Abelian Varieties Attached to Modular Forms 1
1.1 Decomposition of the Hecke Algebra 1
1.1.1 The Dimension of L_{f} 2
1.2 Decomposition of $J_{1}(N)$ 3
1.2.1 Aside: Intersections and Congruences 4
1.3 Galois Representations Attached to A_{f} 4
1.3.1 The Weil Pairing 6
1.3.2 The Determinant 7
1.4 Remarks About the Modular Polarization 8
References 11

Abelian Varieties Attached to Modular Forms

LECTURE NOTES FOR MATH 252, November 14, 2003, By William Stein

In this chapter we describe how to decompose $J_{1}(N)$, up to isogeny, as a product of abelian subvarieties A_{f} corresponding to Galois conjugacy classes of cusp forms f of weight 2 . This was first accomplished by Shimura (see [6, Theorem 7.14]). We also discuss properties of the Galois representation attached to f.

In this chapter we will work almost exclusively with $J_{1}(N)$. However, everything goes through exactly as below with $J_{1}(N)$ replaced by $J_{0}(N)$ and $S_{2}\left(\Gamma_{1}(N)\right)$ replaced by $S_{2}\left(\Gamma_{0}(N)\right)$. Since, $J_{1}(N)$ has dimension much larger than $J_{0}(N)$, so for computational investigations it is frequently better to work with $J_{0}(N)$.

See Brian Conrad's appendix to [ribet-stein: Lectures on Serre's Conjectures] for a much more extensive exposition of the construction discussed below, which is geared toward preparing the reader for Deligne's more general construction of Galois representations associated to newforms of weight $k \geq 2$ (for that, see Conrad's book ...).

1.1 Decomposition of the Hecke Algebra

Let N be a positive integer and let

$$
\mathbf{T}=\mathbf{Z}\left[\ldots, T_{n}, \ldots\right] \subset \operatorname{End}\left(J_{1}(N)\right)
$$

be the algebra of all Hecke operators acting on $J_{1}(N)$. Recall from Section ?? that the anemic Hecke algebra is the subalgebra

$$
\mathbf{T}_{0}=\mathbf{Z}\left[\ldots, T_{n}, \ldots:(n, N)=1\right] \subset \mathbf{T}
$$

of \mathbf{T} obtained by adjoining to \mathbf{Z} only those Hecke operators T_{n} with n relatively prime to N.

Remark 1.1.1. Viewed as \mathbf{Z}-modules, \mathbf{T}_{0} need not be saturated in \mathbf{T}, i.e., $\mathbf{T} / \mathbf{T}_{0}$ need not be torsion free. For example, if \mathbf{T} is the Hecke algebra associated to $S_{2}\left(\Gamma_{1}(24)\right)$ then $\mathbf{T} / \mathbf{T}_{0} \cong \mathbf{Z} / 2 \mathbf{Z}$. Also, if \mathbf{T} is the Hecke algebra associated to $S_{2}\left(\Gamma_{0}(54)\right)$, then $\mathbf{T} / \mathbf{T}_{0} \cong \mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z}$.

If $f=\sum a_{n} q^{n}$ is a newform, then the field $K_{f}=\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right)$ has finite degree over \mathbf{Q}, since the a_{n} are the eigenvalues of a family of commuting operators with integral characteristic polynomials. The Galois conjugates of f are the newforms $\sigma(f)=\sum \sigma\left(a_{n}\right) q^{n}$, for $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. There are $\left[K_{f}: \mathbf{Q}\right]$ Galois conjugates of f.

As in Section ??, we have a canonical decomposition

$$
\begin{equation*}
\mathbf{T}_{0} \otimes \mathbf{Q} \cong \prod_{f} K_{f} \tag{1.1.1}
\end{equation*}
$$

where f varies over a set of representatives for the Galois conjugacy classes of newforms in $S_{2}\left(\Gamma_{1}(N)\right)$ of level dividing N. For each f, let

$$
\pi_{f}=(0, \ldots, 0,1,0, \ldots, 0) \in \prod K_{f}
$$

be projection onto the factor K_{f} of the product (1.1.1). Since $\mathbf{T}_{0} \subset \mathbf{T}$, and \mathbf{T} has no additive torsion, we have $\mathbf{T}_{0} \otimes \mathbf{Q} \subset \mathbf{T} \otimes \mathbf{Q}$, so these projectors π_{f} lie in $\mathbf{T}_{\mathbf{Q}}=\mathbf{T} \otimes \mathbf{Q}$. Since $\mathbf{T}_{\mathbf{Q}}$ is commutative and the π_{f} are mutually orthogonal idempotents whose sum is $(1,1, \ldots, 1)$, we see that $\mathbf{T}_{\mathbf{Q}}$ breaks up as a product of algebras

$$
\mathbf{T}_{\mathbf{Q}} \cong \prod_{f} L_{f}, \quad t \mapsto \sum_{f} t \pi_{f}
$$

1.1.1 The Dimension of L_{f}

Proposition 1.1.2. If f, L_{f} and K_{f} are as above, then $\operatorname{dim}_{K_{f}} L_{f}$ is the number of divisors of N / N_{f} where N_{f} is the level of the newform f.

Proof. Let V_{f} be the complex vector space spanned by all images of Galois conjugates of f via all maps α_{d} with $d \mid N / N_{f}$. It follows from [Atkin-LehnerLi theory - multiplicity one] that the images via α_{d} of the Galois conjugates of f are linearly independent. (Details: More generally, if f and g are newforms of level M, then by Proposition ??, $B(f)=\left\{\alpha_{d}(f): d \mid N / N_{f}\right\}$ is a linearly independent set and likewise for $B(g)$. Suppose some nonzero element f^{\prime} of the span of $B(f)$ equals some element g^{\prime} of the span of $B(g)$. Since T_{p}, for $p \nmid N$, commutes with α_{d}, we have $T_{p}\left(f^{\prime}\right)=a_{p}(f) f^{\prime}$ and $T_{p}\left(g^{\prime}\right)=a_{p}(g) g^{\prime}$, so $0=T_{p}(0)=T_{p}\left(f^{\prime}-g^{\prime}\right)=a_{p}(f) f^{\prime}-a_{p}(g) g^{\prime}$. Since $f^{\prime}=g^{\prime}$, this implies that $a_{p}(f)=a_{p}(g)$. Because a newform is determined by the eigenvalues of T_{p} for $p \nmid N$, it follows that $f=g$.) Thus the \mathbf{C}-dimension of V_{f} is the number of divisors of N / N_{f} times $\operatorname{dim}_{\mathbf{Q}} K_{f}$.

The factor L_{f} is isomorphic to the image of $\mathbf{T}_{\mathbf{Q}} \subset \operatorname{End}\left(S_{k}\left(\Gamma_{1}(N)\right)\right)$ in $\operatorname{End}\left(V_{f}\right)$. As in Section ??, there is a single element $v \in V_{f}$ so that $V_{f}=\mathbf{T}_{\mathbf{C}} \cdot v$. Thus the image of $\mathbf{T}_{\mathbf{Q}}$ in $\operatorname{End}\left(V_{f}\right)$ has dimension $\operatorname{dim}_{\mathbf{C}} V_{f}$, and the result follows.

Let's examine a particular case of this proposition. Suppose q is a prime and $f=$ $\sum a_{n} q^{n}$ is a newform of level N_{f} coprime to q, and let $N=N_{f} q$. We will show that

$$
L_{f}=K_{f}[U] /\left(U^{2}-a_{q} U+q\right)
$$

hence $\operatorname{dim}_{K_{f}} L_{f}=2$ which, as expected, is the number of divisors of $N / N_{f}=q$. The first step is to view L_{f} as the space of operators generated by the T_{p} acting on the span of the images $f(d z)=f\left(q^{d}\right)$ for $d \mid\left(N / N_{f}\right)=q$.

In our special case, T_{p} acts as the scalar a_{p} when $p \nmid N$. When $q \mid N$, the Hecke operator T_{q} acts as the operator also denoted U_{q} (see [...]). By Section ??, we know that U_{q} corresponds to the matrix $\left(\begin{array}{cc}a_{q} & 1 \\ -q & 0\end{array}\right)$ with respect to the basis $f(q), f\left(q^{p}\right)$. Thus U_{q} satisfies the relation $U_{q}^{2}-a_{q} U+q$.

More generally, see [2, Lem. 4.4] (Diamond-Darmon-Taylor) for an explicit presentation of L_{f} as a quotient

$$
L_{f} \cong K_{f}\left[\ldots, U_{q}, \ldots\right] / I
$$

where I is an ideal and the U_{q} correspond to the prime divisors of N / N_{f}.

1.2 Decomposition of $J_{1}(N)$

Let f be a newform in $S_{2}\left(\Gamma_{1}(N)\right)$ of level a divisor M of N, so $f \in S_{2}\left(\Gamma_{1}(M)\right)_{\text {new }}$ is a normalized eigenform for all the Hecke operators of level M. We associate to f an abelian subvariety A_{f} of $J_{1}(N)$, of dimension $\left[L_{f}: \mathbf{Q}\right.$], as follows. Recall that π_{f} is the f th projector in $\mathbf{T}_{0} \otimes \mathbf{Q}=\prod_{g} K_{g}$. We can not define A_{f} to be the image of $J_{1}(N)$ under π_{f}, since π_{f} is only, a priori, an element of $\operatorname{End}\left(J_{1}(N)\right) \otimes \mathbf{Q}$. Fortunately, there exists a positive integer n such that $n \pi_{f} \in \operatorname{End}\left(J_{1}(N)\right)$, and we let

$$
A_{f}=n \pi_{f}\left(J_{1}(N)\right) .
$$

This is independent of the choice of n, since the choices for n are all multiples of the "denominator" n_{0} of π_{f}, and if A is any abelian variety and n is a positive integer, then $n A=A$.
The natural map $\prod_{f} A_{f} \rightarrow J_{1}(N)$, which is induced by summing the inclusion maps, is an isogeny. Also A_{f} is simple if f is of level N, and otherwise A_{f} is isogenous to a power of $A_{f}^{\prime} \subset J_{1}\left(N_{f}\right)$. Thus we obtain an isogeny decomposition of $J_{1}(N)$ as a product of \mathbf{Q}-simple abelian varieties.
Remark 1.2.1. The abelian varieties A_{f} frequently decompose further over $\overline{\mathbf{Q}}$, i.e., they are not absolutely simple, and it is an interesting problem to determine an isogeny decomposition of $J_{1}(N)_{\overline{\mathrm{Q}}}$ as a product of simple abelian varieties. It is still not known precisely how to do this computationally for any particular N.
This decomposition can be viewed in another way over the complex numbers. As a complex torus, $J_{1}(N)(\mathbf{C})$ has the following model:

$$
J_{1}(N)(\mathbf{C})=\operatorname{Hom}\left(S_{2}\left(\Gamma_{1}(N)\right), \mathbf{C}\right) / H_{1}\left(X_{1}(N), \mathbf{Z}\right) .
$$

The action of the Hecke algebra \mathbf{T} on $J_{1}(N)(\mathbf{C})$ is compatible with its action on the cotangent space $S_{2}\left(\Gamma_{1}(N)\right)$. This construction presents $J_{1}(N)(\mathbf{C})$ naturally as V / \mathcal{L} with V a complex vector space and \mathcal{L} a lattice in V. The anemic Hecke algebra \mathbf{T}_{0} then decomposes V as a direct sum $V=\bigoplus_{f} V_{f}$. The Hecke operators act on V_{f} and \mathcal{L} in a compatible way, so \mathbf{T}_{0} decomposes $\mathcal{L} \otimes \mathbf{Q}$ in a compatible way. Thus $\mathcal{L}_{f}=V_{f} \cap \mathcal{L}$ is a lattice in V_{f}, so we may $A_{f}(\mathbf{C})$ view as the complex torus V_{f} / \mathcal{L}_{f}.

Lemma 1.2.2. Let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ be a newform of level dividing N and $A_{f}=$ $n \pi_{f}\left(J_{1}(N)\right)$ be the corresponding abelian subvariety of $J_{1}(N)$. Then the Hecke algebra $\mathbf{T} \subset \operatorname{End}\left(J_{1}(N)\right)$ leaves A_{f} invariant.

Proof. The Hecke algebra \mathbf{T} is commutative, so if $t \in \mathbf{T}$, then

$$
t A_{f}=\operatorname{tn} \pi_{f}\left(J_{1}(N)\right)=n \pi_{f}\left(t J_{1}(N)\right) \subset n \pi_{f}\left(J_{1}(N)\right)=A_{f}
$$

Remark 1.2.3. Viewing $A_{f}(\mathbf{C})$ as V_{f} / \mathcal{L}_{f} is extremely useful computationally, since \mathcal{L} can be computed using modular symbols, and \mathcal{L}_{f} can be cut out using the Hecke operators. For example, if f and g are nonconjugate newforms of level dividing N, we can explicitly compute the group structure of $A_{f} \cap A_{g} \subset J_{1}(N)$ by doing a computation with modular symbols in \mathcal{L}. More precisely, we have

$$
A_{f} \cap A_{g} \cong\left(\mathcal{L} /\left(\mathcal{L}_{f}+\mathcal{L}_{g}\right)\right)_{\text {tor }}
$$

Note that A_{f} depends on viewing f as an element of $S_{2}\left(\Gamma_{1}(N)\right)$ for some N. Thus it would be more accurate to denote A_{f} by $A_{f, N}$, where N is any multiple of the level of f, and to reserve the notation A_{f} for the case $N=1$. Then $\operatorname{dim} A_{f, N}$ is $\operatorname{dim} A_{f}$ times the number of divisors of N / N_{f}.

1.2.1 Aside: Intersections and Congruences

Suppose f and g are not Galois conjugate. Then the intersection $\Psi=A_{f} \cap A_{g}$ is finite, since $V_{f} \cap V_{g}=0$, and the integer $\# \Psi$ is of interest. This cardinality is related to congruence between f and g, but the exact relation is unclear. For example, one might expect that $p \mid \# \Psi$ if and only if there is a prime \wp of the compositum $K_{f} . K_{g}$ of residue characteristic p such that $a_{q}(f) \equiv a_{q}(g)(\bmod \wp)$ for all $q \nmid N$. If $p \mid \# \Psi$, then such a prime \wp exists (take \wp to be induced by a maximal ideal in the support of the nonzero \mathbf{T}-module $\Psi[p])$. The converse is frequently true, but is sometimes false. For example, if N is the prime 431 and

$$
\begin{aligned}
& f=q-q^{2}+q^{3}-q^{4}+q^{5}-q^{6}-2 q^{7}+\cdots \\
& g=q-q^{2}+3 q^{3}-q^{4}-3 q^{5}-3 q^{6}+2 q^{7}+\cdots
\end{aligned}
$$

then $f \equiv g(\bmod 2)$, but $A_{f} \cap A_{g}=0$. This example implies that "multiplicity one fails" for level 431 and $p=2$, so the Hecke algebra associated to $J_{0}(431)$ is not Gorenstein (see [Lloyd Kilford paper] for more details).

1.3 Galois Representations Attached to A_{f}

It is important to emphasize the case when f is a newform of level N, since then A_{f} is \mathbf{Q}-simple and there is a compatible family of 2 -dimensional ℓ-adic representations attached to f, which arise from torsion points on A_{f}.

Proposition 1.1.2 implies that $L_{f}=K_{f}$. Fix such an f, let $A=A_{f}$, let $K=K_{f}$, and let

$$
d=\operatorname{dim} A=\operatorname{dim}_{\mathbf{Q}} K=[K: \mathbf{Q}] .
$$

Let ℓ be a prime and consider the \mathbf{Q}_{ℓ}-adic Tate module $\operatorname{Tate}_{\ell}(A)$ of A :

$$
\operatorname{Tate}_{\ell}(A)=\mathbf{Q}_{\ell} \otimes \underset{\nu>0}{\lim _{\check{\nu}}} A\left[\ell^{\nu}\right]
$$

Note that as a $\mathbf{Q}_{\ell \text {-vector space }} \operatorname{Tate}_{\ell}(A) \cong \mathbf{Q}_{\ell}^{2 d}$, since $A[n] \cong(\mathbf{Z} / n \mathbf{Z})^{2 d}$, as groups.
There is a natural action of the ring $K \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ on $\operatorname{Tate}_{\ell}(A)$. By algebraic number theory

$$
K \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}=\prod_{\lambda \mid \ell} K_{\lambda},
$$

where λ runs through the primes of the ring \mathcal{O}_{K} of integers of K lying over ℓ and K_{λ} denotes the completion of K with respect to the absolute value induced by λ. Thus $\operatorname{Tate}_{\ell}(A)$ decomposes as a product

$$
\operatorname{Tate}_{\ell}(A)=\prod_{\lambda \mid \ell} \operatorname{Tate}_{\lambda}(A)
$$

where $\operatorname{Tate}_{\lambda}(A)$ is a K_{λ} vector space.
Lemma 1.3.1. Let the notation be as above. Then for all λ lying over ℓ,

$$
\operatorname{dim}_{K_{\lambda}} \operatorname{Tate}_{\lambda}(A)=2
$$

Proof. Write $A=V / \mathcal{L}$, with $V=V_{f}$ a complex vector space and \mathcal{L} a lattice. Then $\operatorname{Tate}_{\lambda}(A) \cong \mathcal{L} \otimes \mathbf{Q}_{\ell}$ as K_{λ}-modules (not as $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-modules!), since $A\left[\ell^{n}\right] \cong$ $\mathcal{L} / \ell^{n} \mathcal{L}$, and $\lim _{n} \mathcal{L} / \ell^{n} \mathcal{L} \cong \mathbf{Z}_{\ell} \otimes \mathcal{L}$. Also, $\mathcal{L} \otimes \mathbf{Q}$ is a vector space over K, which must have dimension 2 , since $\mathcal{L} \otimes \mathbf{Q}$ has dimension $2 d=2 \operatorname{dim} A$ and K has degree d. Thus

$$
\operatorname{Tate}_{\lambda}(A) \cong \mathcal{L} \otimes K_{\lambda} \approx(K \oplus K) \otimes_{K} K_{\lambda} \cong K_{\lambda} \oplus K_{\lambda}
$$

has dimension 2 over K_{λ}.
Now consider $\operatorname{Tate}_{\lambda}(A)$, which is a K_{λ}-vector space of dimension 2. The Hecke operators are defined over \mathbf{Q}, so $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on $\operatorname{Tate}_{\ell}(A)$ in a way compatible with the action of $K \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$. We thus obtain a homomorphism

$$
\rho_{\ell}=\rho_{f, \ell}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \operatorname{Aut}_{K \otimes \mathbf{Q}_{\ell}} \operatorname{Tate}_{\ell}(A) \approx \mathrm{GL}_{2}\left(K \otimes \mathbf{Q}_{\ell}\right) \cong \prod_{\lambda} \mathrm{GL}_{2}\left(K_{\lambda}\right)
$$

Thus ρ_{ℓ} is the direct sum of ℓ-adic Galois representations ρ_{λ} where

$$
\rho_{\lambda}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \operatorname{End}_{K_{\lambda}}\left(\operatorname{Tate}_{\lambda}(A)\right)
$$

gives the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on $\operatorname{Tate}_{\lambda}(A)$.
If $p \nmid \ell N$, then ρ_{λ} is unramified at p (see [5, Thm. 1]). In this case it makes sense to consider $\rho_{\lambda}\left(\varphi_{p}\right)$, where $\varphi_{p} \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ is a Frobenius element at p. Then $\rho_{\lambda}\left(\varphi_{p}\right)$ has a well-defined trace and determinant, or equivalently, a well-defined characteristic polynomial $\Phi(X) \in K_{\lambda}[X]$.

Theorem 1.3.2. Let $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon\right)$ be a newform of level N with Dirichlet character ε. Suppose $p \nmid \ell N$, and let $\varphi_{p} \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ be a Frobenius element at p. Let $\Phi(X)$ be the characteristic polynomial of $\rho_{\lambda}\left(\varphi_{p}\right)$. Then

$$
\Phi(X)=X^{2}-a_{p} X+p \cdot \varepsilon(p)
$$

where a_{p} is the pth coefficient of the modular form f (thus a_{p} is the image of T_{p} in E_{f} and $\varepsilon(p)$ is the image of $\langle p\rangle$).

Let $\varphi=\varphi_{p}$. By the Cayley-Hamilton theorem

$$
\rho_{\lambda}(\varphi)^{2}-\operatorname{tr}\left(\rho_{\lambda}(\varphi)\right) \rho_{\lambda}(\varphi)+\operatorname{det}\left(\rho_{\lambda}(\varphi)\right)=0
$$

Using the Eichler-Shimura congruence relation (see) we will show that $\operatorname{tr}\left(\rho_{\lambda}(\varphi)\right)=$ a_{p}, but we defer the proof of this until

We will prove that $\operatorname{det}\left(\rho_{\lambda}(\varphi)\right)=p$ in the special case when $\varepsilon=1$. This will follow from the equality

$$
\begin{equation*}
\operatorname{det}\left(\rho_{\lambda}\right)=\chi_{\ell} \tag{1.3.1}
\end{equation*}
$$

where χ_{ℓ} is the ℓ th cyclotomic character

$$
\chi_{\ell}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathbf{Z}_{\ell}^{*} \subset K_{\lambda}^{*},
$$

which gives the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on $\mu_{\ell \infty}$. We have $\chi_{\ell}(\varphi)=p$ because φ induces induces p th powering map on $\mu_{\ell \infty}$.

It remains to establish (1.3.1). The simplest case is when A is an elliptic curve. In [7,], Silverman shows that $\operatorname{det}\left(\rho_{\ell}\right)=\chi_{\ell}$ using the Weil pairing. We will consider the Weil pairing in more generality in the next section, and use it to establish (1.3.1).

1.3.1 The Weil Pairing

Let $T_{\ell}(A)=\lim _{n \geq 1} A\left[\ell^{n}\right]$, so $\operatorname{Tate}_{\ell}(A)=\mathbf{Q}_{\ell} \otimes T_{\ell}(A)$. The Weil pairing is a nondegenerate perfect pairing

$$
e_{\ell}: T_{\ell}(A) \times T_{\ell}\left(A^{\vee}\right) \rightarrow \mathbf{Z}_{\ell}(1)
$$

(See e.g., $[3, \S 16]$ for a summary of some of its main properties.)
Remark 1.3.3. Identify $\mathbf{Z} / \ell^{n} \mathbf{Z}$ with $\mu_{\ell^{n}}$ by $1 \mapsto e^{-2 \pi i / \ell^{n}}$, and extend to a map $\mathbf{Z}_{\ell} \rightarrow \mathbf{Z}_{\ell}(1)$. If $J=\operatorname{Jac}(X)$ is a Jacobian, then the Weil pairing on J is induced by the canonical isomorphism

$$
T_{\ell}(J) \cong \mathrm{H}^{1}\left(X, \mathbf{Z}_{\ell}\right)=\mathrm{H}^{1}(X, \mathbf{Z}) \otimes \mathbf{Z}_{\ell}
$$

and the cup product pairing

$$
\mathrm{H}^{1}\left(X, \mathbf{Z}_{\ell}\right) \otimes_{\mathbf{z}_{\ell}} \mathrm{H}^{1}\left(X, \mathbf{Z}_{\ell}\right) \xrightarrow{\cup} \mathbf{Z}_{\ell} .
$$

For more details see the discussion on pages 210-211 of Conrad's appendix to [4], and the references therein. In particular, note that $\mathrm{H}^{1}\left(X, \mathbf{Z}_{\ell}\right)$ is isomorphic to $\mathrm{H}_{1}\left(X, \mathbf{Z}_{\ell}\right)$, because $\mathrm{H}_{1}\left(X, \mathbf{Z}_{\ell}\right)$ is self-dual because of the intersection pairing. It is easy to see that $\mathrm{H}_{1}\left(X, \mathbf{Z}_{\ell}\right) \cong T_{\ell}(J)$ since by Abel-Jacobi $J \cong T_{0}(J) / \mathrm{H}_{1}(X, \mathbf{Z})$, where $T_{0}(J)$ is the tangent space at J at 0 (see Lemma 1.3.1).

Here $\mathbf{Z}_{\ell}(1) \cong \lim \mu_{\ell^{n}}$ is isomorphic to \mathbf{Z}_{ℓ} as a ring, but has the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ induced by the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on $\lim _{\leftrightarrows} \mu_{\ell^{n}}$. Given $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, there is an element $\chi_{\ell}(\sigma) \in \mathbf{Z}_{\ell}^{*}$ such that $\sigma(\zeta)=\zeta^{\chi} \chi_{\ell}(\sigma)$, for every ℓ^{n} th root of unity ζ. If we view $\mathbf{Z}_{\ell}(1)$ as just \mathbf{Z}_{ℓ} with an action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then the action of $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on $\mathbf{Z}_{\ell}(1)$ is left multiplication by $\chi_{\ell}(\sigma) \in \mathbf{Z}_{\ell}^{*}$.

Definition 1.3.4 (Cyclotomic Character). The homomorphism

$$
\chi_{\ell}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathbf{Z}_{\ell}^{*}
$$

is called the ℓ-adic cyclotomic character.
If $\varphi: A \rightarrow A^{\vee}$ is a polarization (so it is an isogeny defined by translation of an ample invertible sheaf), we define a pairing

$$
\begin{equation*}
e_{\ell}^{\varphi}: T_{\ell}(A) \times T_{\ell}(A) \rightarrow \mathbf{Z}_{\ell}(1) \tag{1.3.2}
\end{equation*}
$$

by $e_{\ell}^{\varphi}(a, b)=e_{\ell}(a, \varphi(b))$. The pairing (1.3.2) is a skew-symmetric, nondegenerate, bilinear pairing that is $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-equivariant, in the sense that if $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then

$$
e_{\ell}^{\varphi}(\sigma(a), \sigma(b))=\sigma \cdot e_{\ell}^{\varphi}(a, b)=\chi_{\ell}(\sigma) e_{\ell}^{\varphi}(a, b)
$$

We now apply the Weil pairing in the special case $A=A_{f} \subset J_{1}(N)$. Abelian varieties attached to modular forms are equipped with a canonical polarization called the modular polarization. The canonical principal polarization of $J_{1}(N)$ is an isomorphism $J_{1}(N) \xrightarrow{\sim} J_{1}(N)^{\vee}$, so we obtain the modular polarization $\varphi=$ $\varphi_{A}: A \rightarrow A^{\vee}$ of A, as illustrated in the following diagram:

Consider (1.3.2) with $\varphi=\varphi_{A}$ the modular polarization. Tensoring over \mathbf{Q} and restricting to $\operatorname{Tate}_{\lambda}(A)$, we obtain a nondegenerate skew-symmetric bilinear pairing

$$
\begin{equation*}
e: \operatorname{Tate}_{\lambda}(A) \times \operatorname{Tate}_{\lambda}(A) \rightarrow \mathbf{Q}_{\ell}(1) \tag{1.3.3}
\end{equation*}
$$

The nondegeneracy follows from the nondegeneracy of e_{ℓ}^{φ} and the observation that

$$
e_{\ell}^{\varphi}\left(\operatorname{Tate}_{\lambda}(A), \operatorname{Tate}_{\lambda^{\prime}}(A)\right)=0
$$

when $\lambda \neq \lambda^{\prime}$. This uses the Galois equivariance of e_{ℓ}^{ϕ} carries over to Galois equivariance of e, in the following sense. If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ and $x, y \in \operatorname{Tate}_{\lambda}(A)$, then

$$
e(\sigma x, \sigma y)=\sigma e(x, y)=\chi_{\ell}(\sigma) e(x, y)
$$

Note that σ acts on $\mathbf{Q}_{\ell}(1)$ as multiplication by $\chi_{\ell}(\sigma)$.

1.3.2 The Determinant

There are two proofs of the theorem, a fancy proof and a concrete proof. We first present the fancy proof. The pairing e of (1.3.3) is a skew-symmetric and bilinear form so it determines a $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-equivarient homomorphism

$$
\begin{equation*}
\bigwedge_{K_{\lambda}}^{2} \operatorname{Tate}_{\lambda}(A) \rightarrow \mathbf{Q}_{\ell}(1) \tag{1.3.4}
\end{equation*}
$$

It is not a priori true that we can take the wedge product over K_{λ} instead of \mathbf{Q}_{ℓ}, but we can because $e(t x, y)=e(x, t y)$ for any $t \in K_{\lambda}$. This is where we use that A is attached to a newform with trivial character, since when the character is nontrivial, the relation between $e\left(T_{p} x, y\right)$ and $e\left(x, T_{p} y\right)$ will involve $\langle p\rangle$. Let $D=\bigwedge^{2} \operatorname{Tate}_{\lambda}(A)$ and note that $\operatorname{dim}_{K_{\lambda}} D=1$, since $\operatorname{Tate}_{\lambda}(A)$ has dimension 2 over K_{λ}.

There is a canonical isomorphism

$$
\operatorname{Hom}_{\mathbf{Q}_{\ell}}\left(D, \mathbf{Q}_{\ell}(1)\right) \cong \operatorname{Hom}_{K_{\lambda}}\left(D, K_{\lambda}(1)\right),
$$

and the map of (1.3.4) maps to an isomorphism $D \cong K_{\lambda}(1)$ of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-modules. Since the representation of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on D is the determinant, and the representation on $K_{\lambda}(1)$ is the cyclotomic character χ_{ℓ}, it follows that $\operatorname{det} \rho_{\lambda}=\chi_{\ell}$.

Next we consider a concrete proof. If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then we must show that $\operatorname{det}(\sigma)=\chi_{\ell}(\sigma)$. Choose a basis $x, y \in \operatorname{Tate}_{\lambda}(A)$ of $\operatorname{Tate}_{\lambda}(A)$ as a dimensional K_{λ} vector space. We have $\sigma(x)=a x+c y$ and $\sigma(y)=b x+d y$, for $a, b, c, d \in K_{\lambda}$. Then

$$
\begin{aligned}
\chi_{\ell}(\sigma) e(x, y) & =\langle\sigma x, \sigma y) \\
& =e(a x+c y, b x+d y) \\
& =e(a x, b x)+e(a x, d y)+e(c y, b x)+e(c y, d y) \\
& =e(a x, d y)+e(c y, b x) \\
& =e(a d x, y)-e(b c x, y) \\
& =e((a d-b c) x, y) \\
& =(a d-b c) e(x, y)
\end{aligned}
$$

To see that $e(a x, b x)=0$, note that

$$
e(a x, b x)=e(a b x, x)=-e(x, a b x)=-e(a x, b x)
$$

Finally, since e is nondegenerate, there exists x, y such that $e(x, y) \neq 0$, so $\chi_{\ell}(\sigma)=$ $a d-b c=\operatorname{det}(\sigma)$.

1.4 Remarks About the Modular Polarization

Let A and φ be as in Section 1.3.1. The degree $\operatorname{deg}(\varphi)$ of the modular polarization of A is an interesting arithmetic invariant of A. If $B \subset J_{1}(N)$ is the sum of all modular abelian varieties A_{g} attached to newforms $g \in S_{2}\left(\Gamma_{1}(N)\right)$, with g not a Galois conjugate of f and of level dividing N, then $\operatorname{ker}(\varphi) \cong A \cap B$, as illustrated
in the following diagram:

Note that $\operatorname{ker}\left(\varphi_{B}\right)$ is also isomorphic to $A \cap B$, as indicated in the diagram.
In connection with Section ??, the quantity $\operatorname{ker}\left(\varphi_{A}\right)=A \cap B$ is closely related to congruences between f and eigenforms orthogonal to the Galois conjugates of f.

When A has dimension 1, we may alternatively view A as a quotient of $X_{1}(N)$ via the map

$$
X_{1}(N) \rightarrow J_{1}(N) \rightarrow A^{\vee} \cong A
$$

Then $\varphi_{A}: A \rightarrow A$ is pullback of divisors to $X_{1}(N)$ followed by push forward, which is multiplication by the degree. Thus $\varphi_{A}=[n]$, where n is the degree of the morphism $X_{1}(N) \rightarrow A$ of algebraic curves. The modular degree is

$$
\operatorname{deg}\left(X_{1}(N) \rightarrow A\right)=\sqrt{\operatorname{deg}\left(\varphi_{A}\right)}
$$

More generally, if A has dimension greater than 1 , then $\operatorname{deg}\left(\varphi_{A}\right)$ has order a perfect square (for references, see [3, Thm. 13.3]), and we define the modular degree to be $\sqrt{\operatorname{deg}\left(\varphi_{A}\right)}$.

Let f be a newform of level N. In the spirit of Section 1.2 .1 we use congruences to define a number related to the modular degree, called the congruence number. For a subspace $V \subset S_{2}\left(\Gamma_{1}(N)\right)$, let $V(\mathbf{Z})=V \cap \mathbf{Z}[[q]]$ be the elements with integral q-expansion at ∞ and V^{\perp} denotes the orthogonal complement of V with respect to the Petersson inner product. The congruence number of f is

$$
r_{f}=\# \frac{S_{2}\left(\Gamma_{1}(N)\right)(\mathbf{Z})}{V_{f}(\mathbf{Z})+V_{f}^{\perp}(\mathbf{Z})},
$$

where V_{f} is the complex vector space spanned by the Galois conjugates of f. We thus have two positive associated to f, the congruence number r_{f} and the modular degree m_{f} of of A_{f}.
Theorem 1.4.1. $m_{f} \mid r_{f}$
Ribet mentions this in the case of elliptic curves in [ZAGIER, 1985] [8], but the statement is given incorrectly in that paper (the paper says that $r_{f} \mid m_{f}$, which is wrong). The proof for dimension greater than one is in [AGASHE-STEIN, Manin constant...]. Ribet also subsequently proved that if $p^{2} \nmid N$, then $\operatorname{ord}_{p}\left(m_{f}\right)=$ $\operatorname{ord}_{p}\left(r_{f}\right)$.

We can make the same definitions with $J_{1}(N)$ replaced by $J_{0}(N)$, so if $f \in$ $S_{2}\left(\Gamma_{0}(N)\right)$ is a newform, $A_{f} \subset J_{0}(N)$, and the congruence number measures congruences between f and other forms in $S_{2}\left(\Gamma_{0}(N)\right)$. In [?, Ques. 4.4], they ask
whether it is always the case that $m_{f}=r_{f}$ when A_{f} is an elliptic curve, and m_{f} and r_{f} are defined relative to $\Gamma_{0}(N)$. I implemented an algorithm in MAGMA to compute r_{f}, and found the first few counterexamples, which occur when

$$
N=54,64,72,80,88,92,96,99,108,120,124,126,128,135,144
$$

For example, the elliptic curve A labeled 54 B 1 in [1] has $r_{A}=6$ and $m_{A}=2$. To see directly that $3 \mid r_{A}$, observe that if f is the newform corresponding to E and g is the newform corresponding to $X_{0}(27)$, then $g(q)+g\left(q^{2}\right)$ is congruent to f modulo 3. This is consistent with Ribet's theorem that if $p \mid r_{A} / m_{A}$ then $p^{2} \mid N$. There seems to be no absolute bound on the p that occur.

It would be interesting to determine the answer to the analogue of the question of Frey-Mueller for $\Gamma_{1}(N)$. For example, if $A \subset J_{1}(54)$ is the curve isogeneous to 54 B 1 , then $m_{A}=18$ is divisible by 3 . However, I do not know r_{A} in this case, because I haven't written a program to compute it for $\Gamma_{1}(N)$. If somebody would like to work with me on this for a final project, let me know. The final project would involve: (1) reading relevant literature (I'll tell you the papers), (2) summarizing it, and (3) I'll code a program to compute r_{A} and m_{A} for $\Gamma_{1}(N)$, and you'll orchestrate running it.

WEDNESDAY: Description of the Eichler-Shimura Congruence Re-

lation I'll describe the relationship between T_{p} and Frobenius in characteristic p and use this relationship to prove that $\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=a_{p}$. In particular, this will finally explain why if E is an elliptic curve $p+1-\# E\left(\mathbf{F}_{p}\right)$ is the coefficient of p of the corresponding newform!

References

[1] J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997.
[2] H. Darmon, F. Diamond, and R. Taylor, Fermat's last theorem, Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA, 1994, pp. 1-154.
[3] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103-150.
[4] K. A. Ribet and W. A. Stein, Lectures on Serre's conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 143-232. MR 2002h:11047
[5] J-P. Serre and J. T. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517.
[6] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.
[7] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original.
[8] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), no. 3, 372-384. MR 86m:11041

